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Abstract: Financial derivatives have developed rapidly over the past few decades due to their risk-
averse nature, with options being the preferred financial derivatives due to their flexible contractual 
mechanisms, particularly Asian options. The Black–Scholes stock option pricing model is often used 
in conjunction with Monte Carlo simulations for option pricing. However, the Black–Scholes model 
assumes that the volatility of asset returns is constant, which does not square with practical financial 
markets. Additionally, Monte Carlo simulation suffers from slow error convergence. To address these 
issues, we first correct the asset volatility in the Black–Scholes model using a GARCH model. Then, 
the low error convergence rate of the Monte Carlo method is improved using variance reduction 
techniques. Meanwhile, the quasi-Monte Carlo approach based on low discrepancy sequences is used 
to refine the error convergence rate. We also provide a simulation experiment and result analysis to 
validate the effectiveness of our proposed method.

Keywords: Asian option pricing; GARCH model; Monte Carlo method; variance reduction technique; 
low-discrepancy sequence

MSC: 91-10

1. Introduction

The complexity of financial markets has led to an increase in trading risk and has
given rise to a number of financial derivative products to hedge risk. One such product is
the Asian option [1,2], which is a path-dependent option whose return is determined by
the average price of the underlying asset over a certain period of time. This feature also
makes Asian options popular with investors as they can help hedge risk.

The Black–Scholes (B-S) option pricing model [3] further enhances the development
of the options market. However, this model assumes that the volatility of asset returns
is a constant, which differs significantly from the real financial market. To this end, the
Constant Elasticity of Variance (CEV) model [4] and Heston stochastic volatility model [5]
are designed. Although these two volatility models fit well with the actual financial data, a
CEV model is not suitable for stock option [6], and the stochastic volatility model is too
costly to implement and practically infeasible for empirical work [7]. Bollerslov [8] showed
that the GARCH model performs well in fitting stock price return volatility, and studies
from [9–14] further validated this and demonstrated that GRACH model helps to improve
option pricing in the B-S model.

Initially, most approaches used Brownian motion to price Asian options with the
help of probability theory. Subsequently, a number of studies have been conducted to
investigate Asian option pricing, including Monte Carlo (MC) methods [15–18], Fourier
transform [19], Laplace transform [20], and partial differential equation (PDE) approaches
[21]. Notably, these Asian option pricing methods are all developed based on probability
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theory. Moreover, several Asian option pricing methods [2,22] are devised for an uncertain
financial market. The path-dependent nature of Asian options makes the MC approach a
good choice for pricing Asian options. The MC method was introduced to option pricing by
Boyle [15] and further studied by Joy et al. [16] to deal with Asian option pricing problems.
However, the error convergence of the MC method is slow. To overcome these issues,
Kemna and Vorst [23] applied the control variate variance reduction technique [24] to the
pricing of the arithmetic average Asian option, improving the simulation error accuracy.
On the other hand, [25–27] pointed out that the Quasi-Monte Carlo (QMC) method based
on low-discrepancy sequences can enhance the error convergence rate of MC simulation.

In this paper, we first modify the B-S model using the GARCH volatility model and
then consider combining variance reduction techniques and the QMC method to improve
MC simulation. In particular, the QMC method based on low-discrepancy sequences can
reduce the error convergence rate from O(1/

√
N) to O(1/N). Specifically, the sum of

the underlying assets price during the option period is regarded as a control variable for
variance reduction, incorporating the QMC method based on the Sobol sequence [28].
Numerical simulation results indicate that the combination of these two techniques does
improve the error accuracy of the simulated estimates of the Asian options. The main
contribution of this paper can be summarized as follows:

• Combining the GARCH-based B-S model and the variance reduction technique, we
develop a new numerical simulation method based on QMC to deal with the price of
arithmetic average Asian options.

• The variance reduction technique and quasi-Monte Carlo method are combined to
price the arithmetic average Asian options, significantly improving the error conver-
gence rate of MC simulation.

The rest of the paper is organized as follows. Section 2 introduces some preliminary
concepts of B-S models with the GARCH volatility model, Asian option pricing, and MC
methods. Section 3 discusses strategies to improve the error convergence accuracy of
MC simulation, i.e., variance reduction techniques and QMC methods. Then, we conduct
numerical simulation experiments to demonstrate the effectiveness of our proposed method
in Section 4. Finally, the conclusion and future work are made in Section 5.

