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Abstract: In this paper, we examine the valuations of equity-indexed annuities (EIAs) when their
reference stocks distribute stochastic dividends. Due to the fact that stocks typically pay dividends at
discrete times after the payment dates are announced, pricing EIAs with dividends is deemed to be
practically significant. We directly model the discrete dividend payments using the jump diffusion
process with regime switching, and then determine the dynamics of the stock price. The equivalent
martingale measure of fair valuation in incomplete markets is determined by employing the Esscher
transform. Finally, the pricing formulas of several of the most common EIAs in the market under the
stochastic dividend model are obtained. Our model incorporates and extends the present literature
on EIAs with accurate and effective valuation methods.
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1. Introduction

Equity-linked annuities (ELAs) are a significant innovation in the insurance industry.
ELAs provide policyholders with insurance protection and an investment return from the
stock market. The most popular type of ELA is the equity-indexed annuity, which has
enjoyed record industry sales in a comparatively short time. EIAs are essentially equity-
linked contracts whose returns depend on the performance of an equity index, usually
the S&P 500. EIAs also have a minimum guarantee clause to eliminate the downside risk
for customers. Since EIA was first launched by Keyport Life Insurance Co in 1995, it has
not only gained great popularity in the market, but also received extensive attention from
scholars. Tiong [1] investigated the pricing of several common EIA product designs with
the use of the Esscher transform. Lin and Tan [2] studied the valuations of some prevalent
EIAs when the interest rates followed a mean-reverting diffusion process. Hainaut [3]
discussed the effect of stock market volatility clustering on the valuation and risk of EIA.
Shi and Zhang [4] utilized a Fourier transform approach to price path-dependent EIAs
under a time-varying Lévy process.

The product designs of EIAs may differ depending on the companies who sell them.
In this article, we discuss the pricing of point-to-point EIAs and annual reset EIAs, which
are the most common in the market. Both of these products earn the realized income of
the index (or other risk assets) with the prescribed participation in a certain period of time,
but the way they calculate returns is different. As in the literature mentioned above, most
research models the reference asset (such as stock) price directly and ignores dividend
payments. In practice, however, dividends are paid at discrete intervals of time, always
after the disclosure of the dates of the dividend payment. Therefore, the study of EIAs
pricing under the dividend situation has important application value. As pointed out by [5],
the dividend discounted model suggests that the reference stock price ought to equal the
present value of all future discrete dividend payments. Under the pricing measure in [5],
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we can acquire the price ex-dividend for a stock that distributes dividend Dn at time tn > t
under the real probability measure by

St = Et

[
∑

tn>t
e−r̃(tn−t)Dn

]
, (1)

where r̃ denotes the expected return on stocks. Thus, from this perspective, the stock price is
a derivative object. A more appropriate method is to directly model the discrete dividends
so that the stock price can be obtained from the dividend model. Numerous works have
also shown that it is suitable to study the derivatives pricing problem by modeling the
discrete dividend payments. Korn and Rogers [5] first introduced the geometric Brownian
motion (GBM) to model discrete dividend payments and got the option price in the Black–
Scholes setting. Kruse and Muller [6] derived analytic expressions for the American option
prices when the dividend process was governed by the GBM. Yan et al. [7] discussed the
valuation problem of an EIA under the assumption that dividends were announced and
paid at the same time. Shan et al. [8] extended the model in [5] and attained the pricing
formulas of European call option.

Regime-switching models have become extremely popular in derivatives pricing
during the last few years. Lin et al. [9] investigated the EIA valuation problems when the
reference stock was driven by a regime-switching GBM. Qian et al. [10] assumed that the
reference risky asset obeyed the stochastic process with regime switching and studied the
pricing of EIAs with stochastic mortality risk under this model. Qian et al. [11] applied the
local risk-minimization method to hedge EIAs when the stock followed a jump-diffusion
process with regime switching. Indeed, the change in the state of the economy has a
significant effect on the number of dividends distributed by the firm. Therefore, the regime-
switching model can also be employed to describe this feature (see [12–14]). Inspired by
the aforementioned works, we exploit the regime-switching jump diffusion process to
model the discrete dividend payments of reference stock. However, the market in our
model becomes incomplete due to the additional risk, which implies that there are many
martingale pricing measures. To explore fair valuation, we take into account the method of
Esscher transform (see, [15–17]) to find a martingale pricing measure.

