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Abstract: This paper constructs highly accurate and efficient time integration methods for the solu-

tion of transient problems. The motion equations of transient problems can be described by the first-

order ordinary differential equations, in which the right-hand side is decomposed into two parts, a 

linear part and a nonlinear part. In the proposed methods of different orders, the responses of the 

linear part at the previous step are transferred by the generalized Padé approximations, and the 

nonlinear part’s responses of the previous step are approximated by the Gauss–Legendre quadra-

ture together with the explicit Runge–Kutta method, where the explicit Runge–Kutta method is 

used to calculate function values at quadrature points. For reducing computations and rounding 

errors, the 2m algorithm and the method of storing an incremental matrix are employed in the cal-

culation of the generalized Padé approximations. The proposed methods can achieve higher-order 

accuracy, unconditional stability, flexible dissipation, and zero-order overshoots. For linear transi-

ent problems, the accuracy of the proposed methods can reach 10−16 (computer precision), and they 

enjoy advantages both in accuracy and efficiency compared with some well-known explicit Runge–

Kutta methods, linear multi-step methods, and composite methods in solving nonlinear problems. 
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1. Introduction 

Owing to the complexity of practical problems, analytical solutions are generally not 

available for transient analyses, and thus numerical methods are pre-dominantly used to 

approximate the transient response. In finite element analyses (FEA) of transient prob-

lems, time integration methods [1] are widely used. A large number of time integration 

methods [1–3] have been developed over the last decades, and novel ones are continu-

ously proposed. In commercial finite element software and also in scientific applications 

that are directed at studying transient problems, the Newmark method [1] and the HHT-

α method [1] are popular.  

In general, conventional time integration methods can be described as either implicit 

or explicit methods [1]. Explicit methods are conditionally stable in terms of the algorithm 

structure, causing an allowable time step size to be severely limited by stability in the 

simulations of dynamic systems. Implicit methods can achieve unconditional stability for 

linear systems, but considering that an iteration method is necessary for implicit methods, 

their computations are more expensive compared with explicit methods in the simula-

tions of nonlinear systems.  

For improving the accuracy of traditional single-step implicit methods, such as the 

Newmark [1], WBZ-α [1], and generalized-α methods [1], composite methods based on 
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the multi-sub-step concept are developed. The composite methods first appeared in the 

research of Bank and his co-workers [4], wherein they proposed a two-sub-step method 

consisting of the trapezoidal rule (TR) and the backward difference formula (BDF), and 

used it to analyze the transient behavior of silicon devices and circuits. Later, the two-sub-

step based on TR and BDF was employed to solve structural dynamics by Bathe [5] in 

2005, and the composite method was conceptualized. Motived by Bathe’s work, composite 

methods that collect the advantage of the sub-step method attract wide attention and 

rapid development. The three-sub-step [6,7], four-sub-step [8,9], and five-sub-step [8,9] 

composite methods based on TR and BDF were constructed to obtain a higher low-fre-

quency accuracy. Due to the use of BDF, the composite methods adopting the combina-

tions of TR and BDF are L-stable (or asymptotically annihilating), meaning that the high-

frequency modes are quickly eliminated. For flexibly controlling the amount of high-fre-

quency numerical dissipation, composite methods including TR and backward interpola-

tion formula (BIF) [10–13] have been proposed, such as the ρ∞-Bathe method [10], the Kim 

method [11], and the TR-TR-BIF [12]. Among these methods, the TR-TR-BIF [12] proposed 

by the present authors has been generalized to the dynamic analysis of multibody systems 

[14] and structures under seismic response [15,16], further showing its superiority in the 

analysis of transient problems. Recently, composite methods with higher-order accuracy 

have been constructed [17–19], and they show a considerable advantage in phase accuracy 

compared with the second-order accurate composite methods.  

Some time integration methods that are unconditionally stable for linear systems, 

such as the trapezoidal rule, may be unstable when applied to nonlinear systems [20,21], 

promoting the development of energy-conserving methods based on the energy con-

straint principle [22]. Therefore, different from most time integration methods, the equi-

librium equations of motion at discrete time points cannot be satisfied for energy-conserv-

ing methods. The designs of most energy-conserving methods [23–25] are for nonlinear 

geometric systems, and energy-conserving methods can provide stable predictions for 

such types of transient problems. For dynamic systems, including nonlinear geometric 

and nonlinear damping terms, few energy-conserving methods, such as the ECM [26], 

have been constructed. The superiority of energy-conserving methods is that they can 

strictly keep energy for conservative systems, but they are not suitable for dynamic prob-

lems wherein some high-frequency information should be damped out. Additionally, the 

required modification of energy functions reduces the computational efficiency of this 

type of method.  

To simultaneously improve the efficiency and stability of time integration methods, 

structure-dependent (or model-based) methods [27–32] were developed. In 2002, Chang 

proposed an unconditionally stable single-step method (noted as Chang2002) [27] for 

pseudo-dynamic systems, in which algorithmic parameters closely depend on dynamics 

characteristics at the initial moment and the selected size of the time step. The Chang2002 

method achieves unconditional stability for linearity and stiffness softening systems. 

Based on the Chang2002 method, some more desirable structure-dependent methods [28–

32] were constructed, such as the CR [28], KR [29], and Fu–Zhang methods [32]. Taking 

into account the properties of the model and the evolution of the computed fields, the 

locally adaptive time integration methods [33,34] proposed by Soares can reduce the con-

tradiction of accuracy and efficiency. At present, this type of method has been applied in 

the analysis of wave propagation [35] and thermo-mechanical systems [36].  

The emergence of exponential methods by making use of matrix theory reduces the 

contradiction of time integration methods in accuracy, efficiency, and stability. The so-

called precise time integration method (PIM) for linear ordinarily differential equations 

(ODEs) proposed by Zhong and Williams [37] is a representative work wherein the Taylor 

series expansion is utilized to obtain the homogeneous solution, and the external excita-

tions are assumed to be piecewise linear, and their contributions are obtained with the 

convolution integral. Due to the algorithmic structure, the PIM can converge to computer 

precision for homogeneous equations, and it is conditionally stable. Following the 
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research of Zhong and Williams [37], some improved precise time integrators [38–42] 

were developed in the past decades, such as the PEC/DMn [41] and the Song method [42]. 

The PEC/DMn proposed by the present authors possesses the advantages of the PIM in 

accuracy and efficiency, and it can achieve unconditional stability and exactly controllable 

dissipation. In addition to using existing time integration methods to approximate the 

amplification matrix, Song et al. [42] constructed higher-order precise integrators for lin-

ear wave propagation problems, in which the responses of the previous time step are 

transferred by the classical Padé expansion with L-stability, and the external force vectors 

are calculated based on a least-squares fit of the polynomial functions. An important fea-

ture of the higher scheme [42] is that no direct inversion of the mass matrix is required, 

further reducing its computational costs. At present, some exponential integrators [43–46] 

for nonlinear initial value problems have been constructed. In the type of methods, the 

responses of nonlinear terms at the present moment are replaced by the ones of the previ-

ous moment [45] or are approximated by the Euler method [43,44,46]. In comparison with 

traditional methods based on dynamics equilibrium equations, numerical experiments 

validate that exponential integrators [43–46] show improvements both in accuracy and 

efficiency in solving nonlinear transient problems.  

From the above review, one can find that, in the past decades, various time integra-

tion methods have been developed for quickly, accurately, and/or stably solving transient 

problems. Among these methods, the exponential methods seem to be a superior candi-

date to fill the gap that stability, accuracy, and efficiency are hard to be simultaneously 

enhanced. Some exponential methods that are suitable both for linear and nonlinear prob-

lems have been applied in the analysis of elastodynamics [44], multibody dynamics [45], 

and so on, but these methods do not have the order of magnitude improvements in accu-

racy and/or efficiency compared with those of representative methods, such as the New-

mark method and the Runge–Kutta method. In this context, focusing on the first-order 

linear and nonlinear initial value problems [47], this paper develops a new solution strat-

egy. The combination of the generalized Padé expansion with A-stability [48], the 2m algo-

rithm, and the technology of storing incremental matrices is used in the calculation of 

responses of linear parts. The responses of nonlinear parts are approximated by the com-

bination of the Gauss–Legendre quadrature formula and the explicit Runge–Kutta 

method. The two combinations can ensure that the proposed methods can accurately and 

quickly compute the responses of transient problems. Numerical experiments validate 

that when the proposed methods have the same computation as other methods, the accu-

racy of the proposed methods is greater than or equal to three orders of magnitude. The 

theoretical analysis finds that the time integration methods can obtain higher-order accu-

racy, unconditional stability, controllable dissipation, and zero-order overshoots. There-

fore, the proposed methods are suitable both for conservative and non-conservative sys-

tems due to flexibly controllable numerical properties.  