2. Preliminaries
2.1. Black–Scholes Model with GARCH Volatility

The Black–Scholes (B-S) model has received great popularity ever since it was proposed
in 1973 [3]. Merton expanded on it by considering the impact of dividend payouts and
proposed the Black–Scholes–Merton (B-S-M) model [29]. Assume St is the price of the
underlying asset at time t. The B-S model assumes that, under the risk neutral probability
measure, the change of underlying asset (stock) St follows a geometric Brownian motion,
with the expression

dSt = rStdt + σStdWt, (1)

in which r (constant) is the risk-free interest rate, σ (constant) is the volatility of the
underlying asset return, and Wt ∼ N(0, t) follows standard Brownian motion. Then,
the stock price change at any time step [t, T] follows a normal distribution with mean value
of (r− σ2

2 )(T − t) and variance of σ2(T − t), that is

S(T) = S(t) exp [(r− σ2

2
)(T − t) + σε

√
T − t], ε ∼ N(0, 1). (2)

Next, we suppose K is the option expiry strike price and V(S, t) is the option price
that relies on stock price S and time t; then, we can obtain Equation (3) with the condition
V(S, T) = E[max(S(T)− K, 0)].

∂V(S, t)
∂t

+ rS
∂V(S, t)

∂S
+

1
2

σ2S2 ∂2V(S, t)
∂S2 = rV(S, t) (3)
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Taking the European option as example, and supposing the price of the European call
option is c and that of the European put option is p, we can obtain the expression of call
option price as

c = e−r(T−t) E[max(S(T)− K, 0)], (4)

while the put option price can be derived from Equation (5).

c + Ke−r(T−t) = p + S (5)

However, an ideal assumption of both the B-S model and B-S-M model is the volatility
of asset return; i.e., σ is a constant, which is not consistent with the real financial market. As
a result, much work [12,13,30–32] has focused on investigating the return volatility of the
B-S model, with [12,13] showing that fitting return volatility with a GARCH model further
improves the B-S model.

The GARCH model is a classic model for depicting changes in the volatility of financial
time series, in which models such as GJR [33] and EGARCH [34] have been proposed for
studying the volatility of asset return. The GARCH model is an extension of the ARCH
model [35], integrating moving average (MA) and auto-regressive (AR) models. When
using the GARCH(1, 1) model to fit the asset return volatility of underlying assets in the
options, it can be expressed in Equation (6),

rn = µ + un,

un = σnεn, εn i.i.d. ∼ N(0, 1),

σ2
n = λ + α1u2

n−1 + β1σ2
n−1.

(6)

in which Var(un) =
λ

1−α1−β1
, µ, λ, α1, β1 are constants and α1 + β1 < 1, λ + α1 + β1 < 1. α1

denotes the correlation coefficient between the volatility at the current moment and the
squared residual term at the previous moment, and β1 denotes the correlation coefficient
between the volatility at the current moment and the volatility at the previous moment.
Then, the first l steps of the GARCH(1, 1) model forecast can be expressed in Equation (7),
so if we know the starting return volatility σh, we can obtain the return volatility at any time.

σ2
h (l) = λ + (α1 + β1)σ

2
h (l − 1), l > 1. (7)

2.2. Asian Option Pricing

Asian options, also known as average price options, are derivative products of stock
options. Unlike the regular European options, whose payoff depends on the price of
the underlying asset at maturity, Asian options provide a payoff that relies on a certain
average of the past prices of their underlying asset [36]. According to different settlement
methods, Asian options can be classified into fixed strike price and floating strike price
Asian options. Fixed strike price options replace the underlying asset price at maturity of a
European option S(T) with the average price of the underlying asset during [0, T] A(T),
removing the volatility risk associated with frequent asset trading. Meanwhile, floating
strike options replace the option’s maturity strike price K with A(T), ensuring that the
purchaser’s average purchase price is less than the final price.

The unique average characteristics of Asian options make them not only cheaper than
European options but also more actively traded and favored by investors in the financial
derivatives market. Asian options, on the other hand, can be divided into two categories
based on the form of the average: geometric and arithmetic averages. In addition, Asian
options can be separated into discrete arithmetic average, continuous arithmetic average,
discrete geometric average, and continuous geometric average depending on how the
average is calculated. In this paper, we focus on the pricing of discrete arithmetic average
Asian options.
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Assume that the price of the underlying asset (stock) at moment tn is Stn during the
option period [0, T] (0 = t0 < t1 < · · · < tM−1 = T). The average value of underlying
assets at maturity A(T) = 1

M ∑M−1
n=0 Stn , and the return of arithmetic average Asian option

at maturity, can be expressed in Table 1. K is the option expiry strike price, and S(T) is the
asset (stock) price at maturity.