In reality, when the underlying stock distributes a dividend, its amount is declared
prior to the dividend payment time. Therefore, the research on the pricing of EIAs in this
context is extremely valuable in the application of financial markets. This extends the
current literature on EIAs pricing. The key contributions of this article are outlined below.

(i) We replace the specific pricing measure in [5] with the general real probability measure
and obtain the dynamic of the reference stock price under the martingale pricing mea-
sure.

(ii) We employ the Esscher transform to identify the unique martingale pricing measure
in the incomplete setting under the stochastic dividend model.

(iii) We derive the pricing formulas for the point-to-point EIA and the annual reset EIA
when the dividends are declared earlier than the payment time.

The remaining part of the article is organized below. Section 2 describes the dynamics
of the dividend model and identifies the unique martingale pricing measure by applying
the Escher transform. Section 3 presents the point-to-point EIA and annual reset EIA
pricing under the stochastic dividend model. The last section contains conclusions and
some potential works.

2. Literature Review

Here, we briefly review the literature on the valuation of EIAs. Much attention has been
paid to the pricing of EIAs in the Black–Scholes framework, including studies by [1,18,19].
These works examined the application of option pricing theory and its techniques to
EIAs valuation. To address the problem of volatile smiles, ref. [20] assumed that the
underlying asset price followed a variance-gamma process and derived analytical solutions
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for EIAs with different product designs. Scholars also investigated the impact of alternative
dynamics on the prices of EIAs. For example, refs. [3,10,21] examined the valuation of
various EIAs in a jump diffusion setting. Refs. [2,22,23] studied the problems of pricing
EIAs with stochastic interest rates and mortality risk, while [24,25] considered the EIAs
pricing with stochastic volatility. Regime switching models are more popular in pricing
EIAs in recent years. Ref. [9] discussed the valuation of EIAs when the market value
dynamic of the underlying asset is driven by a regime switching GBM. Meanwhile, the
Esscher transform was utilized to determine a pricing measure for fair valuation. Some
examples of EIA pricing under regime-switching models include [26–28]. Unlike the
Esscher transform, ref. [27] utilized the minimal martingale measure method to identify a
pricing measure. Ref. [4] used a Fourier transform approach to price path-dependent EIAs
under a time-varying Lévy process and utilized the minimal martingale measure method
to identify a pricing measure.

3. The Modeling Assumptions

Consider a complete probability space (Ω,F , P), where P is the real-world probability
measure. We suppose that the economic states are modeled by a continuous-time Markov
chain {ξt}t∈[0,T] on (Ω,F , P) with a state space X . The state space of {ξt}t∈[0,T] is a finite
set of unit vectors (e1, ...eN), where ei = (0, ...1, ...0) ∈ RN . Here, we take the usual practice
of Elliott et al. [15] and give the following representation form of {ξt}t∈[0,T]:

ξt = ξ0 +
∫ t

0
Qξsds + Mt, (2)

where {Mt}t∈[0,T] is a martingale process with respect to the filtration generated by
{ξt}t∈[0,T] and Q =

(
qij
)

i,j=1,...N is the rate matrix of {ξt}t∈[0,T].
Assumes that the reference equity distributes dividends at equidistant times. Specifi-

cally, these dividends D1 = Xt1 , ..., Dn = Xtn ... paid at times 0 < t1 = h, ..., tn = nh..., where
{Xt}t∈[0,T] is the dividend process described by the following jump diffusion process:

dXt

Xt−
= (µ− kλt)dt + σtdW̃t +

(
eZt− − 1

)
dNt, (3)

where X0 = x0, µ < r̃, {W̃t}t∈[0,T] is a standard P-Brownian motion (P-BM), {λt}t∈[0,T] is
the intensity of the Poisson process {Nt}t∈[0,T] and {σt}t∈[0,T] is the volatility of {Xt}t∈[0,T].
If the jump arrives at time t, the jump amplitude is controlled by Zt ∼ N(µ1, σ2

