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Abstract: We propose introducing fairness constraints to one of the most famous multi-criteria
decision-making methods, the analytic hierarchy process (AHP). We offer a solution that guarantees
consistency while respecting legally binding fairness constraints in AHP pairwise comparison ma-
trices. Through a synthetic experiment, we generate the comparison matrices of different sizes and
ranges/levels of the initial parameters (i.e., consistency ratio and disparate impact). We optimize
disparate impact for various combinations of these initial parameters and observed matrix sizes while
respecting an acceptable level of consistency and minimizing deviations of pairwise comparison
matrices (or their upper triangles) before and after the optimization. We use a metaheuristic genetic
algorithm to set the dually motivating problem and operate a discrete optimization procedure (in
connection with Saaty’s 9-point scale). The results confirm the initial hypothesis (with 99.5% validity
concerning 2800 optimization runs) that achieving fair ranking while respecting consistency in AHP
pairwise comparison matrices (when comparing alternatives regarding given criterium) is possible,
thus meeting two challenging goals simultaneously. This research contributes to the initiatives
directed toward unbiased decision-making, either automated or algorithm-assisted (which is the case
covered by this research).

Keywords: analytic hierarchy process (AHP); fairness; consistency; multi-criteria decision-making
(MCDM); decision-making algorithms; discrete optimization; genetic algorithm (GA); fair ranking;
pairwise comparison matrix (PCM)

MSC: 90B50

1. Introduction

The analytic hierarchy process (AHP) is a multi-criteria decision-making (MCDM)
method developed by Saaty [1]. It is advantageous to solve many fundamental problems
of selecting, ranking, and evaluating decision alternatives/options [2,3] when two or more
criteria play a part in the decision. The method application covers topics in different areas,
such as, for example, personal, engineering, social, and manufacturing [4]. Moreover,
reviews of AHP applications are dedicated to specific fields, for example, construction [5],
project management [6], operation management [7], medical and healthcare decision-
making [8], and urban mobility [9].

AHP procedure includes mutually pairwise comparisons of both criteria and alterna-
tives (according to the goal or each criterion separately) in pairwise comparison matrices
(PCMs) using Saaty’s 9-point scale [10]. Despite the method’s vast application (AHP is
the most used MCDM method according to Munier et al. [11]), a possibly large number of
pairwise comparisons makes it challenging for decision-makers (DMs) to fill in PCMs with
all required judgments. Therefore, logical inconsistency regarding pairwise comparison
judgments is a leading methodological AHP-related research subject [12–14].
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AHP is a specific quantitative MCDM method because it does not use direct weighting
but compares each pair of criteria or alternatives [15]. DMs’ judgments are subjective and
can lead to biased decisions, i.e., they can discriminate against some individuals or groups
with specific sensitive properties in the final AHP-based ranking. This concern raises the
issue of fairness, which is relatively new in MCDM (it motivates only a few papers from
the field–e.g., [16–19]).

The limited human capacity to process data, today’s need for faster resolving complex
situations, and the tendency to reduce subjective and biased human decisions motivate the
use of artificial intelligence (AI) and machine learning (ML) algorithms. For example, fairness
in hiring, lending, and imprisonment is related to AI decision-making applications [15]. Also,
decision-making algorithms operate in complex socio-technical environments (for example,
human-AI interactions make a significant part of risky decision-making in health and learn-
ing [20]). Human-AI interfaces will become increasingly widespread as ML algorithms are
practical in real-world settings to help to improve human decision-making [21].

Although people feel more confident about being evaluated by algorithms when
they perceive potential discrimination against them [22], algorithmic decision-making
tends to produce unfair decisions implicitly and without real intention [23]. For example,
socially-biased outcomes as a result of data-driven decision-making [24] or the so-called
”bias in, bias out“ can be because of trained algorithms on biased data [25]. Unintended
discrimination is an intrinsic characteristic of AI [26]. Working with applicants’ databases is
about statistical discrimination, especially regarding ML [15]. This study considers uninten-
tional discrimination (unintentionally caused by biased DMs’ judgments in AHP pairwise
comparisons) through a statistical measure called disparate impact (DI). We calculate it
as a ratio of average ranking scores between two perceived groups of alternatives in the
AHP-based ranking procedure–discriminated (i.e., disadvantaged) and privileged (i.e.,
advantaged) in achieving desirable ranking positions. Discrimination could happen even
when data does not directly include sensitive attributes via highly predictive correlated
criteria or the so-called ”proxies“ [23], which is often the case in MCDM (hence the term
”blindness to sensitive attributes“ in algorithmic decision-making [27]).

The main contribution of this paper is eliminating initial discrimination when it
occurs in AHP pairwise comparisons while achieving a satisfactory consistency level
(inconsistency score, i.e., consistency ratio–CR, lower than 0.1) or maintaining it at the
already acceptable level. The paper’s experimental results confirm the following initial
research hypothesis:

Hypothesis 1. It is possible to computationally set AHP PCMs (when comparing alternatives
regarding given criterium) to be both fair and consistent, with minimal correction of the initial
comparison judgments fulfilled by human DMs.

In technical terms, the paper’s contribution is to set the discrete optimization problem
(changing predefined initial values from Saaty’s 9-point scale positioned in the upper
triangle–UT of AHP PCMs) and to solve a mathematical model (MM) with fairness and
consistency nonlinear constraints. We use a metaheuristic population-based evolutionary
optimization tool called a genetic algorithm (GA). It outperforms other nature-inspired
algorithms on real-world discrete optimization problems, primarily in faster convergences
and other performance indicators (along with the scatter search algorithm) [28].