Table 1. Maturity returns of arithmetic average Asian options.

Type Call Option Put Option

Fixed strike price E[max(A(T)− K, 0)] E[max(K− A(T), 0)]
Floating strike price E[max(S(T)− A(T), 0)] E[max(A(T)− S(T), 0]

Following the B-S model with GARCH(1, 1) volatility in Section 2.1, the average value
of underlying assets at maturity A(T) can be rewritten as following

A(T) =
1
M

M−1

∑
n=0

Stn ,

Stn = Stn−1 exp [(r−
σ2

n−1
2

)
M
T

+ σn−1ε

√
T
M

].

(8)

Thus, the price of the arithmetic average Asian option can be shown in Table 2.

Table 2. Price of arithmetic average Asian options.

Type Call Option Put Option

Fixed strike price e−rTE[max(A(T)− K, 0)] e−rTE[max(K− A(T), 0)]
Floating strike price e−rTE[max(S(T)− A(T), 0)] e−rTE[max(A(T)− S(T), 0]

2.3. Monte Carlo Method

The Monte Carlo (MC) approach is often used to solve for the expected value of
a random variable. The method relies on a large number of computer simulations to
approximate the probability or mathematical characteristics of a random variable.

We use the B-S model with GARCH volatility to calculate the price of the underlying
asset in the option. Taking the arithmetic average Asian options as the research object, we
can obtain a simulated estimate of the price of Asian options using MC simulations. The
specific algorithm details can be seen in Algorithm 1.

In particular, for a random variable h(x), its expectation calculated by MC simulation
can be approximated as E[h(x)] = h̄(x) = 1

N ∑N
n=1 h(xn). According to the law of large

numbers [37] and central limit theorem [38], when N is sufficiently large, at the significance
level of 1− α, we have

lim
N→+∞

P(
|h̄(x)− ν|

ω/
√

N
≤ uα/2) = 1− α. (9)

Then, we can know that the standard error of the MC simulation estimate is O( ω√
N
).

Thus, we can reduce the error by reducing the variance w of variable X. On the other hand,
we observe that the error convergence order of the MC simulation is O(1/

√
N) and the

convergence rate is not efficient. To further improve the MC approach, we will investigate
these two aspects in Section 3.
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Algorithm 1 MC algorithm to estimate expected present value of payoff

1: λ, α1, β1, σ0, r and T are known constants. Zj represents the random data that follow
the standard normal distribution.

2: for i← 1, 2, · · · , N do
3: generate Zi
4: for j = 1; j < M− 1; j ++ do
5: if j = 1 then
6: σ2

1 = λ + α1u2
0 + β1σ2

0
7: else
8: σ2

j = λ + (α1 + β1)σ
2
j−1

9: end if

10: Si(j) = Si(j− 1) exp [(r−
σ2

j−1
2 ) T

M + σj−1

√
T
M Zi];

11: end for
12: Ai(T) = ∑M−1

j=0 Si(j)/M
13: Ci = e−rT(Ai(T)− K)+;
14: end for
15: ĈN = (C1 + · · ·+ CN)/N

3. Quasi-Monte Carlo Pricing of Arithmetic Average Asian Options With Control
Variate Technique

In this section, we focus on two approaches for improving the error convergence rate
of the MC method, the variance reduction technique and the QMC method. Then, we
combine the two to perform MC simulation pricing of arithmetic average Asian option.

3.1. Control Variate Variance Reduction Technique

The variance reduction techniques are strategies designed to improve the error con-
vergence rate of MC calculations without modifying their expectation values, i.e., they aim
to reduce relative statistical uncertainty. Common variance reduction techniques include
antithetic variable variance reduction, control variate variance reduction and importance
sampling variance reduction [39,40].

According to the research from [18], using the sum of the prices of the underlying asset
over the option period [0, T] and the analytical solution of the geometric average Asian
option as control variates can usually achieve good results for arithmetic average Asian
options. However, it is very difficult to obtain the analytical solution of the geometric mean
Asian option when the volatility of the underlying asset’s return follows a GARCH(1, 1)
model. Therefore, we choose the sum of the prices of the underlying asset over the option
period [0, T] as the control variate to reduce the variance.