1 ) , where

σ1 > 0. Thus, the percentage change in the dividend process is k = eµ1+
1
2 σ2

1 − 1. Write(
FS

t
)

t∈[0,T] and
(
F ξ

t

)
t∈[0,T]

for the P-augmentations of the filtration generated by {St}t∈[0,T]

and {ξt}t∈[0,T], respectively. Assume that for every t, {Zt} are i.i.d., and {Zt}t∈[0,T],
{Nt}t∈[0,T], {ξt}t∈[0,T] and {W̃t}t∈[0,T] are independent of each other. The parameters σt, λt
depend on the chain {ξt}t∈[0,T], as follows:

σt := 〈σ, ξt〉, λt := 〈λ, ξt〉,

where σ, λ ∈ RN
+ , and 〈·, ·〉 represents the inner product operation. Moreover, we can get

the same relation as [5]:

EXt/X0 = eµtE
[

exp
{ ∫ t

0
σsdW̃s −

1
2

∫ t

0
σ2

s ds +
∫ t

0
Zs−dNs −

∫ t

0
kλsds

}]
= eµt.
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Assuming that dividends are announced and paid at the same time, the underlying
share price can be shown as

St = S0 exp
{ ∫ t

0

(
r̃− kλs −

1
2

σ2
s

)
ds +

∫ t

0
σsdW̃s +

∫ t

0
Zs−dNs

}
, (4)

for t ∈ ((m− 1)h, mh), where S0 = X0e−(r̃−µ)mh/
(

1− e−(r̃−µ)h
)

. Particularly, we have

Smh = Smh− − Xmh = Smh−e−(r̃−µ)h. (5)

This relational equation indicates that Smh is determined by Smh−. That is, the absolute
amount of dividend payments is stochastic, but not their relative amount.

As mentioned earlier, our market model is incomplete, and thus, lots of martingale
pricing measures exist. Next, we employ the Esscher transform in [9,10] to find a martingale
pricing measure for fair valuation. Define YT = log St

S0
. Then, we divide YT into a diffusive

process Y1
T plus a pure jump process Y2

T , where

Y1
T =

∫ t

0

(
r̃− kλs −

1
2

σ2
s

)
ds +

∫ t

0
σsdW̃s, Y2

T =
∫ t

0
Zs−dNs.

For each t ∈ [0, T], we write Gt = FS
t ∨ F

ξ
T . Then, the Esscher transform Q ∼ P on Gt with

respect to the regime-switching parameters (θ1
t )t∈[0,T] and (θ2

t )t∈[0,T] is given by

Λt =
dQ
dP

∣∣∣∣
Gt

=
exp

(∫ t
0 θ1

s dY1
s +

∫ t
0 θ2

s−dY2
s

)
E
[
exp

(∫ t
0 θ1

s dY1
s +

∫ t
0 θ2

s−dY2
s

)
| F ξ

t

]
= exp

(∫ t

0
θ2

s−Zs−dNs −
∫ t

0
λs

(
eθ2

s µ1+
1
2 (θ2

s σ1)
2
− 1
)

ds
)

· exp
(∫ t

0
θ1

s σsdW̃s −
1
2

∫ t

0

(
θ1

s σs

)2
ds
)

, (6)

where θm
t = 〈θm, ξt〉, θm =

(
θm

1 , θm
2 , . . . , θm

n
)
∈ Rn, m = 1, 2. It is not difficult to verify that

the Radon–Nikodym derivative process Λt is an exponential martingale.
According to fundamental theorem on asset pricing in refs. [29,30], the absence of

arbitrage is equivalent to fulfilling the so-called martingale condition: there exists an
equivalent martingale measure, such that the discounted stock price is a martingale under
that measure. Let r denote the risk-free rate, as in refs. [31]; the martingale condition
becomes

S0 = EQ
[
e−rtSt | G0

]
, (7)

To further identify the parameters θ1
t and θ2

t , we adopt the view in refs. [31,32] that the
jump risk is diversifiable and not priced, which implies that θ2

t = 0. Then, we solve the
martingale condition by the following theorem.