The paper’s methodology contribution is also in offering an advanced procedure to
efficiently improve consistency, starting from a consistent matrix, and by reducing the
difficulty of combinatorial problems regarding searching feasible space while simultane-
ously does not harm fairness in the ranking of alternatives. The motivation is to solve
logical consistency and to find room for fairness in the space of inconsistent and subjective
DMs’ preferences.

Applying the proposed optimization procedure would provide approximately equable
ranking outcomes to alternatives or in desired/legally defined proportion (observed by
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their group membership). The obtained research outcome (in its quality and framework)
positions this research with other works intended against discrimination, such as in data
mining [29], ML [30], AI ethics [31], and law [32], but with application in MCDM (which is
quite a novelty, along with our unique methodological remarks).

The remainder of the paper contains several sections. The first part of the following
section (Section 2) provides insight into related literature regarding the AHP method, the
common-mentioned shortcomings of AHP pairwise comparisons, and fairness notes on
AHP pairwise comparisons. A description of the research methodology takes part in the
second part of the section. It includes the postulation of the discrete optimization toward
desired consistent and fair AHP pairwise comparisons and the design of the synthetic
experiment. Section 3 brings the results and proof of the research hypothesis. Discussion is
in Section 4, while Section 5 concludes the research.

2. Materials and Methods
2.1. Insight into Related Literature

As the method for modeling complex problems in a hierarchical structure, AHP has
motivated numerous articles in a growing trend:

• There are 35,430 articles published in the period 1980–2021 (from which 15,000 articles
are from 2017–2021), according to Madzík and Falát [33] and based on Scopus;

• There are 8441 articles published in the period 1979–2017 (more specifically, there
are 86 articles from 1979–1990, 716 articles from 1991–2001, and 7639 articles from
2002–2017), according to Emrouznejad and Marra [34] and based on ISI Web of Science;

• There are 9859 harvested articles published in the period 1982–2018, according to Yu
et al. [35] and based on ISI Web of Science. This review also includes an improved
Saaty’s version of the AHP, i.e., the analytic network process (ANP) that considers
interaction and dependence among hierarchically structured elements.

Madzík and Falát [33] cluster nine AHP-related topics–i.e., Ecology and ecosystems,
MCDM, Production and performance management, Sustainable development, Computer
network, optimization & algorithms, Service quality, Fuzzy logic, Systematic evaluation,
and Risk assessment. They also analyze the research impact of 26 subject areas of AHP
applications (e.g., Engineering, Computer science, Environmental science, Business, man-
agement & accounting, Decision sciences, Mathematics, etc.) that contribute to the topics.

Reasons for the broader adoption of the method are in the following three principles
described in [1], which contribute to the structured procedure of problem description and
their well-grounded resolution:

• Up-down decomposition of decision problem in hierarchy levels, starting from the
goal on the top, followed by criteria in the middle, sub-criteria if necessary, in the
next/lower level(s), and finally, decision alternatives/options at the bottom of the
elaborated hierarchy;

• Comparative judgments, i.e., comparisons of the decomposed elements from the same
level in pairs (within PCMs) regarding the above-level goal or criteria (according to
the nine-degree scale defined in [10]), to derive principal eigenvectors, i.e., relative
priorities;

• Synthesis of the priorities, from local to the global plane, for overall alternatives’
ranking corresponding to the goal.

Despite these advantages, several shortcomings are also part of the discussion by a
critic of the method. One of them is a rank reversal, which means that two alternatives
(i.e., ranked items) could be reversed when one or more alternatives are added or deleted
from the initially observed set of alternatives. To address this issue, Kong and Liu [36]
developed an improvement that resolves the problem of alternatives’ discrepancies in
the ordering caused by their dependencies. With similar motives, Lootsma [37] suggests
additive AHP and multiplicative AHP that overcome the disadvantage of rank reversal in
traditional AHP. Two variants of traditional AHP use different numerical scales to quantify
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preferential judgments in pairwise comparisons. The arithmetic scale in Additive AHP
expresses DMs’ judgments via a difference in grades. Multiplicative AHP uses a scale with
geometric progression to formulate DMs’ relative preferences. Maleki and Zahir [38] review
61 papers (from 1983–2011) with different causes of rank reversal.

Munier and Hontoria [39] state 30 subjects as a shortcoming of AHP: for example,
regarding the presumption of independent criteria, concerns in pre-established quantifying
preferences, questionable PCM fitting with many transitivity comparisons, AHP structure
inadequate for modeling complex scenarios, etc.

2.1.1. Common-Mentioned Shortcomings of AHP Pairwise Comparisons

Let M be a PCM where i = 1, . . . , m specifies the number of items (criteria regarding
the goal or alternatives regarding the observed criterion) we want to compare in pairs. The
matrix M contains estimated comparisons:

M =




1 i12 . . . i1m
i21 = 1

i12
1 . . . i2m

...
... 1

...
im1 = 1

i1m
im2 = 1

i2m
. . . 1

. (1)

According to the goal or the observed criteria, the estimates based on Saaty’s 9-point
scale tell us how much one item is more or less important than the other. Saaty’s scale
(defined in [10]) includes discrete values from range 1 (equal importance) to 9 (extremely
more important than) and their inverted values for the comparisons estimated with the less
important clauses. The lower triangle of the matrix contains the inverted estimates from
the UT, given the reciprocity of comparing items (e.g., im1 = 1

i1m
). Diagonals show the

comparisons of two identical options, therefore, their equal importance.
Coordinates of the vector of weights, w = (w1, w2, . . . wm), represent shares of prefer-

ences’ sums by rows in the total sum of all rows, as follows:

wi =
ti

∑i ti
, ∑

i
wi = 1(i = 1, . . . , m), (2)




1 i12 . . . i1m t1 = 1 + i12 + · · ·+ i1m
1

i12
1 . . . i2m t2 = 1

i12
+ 1 + · · ·+ i2m

...
... 1

...
...