The basic idea of the control variate technique is to reduce the variance of an unknown
estimate by using information about the known variable, and the higher the correlation
between the known variable and the unknown estimate, the better the variance reduction.
For random variables Xi(i = 1, 2, · · · , N) and random variables Yi(i = 1, 2, · · · , N), E(Y) =
ν is known. For a fixed constant α, let Xi(α) = Xi − α(Yi − ν); then, we can obtain
E(Xi(α)) = E(Xi − α(Yi − ν)) = E(Xi) = E(X), and the control variable estimator of the
expected value E(X) can be expressed as:

CV =
1
N

N

∑
i=1

(X− i− α(Yi − v)). (10)

Calculate the variance of the random variable Xi(α) = Xi − α(Yi − ν); then, we have
Var(Xi(α)) = Var(Xi)+ α2Var(Yi)− 2αCov(Xi, Yi), and when α = Cov(Xi ,Yi)

Var(Yi)
, the minimum

value of Var(Xi(α)) is equal to Var(Xi)(1− ρ2
XY), where ρXY is the correlation coefficient

of variables X and Y. The higher the value of ρXY, the smaller the variance of Var(Xi(α)).
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Under risk-neutral conditions [41], we assume that the MC simulation value of the
i-th arithmetic average Asian call option is

V(i) = e−rT(
1
M

M

∑
j=1

Si(j)− K)+, (11)

then the control variable, the sum of the prices of the underlying asset over the option
period [0, T], can be written as S(i) = Si(0)+ Si(2)+ · · ·+ Si(M− 1). The estimated option
price for the arithmetic average Asian option can be expressed as

V̂CV =
1
N

N

∑
i=1

(V(i)− α(S(i)− S?)). (12)

Here, α is the correlation coefficient between V(i) and S(i), and S? is the expectation of
underlying asset price.

3.2. Quasi-Monte Carlo Method

The Quasi-Monte Carlo (QMC) method, also known as the low-discrepancy sequence
method, is a method similar to the MC method. The main difference between these two
methods lies in the generation of random sequences. MC simulations use pseudo-random
sequences, which are aggregated and converge slowly. The QMC method, on the other
hand, employs a more evenly distributed random sequence with less discrepancy, which is
less aggregated and converges more quickly.

3.2.1. Error Convergence

The QMC method is similar to the MC method, whose numerical integration is
approximated by the value of a measurable function f at some points. For example, to find
the approximation of the QMC integral over the unit volume, take N points x1, x2, · · · , xN ;
then, we have ∫

[0,1]s
f (u)du ≈ 1

N

N

∑
i=1

f (xi). (13)

xi(i = 1, 2, · · · , N) is s-dimensional vector.
The approximated error estimation of the QMC method can be the upper bound of

the difference degree of points x1, x2, · · · , xN . Specifically, the Koksma–Hlawka inequal-
ity [42] is one of its classical results, and the error upper bound of QMC integration can be
expressed as

| 1
N

N

∑
i=1

f (xi)−
∫

Is
f (x)dx| ≤ V( f )D∗N(x1, · · · , xN). (14)

x1, · · · , xN ∈ Is, V( f ) are bounded variations of the function f on the interval Is; then, the
error estimate of the QMC method depends on the difference degree D∗N . The convergence
order of the deviation of the point set of the quasi-random sequence with N points is
O(N−1logNs−1), so the error convergence rate of the QMC integral is not only related to
the number of simulations N but also related to the random sequence dimension s. More
importantly, the convergence rate of O(N−1) further improves the MC error convergence
rate of O(N−1/2).

3.2.2. Low-Discrepancy Sequence

The Halton, Faure, and Sobol sequences are three commonly used low-discrepancy
sequences. The generation of the Halton sequence depends on a prime number related
to the dimension s. If the dimension s = 1, the smallest prime number 2 is taken as the
number base. If the dimension s = 2, the second smallest prime number 3 is taken as
the number base. Analogously, an s-dimensional Halton sequence would select the top
s smallest prime numbers as the number base and then calculate the decimal decimals
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with the top s prime number as the base for any integer n. Meanwhile, the Faure sequence
selects the smallest prime number greater than or equal to dimension s as the number base
for each dimension. As a result, each dimensional sequence in the Faure sequence takes 2
as the number base and is a reordering of the first-dimensional sequence. Different from
the Halton and Faure sequence, each dimension of the Sobol sequence consists of a radical
inversion with base 2, but each dimension has a different matrix for the radical inversion.
Due to each dimension taking 2 as the base, the Sobol sequence can be generated directly
using bitwise operations to achieve radical inversion, which is very efficient.