Theorem 1. When the dividend payments of the reference asset follow a stochastic process, the mar-
tingale condition in (7) is valid if and only if

θ1
t =

r− r̃
σ2

t
. (8)
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Proof. By means of Bayes’ rule, we can obtain

EQ
[
e−rtSt | G0

]
=

E
[
e−rtSt

dQ
dP | G0

]
E
[

dQ
dP | G0

]
=S0E

[
exp

(∫ t

0
σs

(
1 + θ1

s

)
dWs −

1
2

∫ t

0
σ2

s

(
1 + θ1

s

)2
ds−

∫ t

0

(
1− eµ1+

1
2 σ2

1

)
λsds

+
∫ t

0
Zs−dNs +

∫ t

0

(
eµ1+

1
2 σ2

1 − 1
)

ds +
∫ t

0

(
r̃− r− kλs − θ1

s σ2
s

)
ds | G0

)]
=S0 exp

(∫ t

0

(
r̃− r− kλs + θ1

s σ2
s + kλs

)
ds
)

.

Hence, the martingale condition (7) is valid if and only if θ1
t = r−r̃

σ2
t

. Vice versa. This proves

the theorem.

Substituting the regime-switching parameter, Λt can be rewritten as

Λt =
dQ
dP
| Gt = exp

(∫ t

0

r− r̃
σs

dW̃s −
1
2

∫ t

0

(
r− r̃

σs

)2
ds

)
. (9)

Applying the Girsanov’s theorem, Wt = W̃t +
∫ t

0
r−r̃
σs

ds is a standard Q-BM. So, the price of
reference stock under the martingale pricing measure Q is given by

dSt

St−
= (r− kλt)dt + σtdWt +

(
eZt− − 1

)
dNt. (10)

Indeed, the expected return of the stock under the equivalent martingale measure equals
the risk-free rate, so the assumption that µ < r in [5] still holds.

Remark 1. Under the martingale pricing measure Q, when the discrete dividend payments of
reference asset follow a jump-diffusion process with regime switching, the discounted stock price
process {e−rtSt} is a martingale between the adjacent dividend payment time.

In practice, dividends of underlying stocks are always paid after the dates of their
payment are disclosed. To solve this, we adopt the view in [5], supposing that the dividend
distributed at time mh is declared at time (m− 1 + ρ)h and equals X(m+1−ρ)h, where ρ ∈
(0, 1). From the declaration of a dividend to the date of dividend payment, the underlying
stock price St incorporates a deterministic part, reflecting the present value of the next
already known dividend. The stock price at this time is considered the sum of the ex-
dividend price and the evolution of the present value of the next dividend payment. So,
the dividends for this time interval are referred to as cum dividends. When we interpret
the announcement of the dividend as the payment of its present value at the announcement
time, then with D(m−1+ρ)hXmhe−r(1−ρ)h, we utilize the prior work to derive the ex-dividend
price of underlying stock as

Sex
t =

Xte−(r−µ){(m+ρ)h−t}

1− e−(r−µ)h
, (11)

and the cum-dividend price is given by

Scum
t = Sex

t + X(m−1+ρ)her(t−(m−1+ρ)h), (12)

for t ∈ ((m− 1 + ρ)h, mh). For t ∈ ((m− 1)h, (m− 1 + ρ)h), the stock price as follows

St =
Xte−(r−µ){(m−1+ρ)h−t}

1− e−(r−µ)h
. (13)
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In particular, we can get the following relational equation, similar to (5),

Smh = Smh− − Xmh = Smh−e−(r−µ)ρh. (14)

In particular, ρ = 1 indicates that the dividends are declared and paid at the same time.
From (6), the martingale pricing measure gained through the Esscher transform is

also applicable to the case where the dividends are declared earlier than the payment time.
The reference stock price in this case is then given by the below theorem.