1
i1m

1
i2m

. . . 1 tm = 1
i1m

+ 1
i2m

+ · · ·+ 1

.

The eigenvector method for checking the consistency of PCM includes defining a
vector of eigenvalues λ = (λ1, λ2, . . . λm), which coordinates we can calculate as follows
(where W = [wi]1×m is the one-dimensional matrix of the vector w):

λi =
rowi(M)×WT

wi
, i = 1, . . . , m. (3)

The consistency index (CI) can be calculated according to the following formula
(where λmax

i represents the maximum coordinate value in the vector λ, while m is the
number of items) [10]:

CI =
λmax

i −m
m− 1

. (4)
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Consistency ratio (CR) represents the ratio of CI and random consistency index
(RCI) [40]:

CR =
CI

RCI
. (5)

Table 1 shows RCI-values corresponding to the observed number of items/alternatives
(i.e., m), according to [1]. The values are experimentally obtained.

Table 1. RCI-values corresponding to the number of items/alternatives [1].

m 3 4 5 6 7 8 9 10

RCI 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

Only CR-values smaller than or equal to 0.1 (i.e., 10%) indicate an acceptable/tolerable
consistency level [1], i.e., adequate compliance with the transitivity rule in the comparisons
regarding the filled preference matrix M. For example, if an item, e.g., alternative A1, is
better than alternative A2, and A2 is better than A3, then A3 could not be better than A1.
In addition, it matters how many pairwise items are mutually better/worst compared to
other possible combinations.

Analogously to the taxonomy of studies regarding the systematic review of an MCDM
method (suggested by Mardani et al. [41]): utilized, integrated, proposed/applied, and
modified or extended research, we search only for the last type in the context of the AHP
method. We identify shortcomings of the traditional AHP method about common-mention
issues in pairwise comparisons, organized in the following two streams, which motivated
our research (others are also possible, for example, rank reversal issue):

• A possible large number of input judgments in the pairwise comparisons and logical
inconsistency in PCMs (please see Table 2 for suggested modifications);

• Uncertain and subjective DMs’ judgments (please see Table 3 for modifications indicated).

Table 2. An overview of AHP modifications dedicated to facilitating pairwise comparisons and
improving logical consistency.

Author(s) Name Purpose of Transformation The Used Method Field of Application

Sangiorgio et al. [42] Optimized-AHP (O-AHP)

It successfully overcomes the
following drawbacks of classical

AHP, common in situations
when the number of criteria or
alternatives is greater than nine:

• a large number of compar-
isons/judgments and the
limited capacity of the hu-
man mind,

• consistency issue.

The weights evaluation
procedure based on

mathematical programming
(MP) redefines the process of
forming a judgment matrix in

the following ways:

• It uses judgment ranges
instead of the exact judg-
ment assignments;

• An MP formulation pro-
vides the entries of the
judgment matrix to mini-
mize inconsistency.

Construction

Ishizaka et al. [43] AHPSort
It reduces the number of

required comparisons and
facilitates decision-making.

A new variant sorts alternatives
into ordered predefined

categories according to DMs’
preferences.

Supplier selection

Ishizaka and López [44] Cost-Benefit AHPSort
It provides better and easier

comparisons and benchmarks
for evaluating alternatives.

A modification of the AHPSort
treats cost and benefit criteria

separately, i.e., into two distinct
hierarchies.

Performance analysis of
offshore providers in the

aerospace industry
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Table 2. Cont.

Author(s) Name Purpose of Transformation The Used Method Field of Application

Li et al. [45] Improved AHP (IAHP)
It improves consistency in
PCMs when the number of

elements equals five or more.

The improvement uses the
sorting technique (instead of

quantification on Saaty’s 9-point
scale) to judge between two

elements in pairwise
comparisons.

Risk identification in
construction

Lin et al. [46] Adaptive AHP approach (A3)

It helps to improve consistency
in pairwise comparisons, reduce

costs and timeliness, and
improve decision-making

quality.

The approach uses a soft
computing technique (i.e., a GA)

to improve consistency
automatically.

Construction

Xiulin and Dawei [47] Improved AHP

It overcomes the difficulties of
making judgments according to

the traditional nine-scaling
method and blindness in
checking consistency. It is

helpful in the determination of
target weights.

The improvement uses a 3-scale
point method: 1/0.5/0 indicates

that the ith alternative is
more/equally/less important

than the jth alternative.

Teacher evaluation

Leal [48] AHP-express

The simplified version helps
make decisions in constrained
times. It reduces the number of

required comparisons and
facilitates calculations.

The simplification requires only
n− 1 comparisons (n–number

of alternatives) for each
criterion, unlike (n2 − n)/2

required comparisons in
traditional AHP.

Business application

Chen [49] Diversified AHP-tree
approach

It allows diverse viewpoints of
DMs regarding criteria relative

importance.