To better demonstrate the difference between pseudo-random and low-discrepancy
sequences, we randomly sampled 1000 points on a two-dimensional (first and second di-
mensions) space to observe their distributions. As shown in Figure 1, the Halton, Faure, and
Sobol sequences are more evenly distributed than the pseudo-random sequence. In particu-
lar, we observe that the distribution of Faure and Sobol sequences in two-dimensional is the
same, since they both take the prime 2 as the base, and the second dimension is a reordering
of the data in the first dimension. It is worth noting that as the dimensionality increases, the
low-discrepancy sequences degenerate to varying degrees. When the dimension is set to
30, the random data in the two adjacent dimensions (dimensions 29 and 30) of the Halton
sequence show a high correlation, and the data are not evenly distributed in U[0, 1]. When
the dimension is set to 60, the random data in the two adjacent dimensions (dimension 59
and 60) of the Faure sequence suffer from a similar problem. However, the Sobol sequence
does not have this problem, and when the number of dimensions reaches 250, the data
in the two adjacent dimensions (dimension 249 and 250) are still well distributed. Taking
1000 data points as examples, results in Halton, Faure and Sobol sequences can be seen in
Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Uniform

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Halton

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Faure

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Sobol

Figure 1. Two-dimensional distribution of pseudo-random and three low discrepancy sequences.

Furthermore, given that the fact that the Asian options are usually valid for 1 to
9 months, and the change in the price of the underlying asset is usually calculated in
days, the pricing of Asian options is a high-dimensional problem (the dimension is usually
greater than 30). Given that the Sobol sequence performs better in low-dimension and high-
dimension scenarios, we choose the Sobol low-discrepancy sequence to generate random
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points for our numerical experiments. The construction details of the Sobol sequence can
be seen in Appendix A.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Halton 29 * 30

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Faure 59 * 60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Sobol 59 * 60

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Sobol 249 * 250

Figure 2. Two-dimensional distribution of adjacent low-discrepancy sequences (high-dimensional
case). The Halton and Faure sequences show varying degrees of degeneracy, while the Sobol sequence
still shows good uniformity.

3.2.3. Inverse Transformation Algorithm

Notably, the above three low discrepancy sequences all obey the U[0, 1] distribution,
but the B-S formula requires a normally distributed sequence, so it is necessary to convert
the uniformly distributed sequences into standard normally distributed sequences. Al-
though Box–Muller [43–45] is the classical algorithm for solving this problem, it disturbs
the uniformity of the low-discrepancy sequences. We will adopt the Moro algorithm [46]
for transformation. Since the value of the Y-axis in the standard normal distribution obeys
the U[0, 1] distribution, an intuitive idea is to inverse-normally transform the value of the
Y-axis. The Moro algorithm divides the Y-axis of the standard normal distribution into two
parts: the peak part (0.08 ≤ y ≤ 0.92) and the fat tail part (y < 0.08 and y > 0.92).

The Moro algorithm uses different algorithms for different parts. Let y be a random
number in the low-discrepancy sequence and u = y− 0.5.

• If |u| ≤ 0.42, then we use the Beasley algorithm [47] to calculate the estimate of the
inverse function

F−1(y) = u ∑3
n=0 anu2n

∑4
n=0 bnu2n

. (15)

• If |u| > 0.42, then we employ the truncated Chebyshev sequence to calculate the
estimate of the inverse function

F−1(y) =

{
∑8

n=0 cnTn(z)− c0/2, 0.42 < u < 0.5
c0/2−∑8

n=0 cnTn(z), −0.5 < u < −0.42
(16)

in which z = k1{2 ln(− ln(0.5− |u|))− k2}, and the parameter value of an, bn, cn can be
seen in Appendix B.
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Next, we employ the Moro algorithm to transform the Sobol sequence into a normal
distribution sequence. We consider the standard normal distribution for the two adjacent
dimensions of 29 and 30, as well as the distribution of random data from the Sobol sequence
in two adjacent dimensions after Moro normalization when the dimensions are set to 30,
90, and 180, respectively. As illustrated in Figure 3, the normal distribution of the Moro-
normalized Sobol sequence of adjacent two-dimensional data holds well as the number of
dimensions increases.