Theorem 2. When the dividend payments of the reference asset follow a jump-diffusion process
with regime switching, the price of discounted stock {e−rtSt} is a martingale between the adjacent
dividend announcement and dividend payment time.

Proof. If t ∈ ((m− 1)h, (m + ρ)h), let S1 = X0e−(r−µ)(m−1+ρ)h

1−e−(r−µ)h , then the price of discounted
stock is given by

e−rtSt = S1 exp
{ ∫ t

0
(−kλs −

1
2

σ2
s )ds +

∫ t

0
σsdWs +

∫ t

0
Zs−dNs

}
. (15)

If t ∈ ((m− 1 + ρ)h, mh), we write S2 = X0e−(r−µ)(m+ρ)h

1−e−(r−µ)h ; the price of discounted stock can be
described by

e−rtSt = S2 exp
{ ∫ t

0
(−kλs −

1
2

σ2
s )ds +

∫ t

0
σsdWs +

∫ t

0
Zs−dNs

}
+ X(m−1+ρ)he−r(m−1+ρ)h. (16)

With the definition of exponential martingale, we can quickly determine that the price of
discounted stock (15) and (16) are Q- martingales. This completes the proof.

4. Pricing EIAs

In this section, we introduce two common EIA designs and pricing formulas when
the dividends are declared earlier than the payment time. In order to make our model
more suitable for the actual market, we also take the mortality risk of the policyholder
into consideration.

4.1. Pricing the Point-to-Point Design EIA

Suppose that the initial premium be 1, thus the contingent claim Cpp(t) can be ex-
pressed as

Cpp(t) = max{min(eαYt , eβt), eγt}, (17)

where α is the participation rate, which is usually less than or equal to 1, β is the upper
limit rate that indicates the maximum annualized rate that can be credited, and γ(< β) is
the guaranteed minimum return during the entire contract period. As in [9], we denote
κ(x) as the future lifetime of the policyholder at age x. We suppose that κ(x), St and ξt are
independent of each other. We also assume that T is an integer, and if the insured survives
after maturity time, the policy will pay Cpp(T); if the insured died in (t − 1, t], t ≤ T,
the insurer will pay Cpp(t). For ease of expression, the following standard actuarial notation
will be used: t px = P(κ(x) > t) represents the probability that a x-year-old human lives to
age x + t, and tqx = 1− t px.

Theorem 3. Under the martingale pricing measure Q, when the dividend payments of the reference
asset obey a jump-diffusion process with regime switching, the time-zero price of T-annual maturity
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point-to-point EIA Ppp(S0, T; ξ) is as follows
(i) When T ∈ ((m− 1)h, (m + ρ)h),

PPP(S0, T; ξ) = EQ

e−rT
∞

∑
n=1

e−
∫ T

0 λsds
(∫ T

0 λsds
)n

n!
Ψ(0, T)

× T px

+
T

∑
t=1

EQ

e−rt
∞

∑
n=1

e−
∫ t

0 λsds
(∫ t

0 λsds
)n

n!
Ψ(0, t)

× t−1 pxqx+t−1, (18)

where

Ψ(0, t) = eγtΦ(d1) + eβtΦ(d2) + eα
(

rt−
∫ t

0
1
2 σ2

s ds−
∫ t

0 kλsds+nµ1

)
+ α2

2

(∫ t
0 σ2

s ds−nσ2
1

)
[Φ(d3)−Φ(d4)],

d1 =

γt
α −

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds− nµ1√∫ t

0 σ2
s ds + nσ2

1

,

d2 =

−βt
α +

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds + nµ1√∫ t

0 σ2
s ds + nσ2

1

,

d3 =

βt
α −

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds− nµ1 − α

(∫ t
0 σ2

s ds + nσ2
1

)
√∫ t

0 σ2
s ds + nσ2

1

,

d4 =

γt
α −

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds− nµ1 − α

(∫ t
0 σ2

s ds + nσ2
1

)
√∫ t

0 σ2
s ds + nσ2

1

.

