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Abstract: This paper shows an oscillator with a spring made of material where the stress is a function
not only of strain but also strain rate. The corresponding restitution force is of strong nonlinear
monomial type and is the product of displacement and velocity of any order. The mathematical
model of the oscillator is a homogenous strong nonlinear second-order differential equation with
an integer- or non-integer-order mixed term. In the paper, an analytical procedure for solving this
new type of strong nonlinear equation is developed. The approximate solution is assumed as the
perturbed version of the exact solution in the form of a sine Ateb function. As a result, it is obtained
that the amplitude, period, and frequency of vibration depend not only on the coefficient and order
of nonlinearity, but also on the initial velocity. The procedure is tested on two examples: oscillator
perturbed with small linear damping and small linear displacement functions. The analytically
obtained results are compared with the exact numerical ones and show good agreement. It is
concluded that the mathematical model and also the procedure developed in the paper would be
convenient for prediction of motion for this type of oscillator without necessary experimental testing.

Keywords: nonlinear oscillator; mixed restitution force; exact analytic solution; first integral; Ateb function

MSC: 34C15

1. Introduction

Measuring springs made of conventional metals (iron, steel, copper, aluminum, etc.)
during deformation in the axial direction shows that the stress—strain relation is nonlinear
and the spring force F is a nonlinear function of displacement x, i.e.,

F =kxf(x) 1

where k is the stiffness coefficient and f(x) is a nonlinear displacement function. The force
(1) represents the restitution force in the spring—mass oscillatory system and is convenient
to explain a significant number of phenomena in the strong nonlinear oscillator (see some
recent published papers [1-5]).

However, the experiments made on the springs made of newly formed materials, such
as high-entropy alloys (HEAs) [6], various multi-component metallic alloys [7-12], and also
advanced high-strength steels (AHSS) [13], show that the stress depends not only on the
strain but also on the strain rate, and because of that, the force in the spring F is a function
of displacement x and velocity x, i.e.,

F = kxf(%) )

Comparing the empirical formulas for the spring force for various materials [14-16], it
is concluded that the models are of mixed polynomial type.

F = kx|x|* (3)
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The order of nonlinearity a* is a positive integer or non-integer [17-21] in the interval
a* € [0, 1]. The model of the mass—string oscillator with the restitution force (3) is

m5&+kx|5c|“* = e¢(x, %) 4)

where e (x, x) is the small perturbation function. The equation is strongly nonlinear with a
special mixed nonlinear term. This type of oscillator equation has not yet been considered
in the literature. Namely, the damping effect was previously separately included into the
equation [22-25] but, unfortunately, the model did not give an accurate description of the
motion of the real oscillator.

The aim of the paper is to develop an analytic method for solving Equation (4), to give
the appropriate solution and analyze the motion.

The paper is divided into seven sections. After the introduction, the model of restitu-
tion force is considered. In Section 3, the unperturbed oscillator with a mixed nonlinear
term is qualitatively analyzed. In addition, the exact amplitude and frequency of vibra-
tion is derived and computed. In Section 4, the closed-form solution of the unperturbed
equation (Equation (4)) in the form of the Ateb function is developed. Based on the already
known procedures for strong nonlinear oscillators [26-31], a new method for solving the
perturbed oscillators, i.e., Equation (4), is developed. The obtained solution has the time-
variable amplitude and phase. In Section 6, two examples are discussed: the oscillator with
a small external linear viscous damping and the oscillator with a small linear elastic force.
The paper ends with the Conclusion.

2. Generalized Restitution Force

The generalized model of the considered force (3) is the product of the displacement
and velocity function. The force is of monomial type with the order of nonlinearity,
which depends on the order of velocity function. In Figure 1, the force F as a function of
displacement x and velocity x is plotted. Two limit values for the order of velocity are
shown: a* =0and a* = 1.

Figure 1. F-x-x forces for: «* = 0, i.e.,, « = 1 (upper plane), and a* = 1, i.e., « — oo (lower plane).
Colour in the plot varies with increase of the force F from blue to red.

For a* = 0, the force corresponds to a linear elastic one and is independent of x,
while for a* = 1, the force has a quadratic nonlinearity, which is the product of linear
displacement and linear velocity, i.e., F = kxx. All forces for a* = (0,1) are inside these
two boundary ones.