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Normal 29 * 30

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Sobol-Normal 29 * 30

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Sobol-Normal 89 * 90

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
Sobol-Normal 179 * 180

Figure 3. Two-dimensional distribution of adjacent Moro-normarlized Sobol sequence with dimen-
sions set to 30, 90, and 180.

4. Numerical Results and Analysis

Although the option information is publicly available, we choose to set appropriate
data manually for numerical simulation pricing of arithmetic average Asian options for
convenience. This is due to the objective of this paper to improve the Monte Carlo simula-
tion method. As a result, the numerical simulation we implement is to verify whether our
proposed method improves the accuracy of error convergence in Asian option prices. We
choose the B-S model with the GARCH(1, 1) volatility to model the change of underlying
assets during the option period. Additionally, we select the sum of the underlying asset
prices within the option valid period as the control variable for variance reduction and
combine it with the QMC method based on the Sobol sequence. All the numerical simu-
lation experiments in this paper are implemented in Python, and the code is available at
https://github.com/Linda230/Option_pricing (accessed on 1 December 2022).

4.1. Main Results

Taking the arithmetic mean Asian call option with a fixed strike price K as an example,
the steps to simulate and solve the option price are as follows:

1. Generate Sobol sequence Zn, then utilize the Moro algorithm to normalize Zn, i.e.,
find F−1(Zn).

2. Substitute F−1(Zn) into the option underlying asset pricing formula

S(t + ∆t) = S(t) exp[(r− σ2
t

2
)∆t + σ

√
∆tF−1(Zn)],

https://github.com/Linda230/Option_pricing
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in which σt follows GARCH(1, 1) model, and ∆t = T
M .

3. Calculate the maturity return of the arithmetic average Asian option and discount
it with the risk-free rate r to obtain the estimated option price of the i-th simulation
path.

C(i) = e−rT(
1
M

M−1

∑
j=0

Si(j)− K)+.

4. Use the price sum of the underlying asset of the option over the option validity [0, T]
as the control variable to reduce the variance; then, the new variable can be expressed
as:

Ĉ(i) = C(i)− α(Si − S?),

in which Si = Si(0)+Si(1)+ · · ·+Si(M− 1), α = cov(C(i),Si)
var(Si)

, and S? is the expectation
value of the underlying asset price sum over the period of [0, T].

S∗ = E(Si(0) + Si(1) + · · ·+ Si(M− 1))

= Si(0)(1 + er∆t + e2r∆t + ... + e(M−1)r∆t)

= Si(0)
(1− erT)

1− er∆t .

5. Simulate N times to obtain the estimated mean value of the price of the arithmetic
average Asian option.

Ĉ =
Ĉ(1) + Ĉ(2) + · · ·+ Ĉ(N)

N

Assume the initial price of the underlying asset (stock) in the Asian option Si(0) = 50,
a fixed strike price of K = 50, and a risk-free daily return of r = 0.0005. The volatility
model for the stock price return is

rn = 0.0002 + un,

un = σnεn, εn i.i.d. ∼ N(0, 1),

σ2
n+1 = 0.0006 + 0.1u2

n + 0.85σ2
n .

and the initial daily volatility of the stock price return is σ0 = 0.02. Here, the GARCH(1,
1) volatility model considered is an overnight volatility change, and the time interval is
1 day. That is, if the option is valid for 30 days, then the number of dimensions in the
simulation is 30. We use Python for programming to calculate the simulated estimated
price and standard error of arithmetic average Asian option. As shown in Table 3, the price
of the fixed-strike price arithmetic average Asian call option increases with the effective
period of the option, while the standard error of the option price decreases as the number
of simulations increases.

Table 3. Price of arithmetic average Asian options (fixed-strike call option). The values in brackets
denote the standard error of the MC simulation estimates.