The approach decomposes an
inconsistent judgment matrix

into several sub-judgment
matrices. It uses the GA for

solving nonlinear programming
models to maximize the sum of

distances between any two
sub-judgment matrices.

Supplier selection

Abastante et al. [50] New parsimonious AHP
methodology

It reduces the number of
comparisons and

inconsistencies and avoids rank
reversal problems compared to

the original AHP.

A newly developed proposal
implies using reference objects

for pairwise comparisons. It
avoids comparisons of more

relevant objects with less
relevant ones.

General application

Table 3. An overview of AHP modifications dedicated to overcoming uncertain and subjective DMs’
judgments.

Author(s) Name Purpose of Transformation The Used Method Field of Application

Nefeslioglu et al. [51] Modified AHP (M-AHP)

It compensates for expert
subjectivism in pairwise

comparisons due to a lack of
knowledge or data for the

relevant problem.

A computer code is postulated
on factors and the decision
points, whereby the role of

experts in preparing the
comparison matrix is limited to
defining the maximum scores

for factors in the system.

Natural hazards

Tesfamariam and Sadiq [52] Fuzzy AHP (F-AHP) It allows DMs to account for
uncertainty (vagueness).

The fuzzy-based technique used
fuzzy arithmetic operations. It

aggregates the fuzzy global
preference weights concerning

each alternative.

Environmental risk
management

Bañuelas and Antony [53] Modified AHP (MAHP)

It includes uncertainty and
managerial aspects (‘soft’ issues)
in judgment comparisons and,

therefore, a better
understanding of the context of

the applied technique.

The method incorporates
uncertainty by using

probabilistic distributions. It
tests the results for statistical

significance and analyses rank
reversal using ANOVA.

Application in
organizations
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Table 3. Cont.

Author(s) Name Purpose of Transformation The Used Method Field of Application

Xu et al. [54]
Entropy weight modified

AHP hierarchy model
(EWMAHPHM)

It improves decision-making
efficiency in changing

environments where regional
information is insufficient.

The method includes the
entropy weight method in AHP.

The construction of the
distributed model precedes the

entropy weight correction.

Information-based
ecological environment

construction

Sadiq and Tesfamariam [55] Intuitionistic fuzzy AHP
(IF-AHP)

It handles both uncertainty
categories–vagueness and

ambiguity in human subjective
evaluation.

The methodology uses
intuitionistic fuzzy sets.

Environmental
decision-making

Lin et al. [56] Improved AHP (IAHP) It comprehensively determines
the weights of risk indices.

The improvement uses the
entropy weight method and

integrates objective data
variability with subjective

judgments.

Flash flood risk assessment

Deng et al. [57] D-AHP
It provides a new, effective, and
feasible expression of uncertain

information.

The method extends the fuzzy
preference relation approach by
using the so-called D numbers,

resulting from the
Dempster–Shafer theory

extension.

Supplier selection

2.1.2. Fairness Notes on AHP Pairwise Comparisons

As two sides of the same coin [58], bias and fairness appear differently. Mehrabi
et al. [59] recognize 23 types of biases presented in data (directed to algorithms)–e.g., mea-
surement bias; algorithms (directed to users)–e.g., algorithmic bias; and user experiences
(directed to data)–e.g., historical bias. Different fairness definitions are also possible. Verma
and Rubin [60] group them regarding statistical measures (as definitions based on pre-
dicted outcome–e.g., statistical parity as a measure of group fairness; predicted and actual
outcomes–e.g., equal opportunity as false negative error rate balance; and predicted prob-
abilities and actual outcome–e.g., calibration as a test-fairness measure) similarity-based
measures (e.g., fairness through awareness), and causal reasoning (e.g., counterfactual fair-
ness). Fairness definitions that include binary classifiers are concentrated on the confusion
matrix [60] and have different perspectives (for DMs, applicants, and society) [61].

In MCDM, we can interpret fairness in different ways:

• Concerning DMs–it is applicable in group decision-making when decision systems
should fairly include DMs’ opinions. For example, a decision support system for group
MCDM can mitigate or eliminate biased DMs’ opinions [62] or follow a democratic
approach in conflict situations by choosing a consensual value for parameter v (related
to the VIKOR method, it equals 0.5) [63].

• Concerning decision criteria–criterion weights are essential for two levels of fair-
ness: among criteria and alternatives [64]; while it is generally possible to introduce
discrimination based on a single property (e.g., racial discrimination–[65], gender
discrimination–[66], age discrimination–[67], etc.), several separate properties (i.e., mul-
tiple discrimination–[68]), or one joint property (i.e., intersectional discrimination–[69]).
In MCDM, opposite to wash criteria about which alternatives are equally preferred [70],
DMs can define criteria (or their weights) that favor/damage some alternatives or
groups (the favored group is privileged, and the damaged group is unprivileged).

• Concerning the used algorithms–it can imply the absence of unintentional (coinci-
dentally made) discrimination toward vulnerable groups in society that algorithmic
decision-making techniques may amplify. The harmful practice is possible because of,
for example, data that reflect historically widespread biases and contain the prejudices
of prior DMs [71] or impose discriminatory inferences towards underrepresented
groups [23].