For computational reasons, let us rewrite the force equation (Equation (1)) as

F = k|| ¢ 5)
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where ao* = "‘“;1 and « is an integer or non-integer, i.e., &« € R, a = (1, 00).
3. Mathematical Model of the Oscillator
Using expression (6), the oscillator is modeled as
m¥ +kx|x| © =0 (6)
x(0) =0, x(0) = xo @)
where m is a constant. For oscillator (6), the first integral exists.
2 v
5 X x el x .o el
c-— x| ¢ = xo| * 8
2 + a+1 ‘ x+1 ‘ 0 ®

where ¢? = % Analyzing (5), the boundary phase trajectories are defined.

. . . 200 1, a1 200 1, et
—xg < x < - — = oy < g = « 9
xo < x < xo, 1x+1c2|x0‘ _x_\/a+1cz}xo| )

The extreme value of initial velocity is equal to one, while the extreme displacement
depends not only on the initial velocity but also on the order of nonlinearity and rigidity
parameter c.

Two different cases can be distinguished:

. 2a @ 20 1,. jatl X0
;=R < al 10
x0<(“+1) zx+102‘x0| < [omax]| < c (10)

2u &1 X 20 1, el
, — < < ——== :
(x+1) c [¥max| < oc+1c2|x0|
The limiting phase trajectories (10) and (11) for various values of « are shown in
Figure 2a,b, respectively. It is obtained that if & — co and x¢ < 1, the lower limit of x tends
to zero and the phase trajectory compresses along the horizontal axes, while for xo > 1,

the upper limit tends to infinity and the phase trajectory extends along the horizontal axes.

xo > ( (11)

In addition, if x—1 and xy < 1, it is inf|Xyex| — x—co , while for xg > 1, sup |Xpax| — ’%0
However, the main conclusion is that the x — x diagrams are closed orbits, which correspond
to periodical motion.

(a) (b)

Figure 2. x — x diagrams for ¢ = 1, various values of «, and (a) xo = 0.8 and (b) xo = 2.5.
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Transforming (8), we have:

dt = 1 dx ] (12)
.oy atl 2. a+1
(Jio| * = 5Fe2y)

Integrating (12) in the interval [0, A], where A is the amplitude of vibration, the period

of the function is: B
r=tf dx (13)

- a1 T
X0 0 (1_%(:2“(0’ Aa xz)lx+1

For computational reasons, let us introduce the new variable u = p2x?, where:

a+1 5. —atl
pz = o CZ|X0| ® (14)
2 A2
Relation (10) is modified into T = + fop A —du___  For pPA% =1,ie,
o 2py/u(l—u) e+l
o] %
Xo| = 2u
A="1—77-—4/— 15
c a+1 (15

and using the definition of the complete beta B function [32], B(m, n) = |, 01 w11 — u)"ild u,
the period of vibration follows as:

2B l,L
T[22 2BC “f}) (16)
a+1 e

C’XO

Analyzing (15) and (16), it is obtained that the amplitude and period of vibration
depend on the parameter and order of nonlinearity, but also on the initial velocity.

4. Closed-Form Exact Analytic Solution for Oscillator

Let us assume the exact solution of (6) with initial conditions (7) in the form of the
inverse beta function usually called the Ateb function [32].

x = Asa(l,a, wt +0) (17)

where sa(1,a, wt + 6) = sa is the sine Ateb function, w is the frequency of the function,
and A and 6 are arbitrary constants. Using the properties of the Ateb function, the first and
the second time derivatives of (17) are (see [32]), respectively:

x = Awca® (1, a, wt +0) (18)

. 2
X = 7067_?160214(*@1”‘_1(1,1)(,(01?+9)Sa(1,0é,a)t+9) (19)

where ca(l, a, wt 4 0) = ca is the cosine Ateb function. Substituting (17) and (19) into (6):

Asst (20)

Relation (19) is the frequency of the Ateb function, which depends on the amplitude A.
According to the initial conditions (7) and relations (17) and (18), the arbitrary constants
satisfy the relations.