(ii) When T ∈ ((m− 1 + ρ)h, mh),

PPP(S0, T; ξ) = EQ

e−rT
∞

∑
n=1

e−
∫ T

0 λsds
(∫ T

0 λsds
)n

n!
Ψ̃(0, T)

× T px

+
T

∑
t=1

EQ

e−rt
∞

∑
n=1

e−
∫ t

0 λsds
(∫ t

0 λsds
)n

n!
Ψ̃(0, t)

× t−1 pxqx+t−1, (19)

where

Ψ̃(0, t) = eγtΦ(d1) + eβtΦ(d2) + eα
(

rt−
∫ t

0
1
2 σ2

s ds−
∫ t

0 kλsds−(r−µ)h+nµ1

)
+ α2

2

(∫ t
0 σ2

s ds−nσ2
1

)
[Φ(d3)−Φ(d4)],
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d1 =

γt
α −

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds + (r− µ)h− nµ1√∫ t

0 σ2
s ds + nσ2

1

,

d2 =

−βt
α +

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds− (r− µ)h + nµ1√∫ t

0 σ2
s ds + nσ2

1

,

d3 =

βt
α −

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds + (r− µ)h− nµ1 − α

(∫ t
0 σ2

s ds + nσ2
1

)
√∫ t

0 σ2
s ds + nσ2

1

,

d4 =

γt
α −

∫ t
0

(
r− 1

2 σ2
s − kλs

)
ds + (r− µ)h− nµ1 − α

(∫ t
0 σ2

s ds + nσ2
1

)
√∫ t

0 σ2
s ds + nσ2

1

.

Proof. For (i), when T ∈ ((m− 1)h, (m + ρ)h),

YT = log
ST
S1

=
∫ T

0
(r− kλs −

1
2

σ2
s )ds +

∫ T

0
σsdWs +

∫ T

0
Zs−dNs. (20)

The time-zero price of this policy under the equivalent martingale measure Q is

PPP(S0, T; ξ) = EQ

[
e−rTCPP(T)I(κ(x) > T)

]
+

T

∑
t=1

EQ

[
e−rTCPP(T)I(t− 1 < κ(x) ≤ t)

]
= EQ

[
e−rTCPP(T)

]
× T px +

T

∑
t=1

EQ
[
e−rtCPP(t)

]
× t−1 pxqx+t−1. (21)

Substituting for (20), we have

EQ[e−rTCPP(T)] = EQ

[
EQ

[
e−rTCPP(T) | G0

]]
= EQ

[
e−rTEQ

[
eγT I(YT ≤

γT
α

) | G0

]]
+ EQ

[
e−rTEQ

[
eβT I(YT >

βT
α

) | G0

]]
+ EQ

[
e−rTEQ

[
eαYT I(γT < αYT ≤ βT) | G0

]]
= EQ

e−rTeγT
∞

∑
n=1

e−
∫ T

0 λsds
(∫ T

0 λsds
)n

n!
Φ(d1)


+ EQ

e−rTeβT
∞

∑
n=1

e−
∫ T

0 λsds
(∫ T

0 λsds
)n

n!
Φ(d2)


+ EQ

[
e−rTeα

(∫ T
0 (r− 1

2 σ2
s−kλs)ds+nµ1

)
+ α2

2

(∫ T
0 σ2

s ds−nσ2
1

)

·
∞

∑
n=1

e−
∫ T

0 λsds
(∫ T

0 λsds
)n

n!
[Φ(d3)−Φ(d4)]

. (22)

Then, (18) comes immediately from (21) and (22). For (ii), when T ∈ ((m− 1 + ρ)h, mh),

YT = log
ST − X(m−1+ρ)he−r[(m−1+ρ)h−T]