We follow the identified pairwise comparison issues in this section with the idea that
DMs can produce biased judgments that can lead to unfair decisions. Inconsistent and
subjective judgments (for example, because of inadequate domain knowledge) weave a
path for implicit bias. In this work, we cover unintentional discrimination defined via
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measure for group fairness, i.e., DI specified in Section 2.2.1, which arises from statistical
parity fairness that suggests independence between sensitive attributes and decision out-
comes [72]. We observe alternatives in PCMs about the given criterion and their belonging
to the sensitive group.

2.2. Toward Consistent and Fair AHP Pairwise Methodology

Let A be PCM where i = 1, . . . , m specifies the number of alternatives (i.e., instances in
a dataset) regarding criterion C. Matrix A contains estimates of two alternative comparisons:

A =

A1 A2 . . . Am


A1 1 a12 . . . a1m
A2

1
a12

1 . . . a2m
...

...
... 1

...
Am

1
a1m

1
a2m

. . . 1

. (6)

An iterative weight determination method executes until the stabilization of the
iterative vector, witer = (witer

1 , witer
2 , . . . witer

m ), for which the one-column matrix Witer =[
witer

i
]

m×1 can be calculated as follows: Witerk
= A×Witerk−1

∑i A×Witerk−1 . In other words, the process

stops when Witerk−1 from the previous iteration (observed to a large number of decimals)

is approximately equal to the current Witerk (e.g., down below the predefined negligible
threshold size):

m

∑
i=1
|witer

i
k − witer

i
k−1| < 0.00001. (7)

The eigenvector method for checking the consistency of PCMs includes defining a

vector (one-dimensional matrix) of eigenvalues λ. Since Witerk−1 ≈ Witerk in the last
iteration (which corresponds to Witer), λ can be calculated as follows:

λ =
A×Witer

Witer . (8)

2.2.1. Discrete Optimization Problem

Saaty’s 9-point scale for the pairwise comparisons [10] includes discrete values from
range 1 (equal importance) to 9 (extremely more important than) and its inverted values
for the unpreferred options. Therefore, we can define a dictionary with the following 17
keys/values in total:

dict = {1→ 1
9

, 2→ 1
8

, 3→ 1
7

, 4→ 1
6

, 5→ 1
5

, 6→ 1
4

, 7→ 1
3

, 8→ 1
2

,

9→ 1, 10→ 2, 11→ 3, 12→ 4, 13→ 5, 14→ 6, 15→ 7, 16→ 8, 17→ 9}.
(9)

The number of elements in the UT of matrix A equals t = m∗(m−1)
2 and represents the

number of unknowns (vector coordinates) we intend to solve. In their place come values
from the dictionary, and they may repeat.

Based on the values of sensitive attribute s formally invisible in preference matrices, we
can divide alternatives into two groups: discriminated ones (whereby s = 1) and privileged
ones (whereby s = 0). Consequently, one-dimensional matrix S = [si ]m×1, i = 1, . . . , m,
contains values si ∈ {0, 1} that correspond to each alternative/row in matrix A.

DI before optimization (DIbe f ) is the ratio of average AHP rank comparison scores
before optimization (R̄be f ) between privileged and discriminated groups. Since the favored
alternatives occupy higher rank positions and have a lower average rank score, DIbe f
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takes the inverted value and should be equal to or greater than 0.8 (according to the “80%
rule“ [73]) as follows [16]:

DIbe f = 1 /
R̄be f [s=1]

R̄be f [s=0]
=

R̄be f [s=0]

R̄be f [s=1]
≥ 0.8. (10)

If this group fairness condition is not satisfied, our method suggests recalculating
ranks by changing initial preference estimations while considering consistency.

Our discrete optimization repairs initial CRbe f - and DIbe f -values to the desired level
(after optimization), relying on the initial research hypothesis. The goal is a minimal
correction of initial preferences in AHP PCMs, i.e., in their UTs before and after optimiza-
tion (represented as absolute differences of the following vectors/one-column matrices:
|UTbe f t×1 −UTa f tt×1|). Consequently, the goal function ( fd) is the minimization of the sum
of these differences from the first position to the last one:

(min) fd = ∑
t

∣∣∣UTbe f t −UTa f tt

∣∣∣. (11)

The MM for this optimization also includes two types of constraints. The first type is
related to the consistency requirement, and the second type implies additional requirements,
i.e., fairness constraints.

The consistency requirement hints at a value CR ≤ 0.1. There is no restriction on
dictionary movement for PCM sizes less than or equal to 6 (experience has shown that the
optimization successfully overcomes all set constraints for smaller matrices of magnitude,
i.e., m = 4, 5, 6). Any value from the dictionary can come to any t place in the UT. The only
(conditionally speaking) restriction is that the total magnitude of changes in the original
and new values vectors, which come to the UT positions, is minimal (regulated by fd).

If the matrix size is larger than 6, the number of possible combinations to fulfill the UT
positions is very high. For example, the number of possible combinations for a matrix size

of 10 would be 17
10∗(10−1)

2 = 1745. To alleviate the combinatorial problem, we restrict the
dictionary movement by three degrees of freedom for each position in the UT. In particular,
we allow movement by three consecutive places to the left and the right of the initial key
(i.e., the corresponding values defined in the dictionary). So, we narrow the search space to
7 combinations for each place in the UT.

To further facilitate the optimization task, our starting point is from a consistent matrix
(Ac), calculated according to the following formula:

Ac = Witer × (Witer−1
)T . (12)

The starting point is a consequence of the following theorem :

Theorem 1. The space of admissible solutions (simultaneously consistent and fair matrix we are
looking for) is not empty.