=0 (21)

1, &
(”‘;x A A = 1, (22)
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Comparing amplitude (22) with the previously obtained one (12), it is evident that the
relations are equal. Substituting (22) into (20), the frequency of the Ateb function is:

ol Ja+1

P (23)

w = c|x

27 a+1
the period of vibration of the oscillator (6) as T = %, i.e., as is already obtained in (16).
Based on the known period of vibration (16) and frequency of the Ateb function (19), the

frequency of vibration of the oscillator Q = Z* = Zw follows as:

Using (23) and the period of the Ateb function [32], 2I1 = ZB(l 1 ), we obtain

Lol 1
c*) Al = %c|xo| = % (24)

T zx+12aa? a1
O=—
H( 2

1 1
where IT = B (%, %H) = % and T' is the gamma function [32]. It is obvious that

the frequency of vibration depends on the amplitude of vibration, i.e., on the initial velocity.

In Figure 3, the A—x( (22) and the Q) — x( (24) diagrams for ¢ = 1 and various values of
« are plotted. It is obvious that for & > 1, both amplitude and frequency are increasing with
the increase in the initial velocity xo. However, in Figure 3a, two regions for A-x variation

are evident: first, for xg < xgp, and second, for xg > x(p, where xg, = ([Xz—ﬁ‘l) T In the first
region, the amplitude of vibration is increasing faster for higher values of &, while in the
second region, the increase is faster for smaller values of . This result corresponds to (10)
and (11), which is already obtained due to qualitative analyses. In Figure 3b, it is shown

that the increase in the curves ()-x is higher for smaller values of «.

(a) (b)

Figure 3. (a) Boundary A, and A—x( curves; (b) Q) — x( curves for various values of «.

Substituting (20) and (21) into (17), the exact closed-form solution of (6) for (7) is

obtained as: ,
x = Asa(l, a, t("‘;; @)t A (25)

In Figure 4a,b, the x—t diagrams for solutions A =1,c=1,and a = 1.5,ie,a* =1/3
and & = 2.5,1.e,, a* = 3/5, are plotted. It is obvious that the period of vibration is longer
for higher values of «, i.e., a*. Namely, the oscillator with a mixed-form restitution force
has a lower frequency of vibration than the elastic oscillator.
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0.5 05

~0.5 ] -05

(a) (b)
Figure 4. x — t diagramsforA=1,c=1,and (a)a =15,ie., a* = %; (b)ya =25,ie,a* = %

5. Approximate Procedure for Solving the Perturbed Oscillator
Let us consider the perturbed version of Equation (6).

a—1
o

§é+62x\5c

= ef (x, %) (26)

where f (x, x) is a perturbation function and € << 1 is a small parameter. For ¢ = 0, Equation (26)
transforms into Equation (6). Thus, it follows that Equation (6) is the generating equation
for the trial one (26). In accordance with this conclusion, let us assume that the trial solution
of (23) has to be the perturbed version of the generating solution (17) of Equation (6). It is
supposed that the form of the solution of (26) and its time variable has to be equal to (17)
and (18), but with time-variable amplitude and phase.

x=A(t)sa(l,a,p(t)) (27)
x = A(H)w(t)ca*(a, 1, P(t)) (28)
where: . '
P(t) = w(t) +0(t), (29)
wlt) = (1) 4 (30)

A(t) and 0(t) are time-variable functions. Comparing (28) and the time derivative (27),
the following constraint is obtained.

A(t)sa+ A(t)f(t) ca* =0 (31)

where A(t) = A, 9(t) = ¢,0(t) = 0,w(t) = w, sa(l,a,¢(t)) = sa, ca(a,1,¢(t)) = ca.
Substituting the time variable of (28):

20

/ a—1
a+1A(t)w(t)1/J(t)ca sa (32)

¥= (A(t)w(t) + A(t)cb(t))ca“ -

and expressions (27) and (28) into (26), it follows that:

(A(t)w(t) + A(t)ci)(t))ca"‘ - %A(t)w(t)é(t)ca"‘_lsa = ef (A(t)sa, A(Hw(t)ca®) (33)

Using (30) and the expression:

20

AWw(t) + A(Hw(t) = s lA(t)w(t) (34)
the relation (33) transforms into
At)ca® — A(H)B(F)ca* lsa = 1 ef (A(t)sa, A(t)w(t)ca®) (35)

20w(t)
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After some modification, Equations (31) and (35) are rewritten into two first-order
differential equations.

a+1

At) = 2D‘w(f)ef(A(t)sa, A(t)w(t)ca”*)ca (36)
A(B)O(t) = —%sf(A(t)sa, A(t)w(t)ca*)sacal * (37)

Unfortunately, there does not exist an exact analytic solution for systems (36) and (37).
At this point, this is where the averaging of the equations over the period of the Ateb
function is introduced. The averaged equations are

A(t) = 2‘;&; (ef(A(f)sa, A(F)w(t)ca%)ca) (38)
A(1)O(t) = —2‘:(:(1) (ef (A(t)sa, A(t)w(t)ca”)sacal ) (39)

where () = %fOT(-)dt.
To prove the accuracy of the model, two examples are considered where the approxi-
mate analytic solution is compared with the exact numerical solution.

6. Discussion on Perturbed Oscillators

The suggested analytical procedure is applied for solving vibrations of the perturbed
oscillators: oscillator with linear damping force and oscillator with additional elastic force.

6.1. Oscillator with External Linear Viscous Damping

For the case when, on the oscillator, an additional viscous damping force ef = —ex
acts, the differential equation of motion is:

a—1

X+ Ax|x] T = —ex (40)

Using the previously mentioned analytic solving procedure, the corresponding aver-
aged equations (Equations (38) and (39)) are:

Aty = -"LTea( ), (41)
- a+1
0(t) =¢ " (sa ca) (42)
using the relation (see [32]):
sa® 4+ ca*tl =1 (43)
The value of the averaged Ateb function (sa?) = %, and after integrating (41), it is

obtained that the amplitude is an exponential decreasing time function.

a+1

A(t) = Aexp(fem

t) (44)
According to (42) and the averaged function (sa ca) = 0, it follows that
0(t) =0 (45)

a+12%+1 a-1 a+1
= Aatl ——
( 20( C) +exp( 8“(3"‘06)

). (46)
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Integrating (46) and substituting relation (24), the amplitude-time and phase-time
relations are obtained.

a+1

’560 2 20 e x+1
a(3+a)

+1 +1
= el = /et 0 —exp (et ) 4s)

For the special case, when a =1, Equatlon (40) transforms into the linear damped oscilla-
tor, and the relations (47), (48), and (27) for sa(1,1, ¢) = sin i give the well-known solution:

At) = t) (47)

x = %exp(—%t) sin(ct) (49)

Two numerical examples are considered: (a) for « = 1.5 and (b) for « = 2.5, described
with mathematical models.

=

X4 cPx|x|? = —ex (50)

S5}

X4 cPx|x|’ = —ex (51)

where ¢ = 0.1. In Figure 5, the x — t diagrams, obtained numerically, and A — ¢ curves
obtained analytically (47) are plotted.

0.5

xoio /\[\/\/\/\ S~ h_ :: [\[\ /\ f\ _____
T

_05 -05

e .7

0 20 40 60 80 100 0 20 40 60 80 100
t t

(a) (b)

Figure 5. x — t diagrams (full line) and A — t diagrams (dashed line) for damped oscillator with A =1,
c=1,e=0.1,and: (a)a = 1.5,ie,a* = %; (b)a =2.5,ie.,a* = %

It is seen that the agreement between numerical and analytical solutions is high even
for the long time period. The A — t curves are on the top of the x — ¢ curves.

It is obvious that the amplitude and the period of vibration depend not only on
the coefficient of damping but also on the order of nonlinearity: the higher the order of
nonlinearity, the slower the velocity of amplitude decrease, and the longer the period
of vibration.