S1

=
∫ T

0
(r− kλs −

1
2

σ2
s )ds− (r− µ)h +

∫ T

0
σsdWs +

∫ T

0
Zs−dNs. (23)

According to the proof of (i), it is not difficult to get (19). Thus, the theorem’s proof is
finished.
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Let Ji indicates the occupation time of {ξt}t∈[0,T] in state ei over the time horizon [0, T].
Then,

λ∗T =
∫ T

0
λsds =

N

∑
i=1

ri Ji, (24)

UT =
∫ T

0
σ2

s ds =
N

∑
i=1

σ2
i Ji. (25)

Write J = (J1, J2, . . . , JN) for the vector of occupation times. Let B denote a diagonal matrix
consisting of the elements in the vector ζ = (ζ1, ζ2, . . . , ζN) as its diagonal. For any ζ,
the characteristic function of J under Q is

E[exp(i〈ζ, J〉) | ξ0] = 〈exp[(Q + iB)T]ξ0, 1〉, (26)

where i =
√
−1, 1 = (1, 1, . . . , 1) ∈ RN . Let φ(J1, J2, . . . , JN) denotes the joint probability

distribution for the occupation times J = (J1, J2, . . . , JN). Note that φ(J1, J2, . . . , JN) can be
completely determined by the characteristic function.

For (i), when T ∈ ((m− 1)h, (m+ ρ)h), the time-zero price of the point-to-point design
EIA (18) becomes

PPP(S0, T; ξ) =
∫
[0,T]N

V(S0, λ∗T , UT , ξ0)φ(J1, J2, . . . , JN)dJ1dJ2 . . . dJN × T px

+
T

∑
t=1

∫
[0,T]N

V(S0, λ∗t , Ut, ξ0)φ(J1, J2, . . . , JN)dJ1dJ2 . . . dJN × t−1 pxqx+t−1, (27)

where

V(S0, λ∗T , UT ; ξ0) = e−rT
∞

∑
n=1

e−λ∗T (λ∗T)
n

n!
Ψ(0, T), (28)

Ψ(0, T) = eγTΦ(d1) + eβTΦ(d2) + eα(rT− 1
2 UT−kλ∗T+nµ1)+ α2

2 (UT−nσ2
1 )[Φ(d3)−Φ(d4)],

d1 =

γT
α −

(
rT − 1

2 UT − kλ∗T

)
− nµ1√

UT + nσ2
1

,

d2 =
−βT

α + rT − 1
2 UT − kλ∗T + nµ1√

UT + nσ2
1

,

d3 =
βT
α − rT + 1

2 UT + kλ∗T − nµ1 − α
(
UT + nσ2

1
)√

UT + nσ2
1

,

d4 =
γT
α − rT + 1

2 UT + kλ∗T − nµ1 − α
(
UT + nσ2

1
)√

UT + nσ2
1

.

For (ii), when T ∈ ((m− 1 + ρ)h, mh), the time-zero price of the point-to-point EIA
(19) becomes

PPP(S0, T; ξ) =
∫
[0,T]N

Ṽ(S0, λ∗T , UT , ξ0)φ(J1, J2, . . . , JN)dJ1dJ2 . . . dJN × T px

+
T

∑
t=1

∫
[0,T]N

Ṽ(S0, λ∗t , Ut, ξ0)φ(J1, J2, . . . , JN)dJ1dJ2 . . . dJN × t−1 pxqx+t−1, (29)

where

Ṽ(S0, λ∗T , UT ; ξ0) = e−rT
∞

∑
n=1

e−λ∗T (λ∗T)
n

n!
Ψ̃(0, T), (30)
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Ψ̃(0, T) = eγTΦ(d1) + eβTΦ(d2) + eα(rT− 1
2 UT−kλ∗T−(r−µ)h+nµ1)+ α2

2 (UT−nσ2
1 )[Φ(d3)−Φ(d4)],

d1 =

γT
α −

(
rT − 1

2 UT − kλ∗T

)
+ (r− µ)h− nµ1√

UT + nσ2
1

,

d2 =
−βT

α + rT − 1
2 UT − kλ

′
T − (r− µ)h + nµ1√

UT + nσ2
1

,

d3 =
βT
α − rT + 1

2 UT + kλ
′
T + (r− µ)h− nµ1 − α

(
UT + nσ2

1
)√

UT + nσ2
1

,

d4 =
γT
α − rT + 1

2 UT + kλ
′
T + (r− µ)h− nµ1 − α

(
UT + nσ2

1
)√

UT + nσ2
1

.