To support this claim, we adduce the following proof:

Proof of Theorem 1. The unit square matrix is perfectly consistent (CR = 0) and fair (all
ranks equal to 1).

Therefore, one solution is guaranteed, and the difficulty of the optimization problem
lies in finding such a matrix that also has a small value of the objective function.

In the further procedure, we observe the UT of a consistent matrix Ac, i.e., its initial
values. The idea is to find a close standardized value from a predefined scale for each
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initial value (i.e., before optimization). That is why we follow the idea of the symmetrical
dictionary as follows:

dicts = {−8→ 1
9

,−7→ 1
8

, . . . ,−1→ 1
2

, 0→ 1, 1→ 2, . . . , 7→ 8, 8→ 9}. (13)

We invert negative preferences (those less than 1) in the UT (e.g., 1
1
5
= 5). Following,

we round the latest values in the UT (e.g., 5 ∼= 5) and subtract 1 (e.g., 5− 1 = 4). Where
there were negative preferences, we multiplied the newly obtained values by −1 (e.g.,
−1 ∗ 4 = −4). Please note that the key -4 corresponds to the initial value 1

5 in dicts. We
should increase each key from dicts by 9 to conform to keys from dict (e.g., −4→ 1

5 from
dicts corresponds to 5 → 1

5 from dict). We have limited the movement through dict by
three places left and right concerning the initial position of the key (different degree of
freedom is also possible) to reduce the number of possible combinations sufficiently. For
limit keys, if it is not possible to move for three positions, we take the value of the minimum
or maximum key, i.e., their corresponding values. For example, for key 2 in dict, you can
only go one position to the left, or for key 15, you can only go two positions to the right.

The MM with fd objective function should meet the following fairness constraint (i.e.,
the lower limit):

DIa f t =
R̄a f t[s=0]

R̄a f t[s=1]
≥ 0.8. (14)

In addition to the lower limit, we introduce an upper limit (defined as in [16]):

DIa f t ≤
1

0.8
= 1.25. (15)

The upper limit is symmetric to the lower limit. Its purpose is to prevent the opposite
effect, i.e., to harm the initially privileged group by reranking.

To solve this optimization with non-linear constraints, we use the GA as a population-
based metaheuristic [74,75] used in operation management (OM) decision areas such as
operations planning and control, process and product design, and operations improve-
ment [76]. Besides OM issues, GA is also efficient in NP-hard problems in multimedia
and wireless networking [74]. As an evolutionary computation algorithm that imitates the
biological evolution process, it is suitable for soft computing in engineering challenges [77].

In addition to the previously explained goal function (Equation (11)), we define the
following penalty functions for constraints (the first is related to consistency, and the second
and third to fairness constraints):

pen1 =

{
0, for CRa f t ≤ 0.1
∞, for CRa f t > 0.1,

pen2 =

{
0, for DIa f t ≥ 0.8
∞, for DIa f t < 0.8,

pen3 =

{
0, for DIa f t ≤ 1.25
∞, for DIa f t > 1.25.

(16)

Each penalty function equals 0 when the required constraints are satisfied. If they
are not (i.e., optimization fails), the penalty function tends toward infinity, considering
the minimization problem (bearing in mind that penalty functions are added to fd in
Equation (11)).

Variable boundaries represent dict keys (or only ’clipped’ keys in the case of the
bordering ones). At the same time, the coded function maps the keys to corresponding
values and performs reconstruction of matrix A, following the obtained values in its UT.
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We set the optimization problem in the programming language Python 3.9.7 with
the help of the GA package (geneticalgorithm 1.0.2), which successfully applies to discrete
optimization problems [78].

2.3. Synthetic Experiment

In our synthetic experiment, we arbitrarily generate values for UTs of length t (and
according to possible values from dict that also may repeat within one UT) and then
reconstruct PCMs accordingly.

We introduce optimization that regulates the initial values of the CR and DI parameters
(before optimization). For the initial values of CRbe f , we took lsta = [0.1, 0.2, 0.3, 0.4]. For
the initial values of DIbe f , we took lstb = [0.6, 0.7, 0.8, 0.9, 1]. For a in lsta and b in lstb, we
can define the following goal function ( fe) that we want to minimize:

(min) fe =
∣∣∣CRbe f − a

∣∣∣+ ∣∣∣DIbe f − b
∣∣∣. (17)

We synthetically generate the sensitive column (with m rows) so that in its first half are
discriminated alternatives (s = 1), and in the second half are the privileged ones (s = 0).

We also chose the same GA package (as explained in the previous section) to solve this
unconstrained optimization. The optimization solution is the vector of preferences/estimates
in the UT of matrix A, which gives the required combination of CR and DI parameters.

Setting the initial parameters CRbe f and DIbe f was always successful, but with some
inaccuracies (that we tend to minimize). They are related to the limited possibilities of
precise adjustment of the initial parameters, especially regarding a smaller number of
alternatives. Specifically, when rounding, the target values may fall into the adjacent
category (e.g., for m = 4, instead of initially predefined category DIbe f = 0.6, the value
0.667 falls in category DIbe f = 0.7).

Following fe-related optimization, we continue with the discrete ( fd) optimization.
The lists of initial parameters (lsta and lstb) generate 20 required combinations. Further,
we assign that each combination repeats 20 times, including seven different matrix sizes
(4 ≤ m ≤ 10), resulting in 2800 optimization runs.