The rest of this work is organized as follows. The procedure of the new strategy is 

presented in Section 2. The numerical properties of the present methods, including stabil-

ity, dissipation, accuracy, and overshoot characteristics, are analyzed in Section 3. Numer-

ical experiments are implemented in Section 4. Finally, the conclusions are drawn in Sec-

tion 5. 

2. Basic Idea of the New Strategy 

This paper focuses on the physically stable dynamic problems governed by the fol-

lowing first-order ordinary differential equation: 

( ) ( ) ( ) ( )0 0, ,     t t t t= + =y Hy f y y y , (1) 

where H is a matrix that includes eigenvalues with large negative real parts or with purely 

imaginary eigenvalues of large modulus [47], and the nonlinear term f is supposed to be 

a non-stiff satisfying the Lipschitz condition. If the term f only relates to time t, the 
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nonlinear Equation (1) reduces to the linear one. The discretized dynamic system (1) arises 

in many applications [37–47,49–51], such as structural dynamics [39–41], multibody dy-

namics [45], molecular dynamics [49], and so on. It is well-known that the general solution 

[47] of Equation (1) has the form of 

( ) ana anae e , d :
t t

t t

t t t t
t

 
+

 

+ = + = +
H H

y y f y A y L , (2) 

where the analytical amplification matrix Aana = eΔtH can transfer the free responses of the 

previous step, and the forced responses of the current step are computed by the analytical 

vector Lana = ∫ e∆tHf(y,τ)dτ
t+∆t

t
. For practical systems, especially for large-scale problems, 

the computations of the matrix Aana and the vector Lana are expensive. The task of this 

strategy is to quickly construct highly accurate substitutes for Aana and Lana. 

In our work, the generalized Padé approximation [48] that is regarded as the most 

accurate rational approximation of exp(∆tH) is used to approximate Aana, and the corre-

sponding numerical matrix Anum can be formulated as 

( ) ( ) ( )1

num t t t− =  A H Q H P H , (3) 

where 

( ) ( ) ( ) ( )1, ,= 1 2n n n nt t t  −  −  + Q H Q H Q H , ( ) ( ) ( ) ( )1, ,= 1 2n n n nt t t  −  −  + P H P H P H , and (4) 

( )
( )

( ) ( )
( ),

0

! !
=

! ! !

i
p

i j

p

i j i p
t t

i p j i p=

+ −
 

− +
P H H , ( ) ( )

( )

( ) ( )
( ),

0

! !
= 1

! ! !

j
p p

i j

p

j j i p
t t

j p j i p=

+ −
 − 

− +
Q H H , ( ), 0,1,2,i j = . (5) 

From Equations (3)–(5), one can observe that the generalized Padé approximations 

are the rational functions with polynomials of degree n in both the numerator and denom-

inator. The generalized Padé approximation has A-stability; in addition, for the case of 0 

≤ ρ∞ < 1, it has (2n − 1)th-order accuracy and (2n)th-order accuracy if ρ∞ = 1. To further 

improve the accuracy of Anum(∆tH) given in Equation (3), the 2m algorithm and storage of 

incremental matrix technology are used in the preparation of Anum(∆tH), which is shown 

below. Applying Equation (5) to Equation (3) can yield 

( ) ( )0 1t t = + Q H I S H , ( ) ( )0 2t t = + P H I S H , and (6) 

( ) ( ) ( ) ( )
2

1 1 2=
n

nt t t t    +  + + S H H H H , ( ) ( ) ( ) ( )
2

2 1 2=
n

nt t t t    +  + + S H H H H . (7) 

Then, the matrix Anum(∆tH) = Q̅(∆tH)−1P̅(∆tH) that is equivalent to Q̅(∆tH)Anum(∆tH) 

= P̅(∆tH) can be reformulated as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

0

1 num 1 2 1

0 0 0 0 0

1

0

num 1 2 1

0 0 0 0

1
1 10 0

0 1 1 2 1

0 0

1 1 1 1
=

1 1 1
=

                  =

t t t t t

t t t t

t t t t



    



   

 


 

−

−
− −

   
+   +  +  −  →   

   

    
  + +   −    
     

  
+ +    −   

   

I S H A H I S H S H S H

A H I I S H S H S H

I I S H S H S H S H

, (8) 

where the incremental matrix relative to the identity matrix I is defined as ∆S(∆tH), as 

follows: 

( ) ( ) ( ) ( ) ( )
1

1 1 0

0 1 1 2 1

0

=t t t t t





−
− −  

   +    −   
 

S H I S H S H S H S H . (9) 

The multi-sub-step notion is used to obtain a more accurate Anum(∆tH). Here, a time 

step size ∆t is divided into N = 2m parts, leading to 
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( ) ( ) ( ) ( )num num num num

N

N N N

N

t t t t =   = A H A H A H A H . 
(10) 

With the increase of m, the incremental matrix ∆S(∆tNH) is very small compared with the 

identity matrix I, so during the calculation of Equation (10), the ∆S(∆tNH) is stored instead 

of Anum(∆tNH) to reduce rounding errors. It is well-known that 

( )( ) ( )( ) ( ) ( ) ( )= 2N N N N Nt t t t t+   +  +   +   I S I S I S S S . (11) 

For calculating the matrix Anum(∆tH), Equation (11) should be iterated m times. Then, 

the calculation in Equation (10) is equivalent to executing the following statement 

( ) ( ) ( ) ( )

( ) ( )( )
2

0

num

0

for  1:1:

     =2

end

=

m

N N N N

N

i m

t t t t

t t




=

    +    

 
 +   

 

S S S S

A H I S

. (12) 

After m times multiplication, the matrix ∆S(∆tNH) is no longer a very small matrix, 

and the above addition will have no serious numerical round-off error again. To show the 

accuracy advantage of the method of storing incremental matrix, a simple model is con-

sidered here, in which H = 1 and ∆t = 0.1. Table 1 provides absolute errors of the method 

of storing the total matrix and the method of storing the incremental matrix, and one can 

see that with the increase of m, (a) the former’s accuracy firstly increases and then contin-

uously decreases; (b) the errors of the latter trend to zero.  

Table 1. Absolute errors of the method of storing total matrix and the method of storing incremental 

matrix. 

 m = 1 m = 10 m = 100 m = 1000 

Total  0.00267091807564768 5.39597800242042 × 10−6 0.105170918075648 0.105170918075648 

increment 0.00267091807564768 5.39597790183422 × 10−6 0 0 

Considering that the multi-sub-step notion is employed in the calculation of 

Anum(∆tH) for exactly controlling the amount of numerical dissipation via ρ∞, the matrix 

Anum(∆tH) shown in Equation (3) for the case of N ≥ 1 is reformulated as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1

num 1, , 1, ,1 2 1 2 :N N N N
n n n n n n n nt t t t t t t   

−
−

 −   − 
    = −  +  −  +  =  
   

A H Q H Q H P H P H Q H P H . (13) 

Then, the incremental matrix ∆S(∆tH) in Equation (9) becomes the function of √𝜌∞
𝑁 . 

The calculation of the convolution integral Lana in Equation (2) is relatively expensive. 

Hence, in our work, the vector Lana is approximated by r-node Gauss–Legendre quadra-

ture method (r = 1, 2, …), and its expression has the form as  

( ) ( )
( )

( )num num
1

1 2

= 1 , 1
2 2 2l

r

l l t l
t

l

t t t
t w t


 

+ +
=

    
 − + +  

   
L A f y . (14) 

The explicit expression of which is known for linear systems; hence, together with 

Equations (12) and (14), the numerical results at discretized time points can be obtained. 