Number of Simulations T = 30 T = 90 T = 180

N = 1000 2.6498(0.0027) 8.6223(0.0062) 14.2003(0.0092)
N = 10,000 2.8358(0.0003) 8.7017(0.0006) 13.8482(0.0009)

N = 100,000 2.8757(0.00003) 8.7498(0.00006) 13.9332(0.00009)

4.2. Ablation Study

Our proposed method incorporates the control variate technique and QMC method.
To verify their effectiveness, we conduct an ablation study for each of the two components
with a simulation number of N = 10,000 and an option validity of T = 30/90/180. As shown
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in Table 4, removing the control variable or the low-discrepancy sequence will result in
a degradation of the standard error and a small change in option price. In addition, we
investigate the effect of volatility on the option price. We find the removal of GARCH(1,1)
volatility leads to a dramatic decrease in the option prices. The reason for this is that the
greater the volatility of the underlying asset’s return during the term of the option, the
greater the price change of the underlying asset price, and the higher the corresponding
option price.

Table 4. Ablation study on the control variate and QMC method based on Sobol sequence.

Model T = 30 T = 90 T = 180

Ours 2.8358(0.0003) 8.7017(0.0006) 14.2003(0.0092)
w/o Control Variate 3.8336(0.0007) 9.0521(0.0019) 13.6596(0.0038)
w/o Sobol Sequence 2.8392(0.0278) 8.7498(0.00006) 13.9332(0.00009)

w/o GARCH(1,1) 1.3968(0.00009) 2.6469(0.0002) 4.0149(0.0002)
w/o ALL 1.3871(0.0201) 2.6589(0.0373) 4.0166(0.0546)

5. Conclusions

This paper takes arithmetic average Asian option pricing as the research object and
focuses on improving the error convergence rate of Monte Carlo simulation. To begin
with, the GARCH model is used to fit the volatility of asset returns to modify the constant
volatility assumption of the B-S model. To address the problem of low accuracy of error
estimation in the MC method, we consider combining variance reduction techniques with
the QMC method to improve the accuracy. Specifically, we use the sum of the underlying
asset prices within the option valid period as the control variable for variance reduction and
combine it with the QMC method based on the Sobol sequence. The empirical results show
a significant improvement in the standard error convergence rate of arithmetic average
Asian options, demonstrating the effectiveness of our proposed method.
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Appendix A

Sobol sequences are generated based on a set of sequences called direction numbers
di, and the number base of the sequence is fixed to 2. Set d1 as a positive odd number less
than 2i,

di =
ni

2i .

Construction method for Sobol sequence:

1. Let f (x) be a polynomial with coefficients of 0 or 1.

f (z) = xp + c1xp−1 + · · ·+ cp−1x + cp.

When i > p, we have a recursive formula that

di = c1di−1 +©c2di−2 +© · · · cpdi−p +©[di−p/2p],

in which +© represents the iso-or operation symbol in binary (same to be 0, different
to be 1). That is, 1 +©0 = 1; 0 +©0 = 0; 1 +©1 = 0).

2. Calculate ni; then, we have

ni = 2c1ni−1 +©22c2ni−2 +© · · · 2pcpni−p +©ni−p.

The following example illustrates how the Sobol sequence is generated by taking the
simple polynomial to be x3 + x2 + 1; then, we take the corresponding recursive polynomial
to be

ni = 2ni−1 +©8ni−3 +©ni−3.

If we take the initial values of n1 = 1, n2 = 1 and n3 = 3, then we have

n4 = 2n3 +©8n1 +©n1

= 6 +©8 +©1

= (0110)2 +©(1000)2 +©(0001)2

= (1111)2

= 15.

Then, we can obtain the i-th number in the Sobol sequence

si = b1d1 +©b2d2 +© · · · , (A1)

where(· · · b2b1) represents the binary expression of number i, i.e., i = (· · · b2b1)2.

Appendix B

The specific parameter settings of the Moro algorithm can be seen in Table A1.

Table A1. The specific parameter settings of Moro algorithm.

an bn n cn

2.506 628 238 84 1.00 0 7.710 887 070 548 789 5
−18.615 000 625 29 −8.473 510 930 90 1 2.777 201 353 368 516 9
41.391 197 735 34 23.083 367 437 43 2 0.361 496 412 926 100 2
−25.441 060 496 37 −21.062 241 018 26 3 0.037 341 823 343 455 4

3.130 829 098 33 4 0.002 829 714 303 696 7
5 0.000 162 571 691 792 2
6 0.000 008 017 330 474 0

k1 k2 7 0.000 000 384 091 986 5
0.417 988 642 492 643 1 4.245 468 688 137 656 9 8 0.000 000 012 970 717 0
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