3. Results

Table 4 shows percentages of successfully solved discrete optimization (with fd ob-
jective function) by PCM size. Except for one failed optimization concerning the CRa f t
parameter constraint (for m = 10), all other failed optimizations are due to the failure of
the DIa f t parameter constraints (rounded DIbe f = 0.6 in all the cases). The future results
only refer to successful discrete optimizations (for which D̄Ia f t = 0.9289).

Table 4. Percentages of successfully solved discrete optimizations by PCM size

PCM Size (m) Percentage

4 100.00%
5 100.00%
6 100.00%
7 99.5%
8 99.25%
9 98.25%
10 99.5%

Total 99.5%

Proof of Hypothesis 1. The experimental results confirm that it is possible to correct initial
AHP PCMs to be fair and consistent (with 99.5% validity).

Figure 1 shows average values of fd objective function after optimization (i.e., sacri-
ficed accuracy of initial PCMs) for different matrix sizes separately (m = 4, 5, 6, . . . , 10),



Mathematics 2023, 11, 604 12 of 18

depending on the predefined combinations of parameters CR and DI (i.e., CRbe f - and
DIbe f -values). The last table (marked as all) summarizes the results for all considered PCM
sizes. Missing values (N/A) result from inaccuracy in rounding the parameters resulting
from the optimization in the synthetic experiment.

CR/DI (m=4) 0.6 0.7 0.8 0.9 1 Grand Total CR/DI (m=5) 0.6 0.7 0.8 0.9 1 Grand Total

0.1 N/A 1.20 0.00 N/A 0.00 0.48095635 0.1 2.20 1.19 1.22 0.04 0.29 0.99180159

0.2 N/A 0.86 0.27 N/A 0.37 0.55027381 0.2 3.90 1.81 2.03 1.05 1.13 2.02957143

0.3 N/A 1.01 0.33 N/A 1.08 0.92713736 0.3 3.51 1.69 1.95 2.06 2.81 2.53421825

0.4 N/A 1.19 0.88 N/A 2.08 1.49785554 0.4 4.55 N/A 3.14 3.08 2.96 3.36250397

Grand Total N/A 1.062759 0.345272 N/A 0.880818 0.86262897 Grand Total 3.54006 1.406409 2.166667 1.194542 1.969466 2.22952381

CR/DI (m=6) 0.6 0.7 0.8 0.9 1 Grand Total CR/DI (m=7) 0.6 0.7 0.8 0.9 1 Grand Total

0.1 2.01 0.52 0.91 0.02 0.00 0.76657937 0.1 3.27 1.71 0.10 1.43 2.34 2.07363492

0.2 3.15 N/A 1.55 1.60 1.98 1.90636508 0.2 5.92 3.52 2.98 4.51 5.45 4.57889286

0.3 3.72 N/A 3.50 3.10 2.49 3.37629762 0.3 7.58 7.10 N/A 6.73 9.08 7.51790925

0.4 4.00 3.55 5.01 4.35 N/A 4.53026587 0.4 9.42 8.06 N/A 9.70 10.45 9.13714927

Grand Total 3.2199504 1.529233 2.751729 2.3245875 1.301042 2.64487698 Grand Total 6.497319 5.130427 1.53631 5.593552 6.826855 5.81433058

CR/DI (m=8) 0.6 0.7 0.8 0.9 1 Grand Total CR/DI (m=9) 0.6 0.7 0.8 0.9 1 Grand Total

0.1 4.00 2.39 2.44 2.69 1.82 2.65470178 0.1 7.43 5.40 3.73 5.52 5.49 5.45778514

0.2 7.47 5.22 5.64 6.01 7.42 6.34205948 0.2 10.46 9.16 9.36 9.86 11.61 10.0800442

0.3 9.07 9.72 10.17 9.31 11.44 9.94337302 0.3 13.01 15.32 15.58 16.38 19.08 15.9050786

0.4 12.01 11.57 12.25 14.15 15.48 13.1028419 0.4 16.05 17.89 17.83 18.20 21.73 18.3377579

Grand Total 8.14837662 7.225818 7.62501 8.0422917 9.041543 8.01561213 Grand Total 11.95103 11.94417 11.62494 12.49035 14.47958 12.5077558

CR/DI (m=10) 0.6 0.7 0.8 0.9 1 Grand Total CR/DI (all) 0.6 0.7 0.8 0.9 1 Grand Total

0.1 10.03 11.57 9.86 11.46 9.43 10.3093663 0.1 4.57 2.87 2.34 2.31 2.40 2.84219717

0.2 14.84 12.78 14.88 14.69 16.15 14.6224236 0.2 7.74 5.50 5.11 6.73 6.13 6.14861762

0.3 17.15 18.54 20.48 22.24 22.75 20.2319365 0.3 8.99 8.06 7.54 9.69 9.04 8.61387583

0.4 25.08 23.09 27.25 25.83 33.20 26.8275012 0.4 11.87 9.92 9.56 12.09 11.73 10.9612388

Grand Total 17.0461975 16.63107 18.49385 19.037029 20.72975 18.3850652 Grand Total 8.338526 6.58816 6.200731 7.725388 7.417121 7.18733577

Figure 1. Average values of fd objective function for different PCM sizes observed concerning
predefined combinations of CR and DI.

Colors range from deep green (most desirable values), through yellow and orange, to
deep red (least desirable values), suggesting the suitability of the goal function, given the
anticipated minimization of changes. The Grand Total covers the total observed average
value, regardless of segmented categories.