For nonlinear systems, the values of the state vector y at the quadrature points of t + (1 + 

ξl)∆t/2 (l = 1, 2, …, r), which are used in Equation (14), are calculated by the explicit Runge–

Kutta methods [3], as follows 

javascript:;
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( )
1

1 1

=

,     1 ,  1,2,
2

= ,

l

s

t t t l i i

i

l ls s

i t l ij j t l ij j i l

j j

t b
t

t l r

t a t a t c t



+

=

= =


+ 


 = + =

    +  + +  +    
   



 

y y k

k H y k f y k

, (15) 

where 

2 21

T

1 , 1

1

0 0

    

0s s s s

s

c a

c a a

b b

−

→
c A

b
. (16) 

For linear systems, the time integration methods of different orders (or different n) 

based on the above strategy have unconditional stability, controllable dissipation, and 

higher-order accuracy, refer to Section 3. Additionally, for the force-free case, the con-

structed methods can reach computer precision with the increase of m. 

For nonlinear systems, the time integration methods produced by the proposed strat-

egy have advantages both in accuracy and efficiency because the responses are arrived at 

by highly accurate Anum(∆tH) and Lnum(∆tH), and the Newton iteration method can be 

avoided.  

In the simulations of practical dynamics, the second-order accurate time integration 

methods, such as the central difference method (CDM) and the TR, are widely utilized. In 

addition, the fourth-stage fourth-order Runge–Kutta method is also popular. Therefore, 

in the following, second- and fourth-order accurate schemes based on the present strategy 

are formulated, and their properties are deliberately discussed in Section 3.  

2.1. Second-Order Accurate Scheme 

In this case, the generalized Padé approximation with n = 1 [48] and the second-order 

accurate Runge–Kutta method (or named modified Euler method) [3] are employed. 

Then, from Equation (5), we can read that 

( ) ( ) ( )0,1 1,1

1
= =

2
t t t  + ，P H I P H I H  (17) 

and ( ) ( ) ( ) ( )0,1 1,1

1
= =

2
t t t t −   − ，Q H I H Q H I H . (18) 

Substituting Equations (17) and (18) into Equation (4) can lead to 

( ) ( ) ( )= 1t t   + + P H I H  (19) 

and ( ) ( ) ( )= 1t t + − Q H I H . (20) 

With the comparison between Equation (6) and Equations (19) and (20), we can see 

that 

( ) ( ) ( )0 1= 1 =t t +  − S H H，  (21) 

and ( ) ( ) ( )0 2= 1 =t t   +  S H H， . (22) 

Then, applying Equations (21) and (22) to Equation (9) can yield the expression of the 

incremental matrix ∆S(∆tH) as follows 

( ) ( ) ( )( )
1

1
= 1 1t t 

−
−

 
   − + − + 
 

S H I H . (23) 
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∆S(∆tH), the highly accurate matrix Anum(∆tH), can be obtained from Equations (10)–

(13). Together with Equation (23) and the Gauss–Legendre quadrature method, the tran-

sient response can be solved for linear systems. For nonlinear systems, here we adopt the 

modified Euler method to explicitly calculate the values of nonlinear terms f(y, t) at 

Gauss–Legendre quadrature points. The tableau of the modified Euler method has the 

form as 

T

0 0 0

    1 1 0

1 2 1 2

→
c A

b
. (24) 

2.2. Fourth-Order Accurate Scheme 

In this scheme, the generalized Padé approximation with n = 2 [48] and the classical 

four-order Runge–Kutta method [3] are employed. It can be obtained from Equation (5) 

that 

( ) ( ) ( ) ( ) ( )
2

1,2 2,2

1 1 1
= =

3 2 12
t t t t t +   +  + P H I H P H I H H，  (25) 

and ( ) ( ) ( ) ( ) ( ) ( )
2 2

1,2 2,2

2 1 1 1
= =

3 6 2 12
t t t t t t −  +   −  + Q H I H H Q H I H H， . (26) 

Substituting Equations (25) and (26) into Equation (4) leads to 

( ) ( ) ( )( ) ( )
21 1

= 1 1 2
3 6

t t t     + + +  + P H I H H   (27) 

and ( ) ( ) ( )( ) ( )
21 1

= 1 2
3 6

t t t   + − +  + Q H I H H . (28) 

From this, we can read that 

( ) ( ) ( )( ) ( )
2

0 1

1 1
= 1 = 2

3 6
t t t   +  − +  + ，S H H H  (29) 

and ( ) ( ) ( )( ) ( )
2

0 2

1 1
= 1 = 1 2

3 6
t t t     +  +  + ，S H H H . (30) 

Then, inserting Equations (29) and (30) into Equation (9) yields the expression of the 

incremental matrix ∆S(∆tH) of the fourth-order scheme, as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1
1 1

11 1 1 1 1
= 1 2 2 1 1

3 6 3 6 6
t t t t t    

−
− −

−

    

       
  + + − + +   − + +  + + −       

       

S H I I H H I H I H . (31) 

One can find that, for the case of ρ∞ = 1, Equation (31) turns into 

( ) ( ) ( ) ( )

1
1 1

11 1
=2 2

6 6
t t t t

−
− −

−     
  + − +   − +     

     

S H I I H H I H , (32) 

and for the case of ρ∞ = 0, Equation (31) becomes 

( ) ( ) ( ) ( ) ( )

1
1 1

12 1 2 1 1
=

3 6 3 6 6
t t t t t

−
− −

−       
  + − +   − +  −       

       

S H I I H H I H I H . (33) 

It can be concluded from Equations (31)–(33) that the computations of the fourth-

order scheme with ρ∞ = 1 are the lowest. The classical fourth-order Runge–Kutta method 

[3] is utilized in the present scheme to compute nonlinear function f(y, t) at Gauss–Legen-

dre quadrature points to avoid the loss-of-accuracy order and the tableau of the Runge–

Kutta method is 
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T

0

1 2 1 2

1 2 0 1 2    

1 0 0 1

1 6 1 3 1 3 1 6

→
c A

b
. (34) 

3. Numerical Properties Analysis 

The basic idea of the proposed strategy has been described in the last section, and 

two schemes are formulated, which are second-order accurate and fourth-order accurate. 

In this section, the spectral characteristics, convergence rates, and overshoot characteris-

tics for both undamped and damped systems are investigated. Additionally, the critical 

value of m is noted as mcr, and ensures that the constructed matrix Anum(∆tH) can be calcu-

lated with up to computer precision, which is also discussed below.  

Spectral analysis has been widely employed in the evaluation of the stability, accu-

racy, and dissipation characteristics of time integration methods. In spectral analysis, ow-

ing to the mode superposition principle, it is common and enough to consider a single 

degree-of-freedom equation [1] 

( )22x x x f t + + = , (35) 

where ξ is the damping ratio, and ω is the natural frequency. The equivalent first-order 

differential equation for the free-force case [52] has the following form as 

2

0 1
,      

2

x

x 

   
= =   

− −   
y y y , (36) 

from which we can find that 

2

0 1

2 

 
=  

− − 
H . (37) 

Applying Equations (3)–(5) to Equation (36) generates 

( ) ( ) ( )1

num:
t t t t

t t t t

x x x
t t t

x x x

+ −

+

     
=   =      

     
Q H P H A H . (38) 

The characteristic polynomial [1] of the transfer matrix Anum is 

2

1 2 0A A − + = , (39) 

where A1 = tr(Anum) and A2 = det(Anum), and the two eigenvalues can be written as the form 

of λ1,2 = a ± ib, in which i = √-1. The definition of the spectral radius [1] is 

 1 2= max  ， , (40) 

which can be used to analyze the stability and dissipation characteristics of time integra-

tion methods. Numerical damping ratio 𝜉̅ [1] and period elongation (PE) [1] can evaluate 

the amplitude and phase accuracy of time integration methods in the low-frequency 

range, and their definitions are 

( )ln
=

2





−  and PE 1




= − , (41) 

where τ = ω∆t and 𝜏̅ = arctan(b/a). In the following, the above theory given in Equations 

(35)–(41) is used to analyze the fundamental numerical properties of the two schemes pro-

vided in Section 2. In this work, the time integration methods based on the proposed strat-

egy are named Accurate-Efficient-Conservative/Dissipative-Method-n (AEC/DMn), in 
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which n stands for polynomials of degree in the numerator or denominator of the gener-

alized Padé approximation. The non-dissipative AECMn (ρ∞ = 1) can keep all information 

of a dynamic system, while the dissipative AEDMn (0 ≤ ρ∞ < 1) can filter out the high-

frequency modes. 