4.2. Pricing the Annual Reset EIA

With this policy, its payoffs are modified or reset each year. The return for one unit of
such EIA in year t is as follows

Car(t) =
t

∏
i=1

max{min(eαỸi , eβt), eγt}, (31)

where Ỹi = Y(i)− Y(i− 1). Just like the point-to-point EIA, the variable Y(i) in the expres-
sion above has several forms, including the forms defined in (20) and (23). The valuations
of these EIAs are similar to the pricing used in the point-to-point EIA. Meanwhile the
return of the annual ratchet EIA is same for Theorem 3, except it replaces Cpp(t) with Car(t).
According to the independence between mortality risk and financial risk, the time-zero
prices of the annual ratchet EIA with maturity T years under the pricing measure Q are
as follows
when T ∈ ((m− 1)h, (m + ρ)h),

P(S0, T; ξ0) = EQ

[
e−rTCar(T)I(κ(x) > T)

]
+

T

∑
t=1

EQ
[
e−rtCar(t)I(t− 1 < κ(x) ≤ t)

]
= EQ

[
e−rTCar(T)

]
T px +

T

∑
t=1

EQ
[
e−rtCar(t)

]
t−1 px × qx+t−1, (32)

when T ∈ ((m− 1 + ρ)h, mh),

P(S0, T; ξ0) = EQ

[
e−rTCar(T)

]
T px +

T

∑
t=1

EQ
[
e−rtCar(t)

]
t−1 px × qx+t−1. (33)

5. Discussion and Recommendation

This paper extends the results of [5]. Although the dividend process is drawn by an
exponential Lévy process, we generalize the diffusion process to a jump diffusion process
with regime switching. Regime-switching models have the advantage of flexibility in
describing the effects of structural changes in economic conditions and have been applied
to a variety of practical problems in finance and insurance. We also use the Esscher
transform to obtain a concrete pricing measure. Different from the assumption in [7], where
dividends are declared and paid at the same time, we obtain the pricing formulas for the
point-to-point EIA and the annual reset EIA in the case where dividends are declared earlier
than the time of payment. It is clear that our results are more consistent with the reality of
market transactions.
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6. Conclusions

In this paper, we investigate the valuation of point-to-point EIA and the annual reset
EIA when the dividend process of their reference stock is driven by the jump diffusion
model with regime switching. Instead of the approach of modeling the risky assets directly,
this paper starts by modeling the dividend process. Our results fully take into account
the impact that dividends have on the pricing of EIAs. The stock usually pays dividends
at discrete times after the payment dates are announced. Therefore, it is more practically
useful to consider the pricing of EIAs when dividends are declared earlier than they
are paid.

Although the pricing formulas are well derived mathematically under the proposed
model, there are several limitations in this article. Therefore, we present the following
research directions to overcome these limitations. First, since EIA itself is a long-term
derivative instrument, it is unreasonable to assume that interest rates will remain constant
for such a long time. Thus, it is necessary to consider the pricing of EIAs under stochastic
dividends and interest rates. Second, the number of dividends per distribution of the risky
asset is not constant. In addition to the jump diffusion process, we can also try to use the
stable process to describe the dividend process. The large and small jump parts of the stable
process can portray the variation of dividends more carefully. Third, the occurrence of
dividend jumps in the price process of risky assets makes pricing various path-dependent
derivatives an interesting problem. For example, pricing the barrier option under stochastic
dividends is a challenging problem. Because the number of dividends affects the timing of
the exercise, it is tricky to carve out the joint distribution of the dividend process and the
stopping time. The above issues will be considered in our future research.
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