Figure 2 compares average values of fd objective function (y-axis) for different values
of the initial DI (x-axis) and CR (colors in legend). It includes all considered PCM sizes and
the Grand Total results. When the starting point is high inconsistency, independent of the
DI value, the average value of the goal function is more elevated, i.e., the conclusion is that
it is more challenging to correct the consistency issue.
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Figure 2. Comparison of average values of fd objective function for different values of the initial DI
and CR set-points.

4. Discussion

The proposed method follows a postprocessing procedure to minimize changes from
initial settings regarding DMs’ judgments to avoid inconsistency and discrimination toward
vulnerable groups. Minimizing deviation norms for deriving priority vectors (i.e., weights)
because of inconsistent DMs’ judgments in AHP pairwise comparisons is present in [79].
While our method represents a trade-off between consistency and fairness, Benítez et al. [80]
introduce a framework for balancing consistency and expert judgment.

Inconsistency, especially transitivity failure and related paradoxes, is an issue of many
pairwise comparison methods for decision-making related to ranking and voting systems
(such as the Condorcet method, Copeland’s method, etc.) [81]. Relative to the initial CR
conditions, we experimentally concluded that consistency is harder to fix in AHP PCMs
with a size greater than 6. Hence, we use our method with a starting point from the
consistent matrix.

The values of objective functions for discrete optimization proportionally increase
with the larger PCM sizes and unfavorable initial CR conditions. Regarding the initial level
of DI, our pen2 and pen3 functions in fairness constraints were constant zeros. Still, with
more biased initial data, there is a smaller percentage of successfully solved controls (for
example, it equals 79.52% for DIbe f = 0.5).

We use a k-step iterative method for determining weights (k is not fixed, i.e., it fits
until stabilization of priorities, Equation (7)) and an eigenvector method for checking the
consistency (Equation (8)), while other approaches are also possible. For example, it is
possible to use an approximate technique [82] to determine the weights, i.e., the first pass
calculation only (without iteration, as in Equation (2)) that gives w, and Rayleigh quotient
(RQ) to check the consistency (according to the following formula: λ = Aw∗w

w∗w ). Usage
of the geometric mean method [83] and many other consistency indices (in addition to
Equation (4)) summarized by Pant et al. [40] is also possible.

For 100 synthetically generated matrices of size m = 10, with the following initial
conditions: CRbe f ≈ 0.2, DIbe f ≈ 0.7 (similar as in Section 2.3), we initiate 100 optimization
runs by the two approaches (iterative–eigenvector vs. approximate–RQ) and compare
the obtained results in Table 5. Because the iterative–eigenvector approach results in
significantly different initial inconsistency for the same data (i.e., synthetically generated
matrices A) compared with the approximate–RQ approach (for which CRbe f -values are
considerably larger), we separately generate two datasets with similar starting points.
For the iterative–eigenvector approach, C̄Rbe f = 0.2014 and D̄Ibe f = 0.7172; for the
approximate–RQ approach, C̄Rbe f = 0.2167 and D̄Ibe f = 0.7121. The results only refer to
successful fd optimizations (bolded values are preferable: maximal number of successful
optimizations, minimal f̄d, minimal C̄Ra f t, and D̄Ia f t closer to 1).
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Table 5. Comparison of two approaches: iterative–eigenvector vs. approximate–RQ.

Approach Successful Optimizations (in%) f̄d C̄Ra f t D̄Ia f t

Iterative–eigenvector 99.00% 13.6658 0.0939 0.8476
Approximate–RQ 86.00% 12.4885 0.0943 0.8499

Bolded values are preferable.

In both compared approaches, we use our advanced procedure (substantiated by
Theorem 1) to improve consistency. The results show that the iterative–eigenvector ap-
proach results in a significantly higher percentage of successfully performed optimizations.

5. Conclusions

The introduced methodology has two-folded main contributions. Firstly, it solved one
mature issue in AHP PCMs related to logical inconsistency in DMs’ judgments. Secondly,
compared with other methods that deal only with the question of consistency, it can also
deal with fairness constraints and satisfy new trends related to the need for unbiased
algorithmic decision-making. Automated corrections of human DMs’ judgments with
anti-discriminatory components embedded enable us to achieve fairness and consistency
simultaneously (or to improve one of these fields and not disrupt the other).

When fairness meets consistency, two groups of nonlinear constraints are faced. In-
stead of causing numerical bifurcations in searching space (as described in different mod-
els [84–86]), our suggested model successfully finds winning combinations (we experi-
mentally confirmed our research hypothesis in a large percentage, i.e., 99.5% concerning
observed 2800 optimization runs). The method’s advantage is the possibility of performing
discrete optimization procedures with predefined Saaty’s scale to minimize deviations
from initial PCMs. Our suggested technique that starts from consistent matrices is suitable
to avoid inconsistency (especially in combination with the iterative–eigenvector approach).
Although the method simultaneously repairs DI when comparing alternatives in pairs,
very biased matrices are harder to fix.

Some possible future research directions can be as follows:

• Expanding and applying the methodology to the whole AHP hierarchy structure;
• Fixing some judgments that DMs do not want to change;
• Setting multiobjective discrete optimizations (such as in [87]) to achieve additional

goals (regarding AHP hierarchy structure or the used accuracy/fairness metrics).

Limitations of the study are primarily related to the boundaries of classical AHP
methodology and, therefore, a small number of comparison alternatives and the impossi-
bility of exploring and optimizing fairness metrics in a real data mining context.
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