3.1. Stability, Dissipation, and Accuracy of the Second-Order Scheme 

3.1.1. Spectral Characteristics 

The spectral radius of AEC/DM1 versus τ for the undamped case (ξ = 0) is plotted in 

Figure 1, in which one can see that (a) for linear systems, the AEC/DM1 is unconditionally 

stable, satisfying 0 ≤ ρ∞ ≤ 1, and the amount of its high-frequency dissipation can be exactly 

controlled via ρ∞. (b) Additionally, with the increase of m, the low-frequency range, where 

the spectral radius trends to 1, becomes wider and preserves more low-frequency modes.  
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Figure 1. Spectral radius of the AEC/DM1 versus τ for the undamped case: (a) AEDM1, ρ∞ = 0; (b) 

AEDM1, ρ∞ = 0.3; (c) AEDM1, ρ∞ = 0.7; and (d) AECM1, ρ∞ = 1. 

The AEDM1 (ρ∞ = 0) and AECM1 (ρ∞ = 1), which are the representative schemes, are 

considered below for analyzing the amplitude and phase accuracy of the present scheme. 

Amplitude and period errors of the AEDM1 (ρ∞ = 0) and AECM1 (ρ∞ = 1) versus τ for the 

undamped case are shown in Figure 2 and Figure 3, respectively, in which it can be seen 

that (a) with the increase in m, both the amplitude and period errors can be simultaneously 

decreased; (b) for the same m, the non-dissipative scheme and the dissipative schemes 

almost have the same phase accuracy, implying that the numerical dissipation mainly af-

fects the amplitude accuracy of the AEC/DM1.  

The spectral radii ρ and absolute values of (ρ-ρexact) of the AEC/DM1 for the damped 

case (ξ = 0.5) are shown in Figures 4–6, in which ρexact = exp(−ξτ) [52]. It follows that: (a) 

With the increase of m, the numerical spectral radius approaches the analytical one; (b) 

Among the low-frequency range, the accuracy of the AECM1 is higher than that of the 

AEDM1; (c) For smaller m, because the AECM1 cannot provide numerical dissipation, 

their spectral radii do not agree well with analytical one in the high-frequency range (τ > 

10).  
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Figure 2. Numerical damping ratio and period elongation of the AEDM1 (ρ∞ = 0) versus τ for the 

undamped case. 

 

Figure 3. Period elongation of the AECM1 (ρ∞ = 1) versus τ for the undamped case. 
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Figure 4. Spectral radius of the AEDM1 (ρ∞ = 0) versus τ for the damped case (ξ = 0.5). 
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Figure 5. Spectral radius of the AEDM1 (ρ∞ = 0.5) versus τ for the damped case (ξ = 0.5). 
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Figure 6. Spectral radius of the AECM1 versus τ for the damped case (ξ = 0.5). 

3.1.2. Rounding Errors 

As well known, the accuracy of numerical results depends on the truncation error, 

which can be reduced by decreasing step size or increasing m. However, when m is large 

enough, all significant digits of the incremental matrix reserved by the computer are com-

pletely accurate. At this time, the truncation error does not exist, and the rounding error 

of the computer dominates, where further increasing m cannot further improve accuracy. 

That is to say, there exists a critical value of m, denoted as mcr. When m < mcr, the truncation 

error dominates, and increasing m can improve accuracy, but when m ≥ mcr, the rounding 

error dominates, and increasing m cannot improve accuracy further. From the phase ac-

curacy analysis shown in Figures 2-3, one can find that the value of ρ∞ has a slight influ-

ence on the phase accuracy of the proposed methods; therefore, we only determine mcr for 

the AECM1.  

The transfer matrix of the AEC/DM1 has the form as 

( ) 11 12

num

21 22

=
A A

t
A A

 
  

 
A H , (42) 

which elements for the case of ρ∞ = 1 have the forms as 
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2 2 3 3 4 4 2 4 4 5 5 3 5 5

num 11 =1
2 2 8 2 4 2

N N N N N Nt t t t t t
A

              
− + + − − +， , (43) 

3 2 4 3 5 4 2 5 4

2 2 3 2 3 4 3 4 5 4

num 12

3
=

4 2 16 4

N N N N

N N N N N

t t t t
A t t t t t

     
       

   
 −  − +  + −  + − + ， , (44) 

2 2 2 2 2 2 3 3 3 3 3 4 4 2 4 4 4 4 4

num 21

1 1 1 3
= 1

4 2 16 4
N N N N N N N N NA t t t t t t t t t              

 
−  −  −  +  +  −  +  −  +  

 
， ,  (45) 

and 

2 2 4 4

2 2 2 3 3 3 3 3

num 22

2 4 4 5 5

4 4 4 3 5 5 5 5 5

=1 2 2 2
2 8

3 3
             2 2 2

2 8

N N

N N N N

N N

N N N

t t
A t t t t

t t
t t t

 
       

   
     

 
−  − +  +  −  +

 
− +  − +  − 

，

. (46) 

Then, the corresponding elements of the incremental matrix are 

num 11 num 11= 1S A −， ， ,

 
(47) 

num 12 num 12S A=， ， , (48) 

num 21 num 21S A=， ， ,  (49) 

and num 22 num 22= 1S A −， ， . (50) 

The analytical sub-step transfer matrix based on Taylor series expansion has the same 

form as that of the numerical one shown in Equation (42), but its elements turn into 

2 2 3 3 4 4 2 4 4 5 5 3 5 5

ana,11

6 6 2 6 6 4 6 6 7 7 3 7 7 5 7 7 8 8

1
2 3 24 6 30 15

2 2
            

720 60 45 840 315 315 40320

N N N N N N

N N N N N N N

t t t t t t
A

t t t t t t t

         

           

     
= − + + − − + −

      
+ − + − + + −

, (51) 

2 2 2 2 2 3 3 3 3 3 4 4 2 4 4 4 4 4

ana,12

5 5 3 5 5 5 5 5 6 6 2 6 6 4 6 6 6 6 6

1 2 1 1 1 1 2
1

6 3 6 3 120 10 15

1 2 2 1 1 1 4

120 45 45 5040 210 63 315

N N N N N N N N

N

N N N N N N N

t t t t t t t t

A t

t t t t t t t

             

            

 
−  −  +  +  −  +  −  +  − 

 = 
 

 +  −  −  +  −  +  − 
 

, (52) 

2 2 2 2 2 3 3 3 3 3 4 4 2 4 4 4 4 4

2

ana,21

5 5 3 5 5 5 5 5 6 6 2 6 6 4 6 6 6 6 6

1 2 1 1 1 1 2
1

6 3 6 3 120 10 15

1 2 2 1 1 1 4

120 45 45 5040 210 63 315

N N N N N N N N

N

N N N N N N N

t t t t t t t t

A t

t t t t t t t

             



            

 
−  −  +  +  −  +  −  +  − 

 = −
 

 +  −  −  +  −  +  − 
 

, (53) 

and 

2 2 3 3 3 3 3 4 4 2 4 4

2 2 2

ana,22

4 4 4 5 5 3 5 5 5 5 5 6 6 2 6 6 4 6 6 6 6 6

2 4
1 2 2

2 3 3 24 2

2 4 4 4

3 20 15 15 720 30 9 45

            

N N N N N

N N

N N N N N N N N

t t t t t
A t t

t t t t t t t t

       
   

              

    
= −  − +  + − + − +

       
− + − − + − + + . 