6.2. Oscillator with Additional Linear Elastic Term
If an additional linear force e¢f = —ex acts, the equation of motion of the considered
oscillator is: 3
X4 Axlx| T = —ex (52)
The corresponding two first-order averaged differential equations (Equations (38)
and (39)) are:

A(t) = —eA(t) 2‘;‘;5) (saca) = 0 (53)
o(t) = 822({:)_(1) (sa’cal %) (54)
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i.e., after integration:
A(t) = A = const (55)
_ v+1 2 1—a
P(t) = wt + ¢t Taio (sa“ca’ %) (56)
Substituting (30) into (56), the phase angle follows as:
a+1 5 T a1 1 a41,1a 2000, 5 1,
p(t) = (=) Acit(l+e—-(——)TA T (sa"ca ) (57)
20 catt 2

0.

3]

-0.5

It is obtained that the averaged solution has the constant amplitude (55) while the
averaged phase (57) is the linear time function. According to (57) and the periodic property
of the Ateb function (see [32]), i.e., 2IT = 2B(}, -1=), the period of vibration is:

2 a1
2B(}, 1)
T= s i (58)
(S e?) T AT (14 e (%5 T A7 T (sa’cal %))
ca+T

Comparing (58) and (16), i.e., the perturbed case and the unperturbed one (wWhen e = 0),
respectively, it is obvious that the period of vibration is longer for the unperturbed oscillator
than for the perturbed one for all values of order of nonlinearity o.

For the case when « =1, Equation (52) is linear. According to (55), (57), and <sa2> =1/2,
the averaged solution corresponds to the already known one.

et
= Asi — 59
x sin(ct + 2C) (59)

Two additional numerical examples are considered where the order of nonlinearity «
is 1.5 (Figure 6a) and 2.5 (Figure 6b). The corresponding equations are:

Q=

X4 cPx|x|? = —ex (60)

j&+c2x]5c]% = —ex (61)

Equations (60) and (61) are solved numerically for ¢ = 0.1 and plotted in Figure 6.
In addition, the analytically obtained constant amplitude A is inserted into the plot. It is
evident that the numerically obtained curves are with constant amplitude A, as is obtained
by applying the suggested analytical procedure.

o

o
3

|
o
3]

|
o

20 40 60 80 100 0 20 40 60 80 100
t t

(@) (b)

Figure 6. x — t diagrams (full line) and A — ¢ diagrams (dashed line) for A=1,c=1, ¢ =0.1, and:
(@)a =15ie.,a* = %; (b)x =25,ie.,a* = %

Comparing the period of vibration for the models without elastic force (shown in
Figure 4) and that with elastic force (Figure 6), it is seen that the period of vibration is
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References

shorter if the elastic force is added, as it is already analytically concluded (see Equation (55)).
The shortening of the period of vibration is different for various materials: for those with
a higher order of nonlinearity, the influence of the perturbed elastic force is higher and
the period of vibration is significantly shorter than for the oscillator without perturba-
tion. The perturbation has no influence on the amplitude of vibration of the oscillator. It
remains constant.

7. Conclusions

In the paper, the oscillator with a new type of restitution force is considered. The
restitution force is of mixed type and includes the dependence of the material property
not only on the strain but also on the strain velocity. Mathematically, the force is of
monomial type, i.e., the product of displacement and velocity, and is of integer or non-
integer order. The corresponding model of the oscillator is a strong nonlinear differential
equation. Analyzing the equation, it is concluded that:

1. For the known initial velocity, the model has a constant first integral, which indicates
the periodicity of motion. Based on the first integrals, the frequency and amplitude of
vibration are obtained.

2. There exists the closed-form analytic solution for the oscillator in the form of the sine
Ateb function.

3. Based on the exact solution, it is concluded that the amplitude, period, and frequency
property of the oscillator depend not only on the coefficient and order of nonlinearity
of the restitution force, but also on the initial velocity. The amplitude and the fre-
quency of vibration are increasing with initial velocity independently on the order of
nonlinearity. The period of vibration of the oscillator is longer for a higher order of
nonlinearity, i.e., higher order of velocity of vibration in the restitution force.

4. For the perturbed differential equation of the oscillator, the approximate solving
procedure with a time-variable amplitude and phase of the sine Ateb function is
convenient to be developed. The averaged analytic solution shows good agreement
with the numerically obtained one. It proves the accuracy of the procedure developed
in the paper.

In addition, it is concluded that the closed-form solution and the developed solving
procedure are suitable for prediction of the motion of any oscillators with mixed-type
restitution force and for simulation of oscillator responses.
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