(54) 

The undamped case (ξ = 0) is investigated first. By comparing Equations (43)–(46) 

with Equations (51)–(54), we have the relative sizes between four truncation terms and 

four main terms in S(∆tN) as 
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( )
( )

( )
( )

( )
( )

2 2 2 2 2 2
truncation num,11 ana,11

2 2

main num,11

3 2 3 2 2 2
truncation num,12 ana,12

main num,12

3 4 3 4 2
truncation num,21 ana,21

2

main num,21

8 24

62

6 4

12

6 4

N N N

N

N N N

N

N N N

N

A A t t t

tS

A A t t t

tS

A A t t t

tS

   



   



  



−  − 
= =



−  − 
= =



−  − 
= =



( )
( )

2

2 2 2 2 2 2
truncation num,22 ana,22

2 2

main num,22

12

8 24

62

N N N

N

A A t t t

tS



   
















−  − 
= = 

. (55) 

Then, the truncation errors can be eliminated if 

2 2 2 2 2 2 2 2 2 2

16

2
max , , , = =10

6 12 12 6 6 2

N N N N

m

t t t t t    
  −

      
 

  
， . (56) 

From this, the critical value of m for the undamped case can be obtained as 

( )
( )

2 2

16

cr

log 6
=10

2log 2

t
m

 
 −


= ， . (57) 

In the following, the performances of the AEC/DM1 in dealing with rounding errors 

are discussed. The undamped case of Equation (35) is considered first, in which ξ = 0, ω = 

π, x0 = 1, and �̇�0 = 1; ∆t = 1 and ∆tN = 1/N are used in the AEC/DM1 and TR, respectively. 

The absolute errors in displacement, velocity, and acceleration of the AECM1 and TR are 

drawn in Figure 7, and one can see that: (a) When m > mcr = 27 is achieved from Equation 

(57), the absolute errors of the AECM1 trends with computer precision; (b) With the in-

crease of m, the accuracy of TR increases for the case of m < 20, and then its accuracy begins 

to decline when m > 20 due to the rounding errors. Figure 8 plots the relative errors of the 

two methods for the damped case, in which ξ = 0.5, ω = 2π, x0 = 1, and �̇�0 = 0, and it follows 

that the accuracy of the AECM1 has no considerable variation when m > mcr = 27. There-

fore, one can conclude that the selection of mcr can only consider the undamped case. The 

mcr corresponding to different ω∆t is given in Table 2, in which one can find that with the 

increase of ω∆t, the mcr becomes larger. 
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Figure 7. Relative errors in displacement, velocity, and acceleration of the AECM1 for the case of ξ 

= 0 and f(t) = 0. 
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Figure 8. Relative errors in displacement, velocity, and acceleration of the AECM1 for the case of ξ 

= 0.5 and f(t) = 0. 

Table 2. The critical value of m of the AECM1 for different ω∆t. 

ω∆t 0.01 0.1 1 10 20 50 100 1000 10,000 

mcr  19 22 26 29 30 31 32 36 39 

At last, the selections of Gauss–Legendre points are discussed below. The standard 

SDOF test equation given in Equation (35) is considered here, and the ξ = 2/√5, ω = √5, x0 

= 57/65, �̇�0 = 2/65, and f(t) = sin(2t) are used. The absolute errors of the AECM1 and the TR 

are compared in Figure 9, in which one can see that: (a) The AECM1 has the same conver-

gence rates with the second-order-accurate TR before m < 22; (b) Due to the rounding er-

rors, the accuracy of the TR begins to decrease after m ≥ 23; (c) The accuracy of the AECM1 

trends to constants with the decrease in time-step size, and the accuracy of the AECM1 

with four Gauss–Legendre nodes is close to computer precision after m > mcr = 23 is 

achieved from Equation (57). Therefore, four Gauss–Legendre nodes are suggested for the 

AEC/DM1. 
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Figure 9. Relative errors in displacement, velocity, and acceleration of the AECM1 for the case of ξ 

= 2/√5) and f(t) = sin(2t) (r represents number of Gauss–Legendre nodes). 

3.2. Stability, Dissipation, and Accuracy of the Fourth-Order Scheme 

3.2.1. Spectral Characteristics 

Figure 10 plots the spectral radius of AEC/DM2 versus τ for the undamped case, in 

which one can see that: (a) Compared with the second-order AEC/DM1, the range wherein 

spectral radius trending to one can rapidly widen with the increase of m (or increasing 

accuracy order can keep more low-frequency information); (b) Such as in the AEC/DM1, 

the amount of numerical dissipation of the AEC/DM2 can be exactly adjusted by ρ∞. 
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Figure 10. Spectral radius of the AEC/DM2 versus τ for the undamped case: (a) AEDM2, ρ∞ = 0; (b) 

AEDM2, ρ∞ = 0.3; (c) AEDM2, ρ∞ = 0.7; and (d) AECM2, ρ∞ = 1. 

Amplitude and period accuracy of the AEDM2 (ρ∞ = 0) and AECM2 versus τ for the 

undamped case are shown in Figure 11 and Figure 12, respectively. It can be seen that: (a) 

With the increase in m, the amplitude and period errors can be simultaneously decreased; 

(b) From the comparison between Figures 2 and 11, one can find that the accuracy, includ-

ing amplitude and phase of the AEDM2, is far higher than that of the AEDM1 (ρ∞ = 0); (c) 

One can observe by comparing Figures 3 and 12 that the AECM2 has a considerable phase 

advantage compared with the AECM1; (d) For the same m, the phase accuracy of the non-

dissipative scheme and the dissipative schemes are nearly the same, implying that m 

mainly affect the amplitude accuracy of the AEC/DM2. 

 

Figure 11. Numerical damping ratio and period elongation of the AEC/DM2 (ρ∞ = 0) versus τ for the 

undamped case. 
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Figure 12. Period elongation of the AEC/DM2 (ρ∞ = 1) versus τ for the undamped case. 

The spectral radii of the AEC/DM2 for the damped case are discussed here, and from 

Figures 13–15, the conclusions for the AEC/DM1 hold for the AEC/DM2. However, with 

the same m, the absolute errors of the AEC/DM2 are smaller than those of AEC/DM1 for 

the damped case.  

 

Figure 13. Spectral radius of the AEC/DM2 (ρ∞ = 0) versus τ for the damped case. 

 

Figure 14. Spectral radius of the AEC/DM2 (ρ∞ = 0.5) versus τ for the damped case. 
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Figure 15. Spectral radius of the AEC/DM2 (ρ∞ = 1) versus τ for the damped case. 

3.2.2. Rounding Errors 

It can be found from Figures 11 and 12 that, for the AEC/DM2, the effect of numerical 

dissipation on phase accuracy can be omitted. Thus, in the following, only the critical m 

of the AECM2 is investigated. The elements of the numerical transfer matrix of the 

AECM2 have the forms as 

2 2 3 3 4 4 2 4 4 5 5 3 5 5

num 11

7 7 3 7 7 5 7 7 8 8

=1
2 3 24 6 36 18

             
288 54 54 3456

N N N N N N

N N N N

t t t t t t
A

t t t t

         

      

     
− + + − − + −

   
+ − − −

，

, (58) 

2 2 2 2 2 3 3 3 3 3 4 4 2 4 4

num 12

4 4 4 6 6 2 6 6 4 6 6 6 6 6 7 7

1 2 1 1 1 1
1

6 3 6 3 144 12
=

1 1 1 5 1 1

9 1728 72 108 27 432

N N N N N N N

N

N N N N N N

t t t t t t t

A t

t t t t t t

           

          

 
−  −  +  +  −  +  −  + 

 
 

 +  −  +  −  −  
 

，
, (59) 

2 2 2 2 2 3 3 3 3 3 4 4 2 4 4

2

num 21

4 4 4 6 6 2 6 6 4 6 6 6 6 6 7 7

1 2 1 1 1 1
1

6 3 6 3 144 12
=

1 1 1 5 1 1

9 1728 72 108 27 432

N N N N N N N

N

N N N N N N

t t t t t t t

A t

t t t t t t

           



          

 
−  −  +  +  −  +  −  + 

 − 
 

 +  −  +  −  −  
 

，
, and (60) 

2 2 3 3 3 3 3 4 4 2 4 4 4 4 4 5 5

2 2 2

num 22

3 5 5 5 5 5 7 7 3 7 7 5 7 7 7 7 7 8 8

2 4 2
=1 2 2

2 3 3 24 2 3 24

2 2 5 2
              

9 9 216 108 9 27 3456

            

N N N N N N N

N N

N N N N N N N

t t t t t t t
A t t

t t t t t t t

           
   

            

      
−  − +  + − + − + − +

      
− − + − + −

，

  

. 
(61) 

It can be concluded from Section 3.1 that the physical damping has slight effects on 

the values of mcr; thus, only the undamped case (ξ = 0) is considered for the present 

scheme. By comparing Equation (58)–(61) with Equation (51)–(54), we have the relative 

sizes between four truncation terms and four main terms in S(∆tN) by 
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. (62) 

Then, the truncation error can be eliminated if 

4 4 4 4 4 4 4 4 4 4

16

4
max , , , = =10

360 720 720 360 360 2

N N N N

m

t t t t t    
  −

      
 

  
， . (63) 

From this, the critical value of m can be solved as 

( )
( )

4 4

cr

log 360

4log 2

t
m

 
= . (64) 

In the following, the performances of the AECM2 in dealing with rounding errors are 

discussed. The undamped case is firstly considered, in which ξ = 0, ω = π, x0 = 1, and �̇�0 = 

1. The absolute errors in displacement, velocity, and acceleration of the AECM2 and the 

Fox–Goodwin method are drawn in Figure 16, in which ∆t = 1 and ∆tN = 1/N are used in 

the AEC/DM2 and Fox–Goodwin method, respectively. The well-known Fox–Goodwin 

method is fourth-order accurate for the undamped system, whereas it is third-order accu-

rate for the damped case. One can see from Figure 16 that the AECM2 and the Fox–Good-

win method have the same slope before m < 13, meaning that the AECM2 is strictly fourth-

order accurate. Additionally, one can find that: (a) When m > mcr = 13, the absolute errors 

of the AECM2 trend to constants; (b) With the increase of m, the accuracy of the Fox–

Goodwin method increases when m < 13, and then its accuracy begins to decline when m 

≥ 13. 
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Figure 16. Relative errors in displacement, velocity, and acceleration of the AECM2 for the case of ξ 

= 0 and f(t) = 0. 

Figure 17 plots the absolute errors of the two methods for the damped case, in which 

ξ = 0.5, ω = 2π, x0 = 1, and �̇�0 = 0. One can see from Figure 17 that the AECM2 is fourth-

order accurate, but the Fox–Goodwin method turns out to be third-order accurate due to 
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the presence of physical damping. In addition, it follows that the accuracy of the AECM2 

has no observable variation when m > mcr = 13; thus, mcr given in Equation (64) is suitable 

for the analysis of damped dynamic systems. The critical values of m of the AECM2 are 

provided in Table 3, wherein one can find that compared with the second-order AECM1, 

the AECM2 has a smaller mcr for the same ω∆t. As shown in Figure 18, when ω∆t < 1, the 

mcr of the AECM2 is about 1/2~1/4 that of the AECM1, implying that the AECM2 enjoys 

an advantage in efficiency when applied to dynamic systems wherein the low-frequency 

modes dominate. 
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Figure 17. Relative errors in displacement, velocity, and acceleration of the AECM2 for the case of ξ 

= 0.5 and f(t) = 0. 

Table 3. The critical value of m of the AECM2 for different ω∆t. 
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Figure 18. Critical values of m of the AECM1 and AECM2. 

At last, the selection of the Gauss–Legendre nodes is discussed here. The standard 

SDOF test equation (35) is considered again, wherein ξ = 2/√5, ω = √5, x0 = 57/65, �̇�0 = 

2/65, and f(t) = sin(2t) are adopted. The absolute errors of the AECM2 and the Fox–Good-

win method are compared in Figure 19. It can be seen that: (a) The AECM2 is fourth-order 

accurate for the dynamic systems including external excitation; (b) Due to the rounding 

errors, the accuracy of the Fox–Goodwin method begins to decrease after m > 24; (c) The 

accuracy of the AECM2 trend to constants with the decrease in time-step size, and to-

gether with four Gauss–Legendre nodes, the accuracy of AECM2 is close to computer 
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precision after m > mcr = 10 is achieved from Equation (64). Then, four Gauss–Legendre 

nodes are employed in the AEC/DM2. 
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Figure 19. Relative errors in displacement, velocity, and acceleration of the AECM2 for the case of ξ 

= 2/√5 and f(t) = sin(2t) (r represents number of Gauss–Legendre nodes). 

3.3. Overshoot Characteristics 

The overshooting phenomenon may occur in the first several time steps. For a con-

vergent method, there is no overshoot as τ→0, so only the case of τ→∞ needs to be con-

sidered. The analysis of overshooting should take into account the effect of physical 

damping. With physical damping, first-order overshooting components enter into several 

well-known time integration methods [53], which were previously thought to exhibit 

zero-order overshooting. The recursive schemes at the first step of the AEC/DM1 and 

AEC/DM2 are the same for the case of τ→∞, which have the forms of 

t t tx x+  −  (65) 

and t t ttx tx+    . (66) 

Through the observation of Equations (65) and (66), one can find that the AEC/DM1 

and AEC/DM2 are both zero-order overshoots. The SDOF system given in Equation (35) 

with x0 = 1 and �̇�0 = 0 is considered for testing overshooting behavior. Figures 20 and 21 

draw the displacement and velocity of the AEC/DM1 and the AEC/DM2, respectively, at 

the first step versus ∆t/T, and numerical results validate that our methods have no over-

shoots both in displacement and velocity. 
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Figure 20. Displacement and velocity at the end of the first time step versus Δt/T of the AEC/DM1. 
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Figure 21. Displacement and velocity at the end of the first time step versus Δt/T of the AEC/DM2. 

4. Numerical Experiments 

The theoretical analysis presented in Section 3 has shown that the time integrators, 

including the AEC/DM1 and the AEC/DM2 based on the proposed strategy, are uncondi-

tionally stable, controllably dissipative, higher-order accurate, and have zero-order over-

shoots. For linear systems, including the undamped and damped cases, the newly con-

structed time integrators can converge to computer precision with the increase of m. In 

this section, some representative linear and nonlinear dynamic systems are simulated to 

validate the advantages of the proposed methods in stability, accuracy, efficiency, and 

dissipation compared with some widely-used time integration methods. 

4.1. Linear Systems 

Two linear numerical experiments are conducted here to validate the conclusions 

given in Section 3, which can compare the accuracy and efficiency of the proposed meth-

ods and the well-known implicit methods, including the TR and Fox–Goodwin methods. 

4.1.1. Stiff System 

A subclass of the initial value problems [54] involving rapidly decaying transient so-

lutions might arise in a wide variety of engineering applications, such as problems in 

chemical kinetics, the study of spring and damping systems, and the analysis of control 

systems. This type of problem is known as a stiff problem. Thus, to test the accuracy and 

efficiency of the proposed methods in dealing with stiff systems, the following mathemat-

ical model is considered as 

1 1

2 2

0 1

10000 10001

y y

y y

    
=    

− −    
. (67) 

The initial conditions are taken to be y1(0) = 5, y2(0) = −5, and the theoretical solutions 

are 

( ) ( )1 25e ,   5et ty t y t− −= = − . (68) 

From the governing equations, the natural frequency ω = 100 and numerical damping 

ratio ξ = 50.0050. In this example, the time step sizes of these compared methods are 
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assumed to be: ∆t(AECM1) = 0.1, ∆t(AECM2) = 0.2, ∆t(TR) = 0.1, 0.01, and ∆t(Fox–Good-

win) = 0.1, 0.01.  

The results in y1 of all methods are shown in Figure 22, in which one can find that: (a) 

Among these single-step methods, the higher-order accurate Fox–Goodwin method is un-

stable for the larger time step size ∆t = 0.1 due to intrinsic conditional stability, while other 

methods are convergent; (b) With the increase of m, the proposed methods’ accuracy can 

be noticeably improved; (c) The AECM1 (m > 25) and AECM2 (m > 15) converge to com-

puter precision 10−16, validating that the mcr given in Section 3 is reliable; (d) With the de-

crease of step size, the TR and Fox–Goodwin methods can both obtain higher accuracy, 

but their accuracy is far lower than that of the proposed methods. 
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Figure 22. Displacement at the first node and absolute errors versus time: (a) AECM1; (b) AECM2; 

(c) TR; and (d) Fox–Goodwin. 

The results in y2 of these methods are drawn in Figure 23, and some new phenomena 

can be found. With physical damping, the first-order overshooting components enter into 

TR, meaning that they induce obvious oscillations for the larger time step size. Since the 

proposed methods have no overshoots both for undamped and damped systems, they can 

accurately simulate dynamic problems, including stiff modes. 

Additionally, the CPUs of these methods are compared in Table 4. For the proposed 

methods, the CPU contains ‘Preparations’ and ‘Recursions’ in which ‘Preparations’ is the 

CPU time for the calculation of Anum(ΔtH), and ‘Recursions’ represents recursive compu-

tations of all time steps. Considering that the DOFs of this example are only two, we only 

discuss the effect of the value of m and the size of the time step on computational costs. 

From Table 3, we can find that: (a) The value of m has little effect on the computations for 

the proposed methods, meaning that the proposed methods’ can accuracy be enhanced 

without efficiency loss; (b) With the decrease of time step size, the accuracy of the TR and 

Fox–Goodwin methods can be slowly improved, and they need considerable computa-

tional costs. 

It can be concluded from this example that: (a) Compared with the fourth-order Fox–

Goodwin method with conditional stability, the higher-order accurate methods based on 

our strategy enjoy stability advantage; (b) The proposed methods can obtain computer 
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precision without the extra cost of computations, but the methods based on the difference 

concept needs heavy burdens to obtain slightly accuracy improvement. 
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Figure 23. Displacement at the second node and absolute errors versus time: (a) AECM1; (b) AECM2; 

(c) TR; and (d) Fox–Goodwin. 

Table 4. CPUs of the AECM1, AECM2, TR, and Fox–Goodwin in the interval [0, 500]s. 

 
AECM1 AECM2 

m = 5 m = 10 m = 20 m = 25 m = 5 m = 10 m = 20 m = 25 

Preparation 
5.7800 × 

10−5 

6.2700 × 

10−5 

6.3500 × 

10−5 

6.6700 × 

10−5    
0.0016 0.0017 0.0018 0.0016 

Recursion 0.0177 0.0135 0.0139 0.0138 0.0144 0.0125 0.0125 0.0109 

Total 0.0178  0.0136  0.0140  0.0139  0.0160  0.0142  0.0143  0.0125  

 TR Fox–Goodwin 

 ∆t = 0.1 ∆t = 0.01 ∆t = 0.001  ∆t = 0.1 ∆t = 0.01 ∆t = 0.001  

Preparation - - -  - - -  

Recursion 0.0100 0.1251 1.8498  0.0122 0.1063 1.3964  

Total 0.0100 0.1251 1.8498  0.0122 0.1063 1.3964  

4.1.2. Cantilever Plane Truss 

The second example forces the accuracy and efficiency performance of the AECM1 

and AECM2 in solving linear systems under external excitations. Figure 24 shows the ma-

terial and geometry properties of the cantilever plane truss [55], which contains 25 re-

peated structures. In the vertical direction of nodes 42 and 52, two harmonic loads are 

applied, which have the forms of 

( ) ( )1 2sin 1000 MNf t t= −  (69) 

and ( ) ( )2 2sin 10000 MNf t t= − . (70) 

The structure has 52 nodes, 226 elements, and 100 DOFs. The modulus of elasticity, 

density, and sectional areas are E = 2.5 × 1011 N/m2, ρ = 1.78 × 103 kg/m3, and A = 1.96 × 10−3 

m2, respectively. In this example, ∆t = 10−5 is used in the proposed methods, and ∆t = 10−5, 

∆t = 10−6, and ∆t = 10−7 are employed in the TR and Fox–Goodwin methods. The maximum 
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natural frequency of the cantilever plane truss is 24,378, and then the mcr for the AECM1 

and the AECM2 can be determined from Section 3, which are 22 and 8, respectively. 

 

Figure 24. Cantilever plane truss. 

The numerical results of these methods are compared in Figures 25–27, from which 

one can conclude that: (a) The accuracy of the AECM1 no longer improves after m > 20, 

and if m > 5, the accuracy of the AECM2 is the same, validating that the reliability of the-

oretical analysis about mcr; (b) The accuracy improvement of the proposed methods can 

be achieved by increasing m, while other methods can increase accuracy by decreasing the 

step size; (c) Among them, the second-order accuracy TR exhibits observable numerical 

errors in the simulations of velocities and accelerations. 
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Figure 25. Displacement of node 52 in vertical direction and absolute errors: (a) AECM1; (b) AECM2; 

(c) TR; and (d) Fox–Goodwin. 
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Figure 26. Velocity of node 52 in a vertical direction and absolute errors: (a) AECM1; (b) AECM2; (c) 

TR; and (d) Fox–Goodwin. 
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Figure 27. Acceleration of node 52 in a vertical direction and absolute errors: (a) AECM1; (b) AECM2; 

(c) TR; and (d) Fox–Goodwin. 

Additionally, the CPUs of these methods are compared in Table 5. It can be seen that: 

(a) With the increase of m, the proposed methods almost do not produce extra computa-

tions; (b) The computational efficiency of the TR and Fox–Goodwin methods dramatically 

drop with the decrease of the time step size; (c) The TR and Fox–Goodwin methods with 

∆t = 10−6 have the same costs with those of the proposed methods, but our methods per-

form with higher accuracy. 

Table 5. CPUs of the AECM1, AECM2, TR, and Fox–Goodwin in the interval [0, 0.1]s. 

 
AECM1 AECM2 

m = 5 m = 10 m = 20 m = 25 m = 5 m = 10 m = 20 m = 25 

Preparation 0.0183 0.0254 0.0353 0.0385 0.0209 0.0286 0.0383 0.0459 

Recursion 2.2373 2.4461 2.8605 2.8807 2.7853 2.6430 2.9451 2.9320 

Total 2.2556 2.4715 2.8958 2.9192 2.8062 2.6716 2.9834 2.9779 

 TR Fox–Goodwin 

 ∆t = 10−5 ∆t = 10−6 ∆t = 10−7  ∆t = 10−5 ∆t = 10−6 ∆t = 10−7  

Preparation - - -  - - -  

Recursion 0.1629 1.8562 26.8233  0.1306 1.8313 21.9914  

Total 0.1629 1.8562 26.8233  0.1306 1.8313 21.9914  
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4.2. Nonlinear Systems 

Some representative nonlinear numerical examples are considered in this section. As 

applied to nonlinear dynamic systems, the proposed methods do not need the Newton 

iteration method; thus, they are compared with some well-known explicit methods, in-

cluding the second-order modified Euler method and the classical fourth-order Runge–

Kutta method (noted as RK4). Additionally, some advanced multi-step methods and com-

posite methods are considered for comparison. 

4.2.1. Averaged System in Wind-Induced Oscillation 

The first nonlinear example considers an average system [43] in wind-induced oscil-

lation, and its motion of equation has the form of 

( )
1 1 2 1 2

2 2

2 1 2 1 20.5

x x x x x

x x x x x

 

 

= − − +


= − + −

, (71) 

where ζ ≥ 0 is a damping factor and λ is a detuning parameter with ζ = rcos(θ), λ = rsin(θ), 

and ζ ≥ 0, 0 ≤ θ ≤ π/2. The case of θ = π/2 is considered here to analyze the energy-conser-

vation ability of the proposed methods, and the corresponding energy function of this 

system is 

( ) ( ) ( )2 2 2 3 3 2

1 2 1 2 2 2 1 20.5 0.5sin 1 3 0.5cos 1 3E r x x x x x x x x = + − − + − . (72) 

Consider the initial conditions x1(0) = 0 and x2(0) = 1, and r = 200. To improve the 

stability of these proposed methods in solving dynamic systems, including geometric 

nonlinearity, ρ∞ = 0 is utilized. The AEDM1 and AEDM2 adopt ∆t = 1/(2r) and ∆t = 1/r, 

respectively; ∆t = 1/(8r), ∆t = 1/(15r) and ∆t = 1/(20r) are used in the modified Euler method; 

∆t = 1/(4r), ∆t = 1/(10r) and ∆t = 1/(15r) are used in the RK4 method. The relative values of 

energy errors of these methods are plotted in Figure 28, and Table 6 provides their com-

putations. One can find that: (a) With the increase of the m, the accuracy of the AEDM1 

and AEDM2 can be obviously enhanced without additional burdens; (b) The accuracy of 

the modified Euler method and the RK4 method can be improved by decreasing the size 

of time step; (c) When the computations of these methods are the roughly same, the 

AEDM2 is four orders of magnitude more accurate than the modified Euler method and 

the RK method.  

    
(a) (b) (c) (d) 

Figure 28. Energy errors of these methods versus time: (a) Euler; (b) RK4; (c) AEDM1; and (d) 

AEDM2. 

Table 6. CPUs of the AEDM1, AEDM2, Euler, and RK4 in the simulations of the interval [0, 1000]s. 

 
AEDM1   AEDM2   

m = 20 m = 25 m = 30 m = 5 m = 10 m = 15 

Preparation 0.000169 0.000140 0.000396 0.002044 0.001902 0.002686 

Recursion 4.006249 4.395022 4.950563 4.867872 5.423115 6.616388 
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Total 4.006418 4.395162 4.950959 4.869916 5.425017 6.619074 

 Euler   RK4 

 ∆t = 1/(8r) ∆t = 1/(15 r) ∆t = 1/(20 r) ∆t = 1/(4 r) ∆t = 1/(10 r) ∆t = 1/(15 r) 

Preparation - - - - - - 

Recursion 4.054805 6.3309 10.699817 7.299833 16.232617 26.404818 

Total 4.054805 6.3309 10.699817 7.299833 16.232617 26.404818 

In terms of the initial conditions, we can find the suggested m of the proposed meth-

ods as when applied to nonlinear systems. From Equation (71), one can read that the Jac-

obin matrix of this system at the initial moment has the form of 

( )

( ) ( )
2

1 2

0 1 200

0 0 200 1

x

x x

 

 

− + −  − 
= =   

+ − − −  
J . (73) 

Then, the norms of two eigenvalues can be solved, which are equal to 199.9975. In 

this example, if the time step sizes of the AEDM1 and AEDM2 are 0.0025 and 0.005, re-

spectively, then the ωΔt of them are 0.5 and 1, respectively. Therefore, the mcr can be ob-

tained from Table 2 and Table 3, and mcr = 22~26 for AEDM1 and mcr = 12 for AEDM2. 

From Figure 28, one can observe that the AEDM1 with m > 25 and the AEDM2 with m > 

10 have no observable accuracy improvements. In a way, as applied to nonlinear systems, 

the proposed methods can select appropriate values of m in terms of the initial dynamic 

characteristic of nonlinear problems.  

4.2.2. Seven-Story Shear Building with Bouc–Wen Hysteresis Model 

For analyzing the accuracy and efficiency of the AECMn in solving nonlinear systems 

with physical damping, the second nonlinear example considers a seven-story shear 

building containing the Bouc–Wen hysteresis model [56–58]. The system is idealized as a 

simple shear model with seven DOFs, as shown in Figure 29, and it is subjected to sinus-

oidal excitation. 

 

Figure 29. Seven-story shear building. 

The governing equation of the system with viscous damping and a hysteretic restor-

ing force given by the Bouc–Wen hysteresis model has the form of 

( )1 g + + + − = −Mx Cx Kx Kz Mx , (74) 

where μ is the rigidity ratio that separates the restoring force into a linear component and 

a hysteretic component; z represents the hysteretic displacement vector related to the dis-

placement x; �̈�g is the vector of ground motion acceleration which has the form of �̈�g = [0T 

sin(t)]T. In this model, the damping matrix C is defined as  

2 2

1 1 2 2 2 1 2 2 1 1

2 2 2 2

2 1 2 1

,  2 ,  2
        

   
   

− −
= + = =

− −
C M K , (75) 
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where ξ1 and ξ2 are the viscous damping ratios, which are assumed to be 3% and 5%, 

respectively, and ω1 and ω2 are the first two frequencies. The hysteretic displacement vec-

tor z is formulated as  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )

1z zn n

l z z l l l z l l

l l

z

Ax t v t x t z t z t x t z t
z t h z

t

 



−

− +
= , (76) 

where l is the number of elements; A determines the tangent stiffness; βz, γz, and nz stand 

for the hysteretic shape parameters; h(zl) stands for the pinching function; vz(t) and ηz(t) 

are the strength and stiffness degradation functions, respectively. The vz(t) and ηz(t) can 

be obtained by setting 

( ) ( ) ( ) ( )=1 =1z v zv t t t t    + +， , (77) 

where δv and δη represent the strength and stiffness degradation ratios, respectively; the 

hysteretic energy function ε(t) has the form of  

( ) ( ) ( ),
0

= d
t

z lt f t x t t  , (78) 

where fz,l(t) represents the associated internal hysteretic force variables collected in the 

hysteretic restoring force vector (1-μ)Kz(t). The pinching function h(zl) is formulated as 

( ) ( ) ( ) ( )( )( ) ( )( )
2

2

1 , 21 exp sgnl l l z u lh z t z t x t q z t = − − − , (79) 

where sgn(▪) is the signum function; qz represents a constant that sets the pinching level 

as a fraction of zmax; zu,l is the ultimate value of zl(t), which is obtained by  

( )

1

,

1
=

zn

u l

z z z

z
v  

 
  + 

. (80) 

The ζ1(t) controls the magnitude of the initial drop in slope, which is given by  

( ) ( )( )( )1 1 exps zt p t  = − − , (81) 

where pz is a constant that contributes to the rate of the initial drop in slope and ζs is the 

measure of total slip. The ζ2(t) causes the pinching region to spread, and its expression is  

( ) ( ) ( )( )2 1t t    = + + , (82) 

where ψ and δψ represent the pinching magnitude and rate, respectively; λ is a parameter 

that controls the variation rate of ζ2(t) with a change of ζ1(t). The hysteretic model is con-

trolled by the above-mentioned 13 parameters, which are {A, μ, βz, γz, nz, δv, δη, ζs, pz, qz, ψ, 

δψ, λ} wherein {μ, βz, γz, nz} determine the shape of the hysteretic model; {δv, δη} control the 

system degradation; {ζs, pz, qz, ψ, δψ, λ} control the pinching phenomenon. In this example, 

these parameters are assumed to be A = 1, μ = 0.02, βz = 100, γz = 100, nz = 1.1, δv = 0.02, δη = 

0.1, pz = 0.02, qz = 0.3, ζs = 0.9, ψ = 0.1, δψ = 0.11, and λ = 0.1. 

The displacement and velocity of the bottom story are shown in Figures 30–33, in 

which the AECM1 and AECM2 adopt ∆t = 0.004 and ∆t = 0.008, respectively; ∆t = 0.001, ∆t 

= 0.0002, and ∆t = 0.0001 are used in the modified Euler method; ∆t = 0.002, ∆t = 0.0004, 

and ∆t = 0.0002 are used in the RK4 method. The reference solution is obtained by the 

AECM2 with m = 20 using a smaller time step size. The CPUs of these methods are pro-

vided in Table 7. It can be found that: (a) With the decrease of time step size, both the 

modified Euler method and the RK4 method are closer to the reference solution, and the 

accuracy of the proposed methods can be enhanced by increasing m; (b) Under the same 

computations, the accuracy of the proposed methods is far higher than that of other meth-

ods. To further compare the accuracy of the AECM1 and AECM2, Figure 34 plots their 
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relative errors in displacement, wherein one can see that the accuracy of the AECM2 is 

higher than that of the AECM1.  
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Figure 30. Numerical results of the modified Euler method at the bottom story: (a) Numerical results 

of the bottom story in the [0, 30]s; (b) Velocity of the bottom story in the [27,29]s. 
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Figure 31. Numerical results of the RK4 method at the bottom story: (a) Numerical results of the 

bottom story in the [0, 30]s; (b) Velocity of the bottom story in the [27,29]s. 
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Figure 32. Numerical results of the AECM1 at the bottom story: (a) Numerical results of the bottom 

story in the [0, 30]s; (b) Velocity of the bottom story in the [27,29]s. 
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Figure 33. Numerical results of the AECM2 at the bottom story: (a) Numerical results of the bottom 

story in the [0, 30]s; (b) Velocity of the bottom story in the [27,29]s. 

Table 7. CPUs of the AECM1, AECM2, Euler, and RK4 in the simulations of the interval [0, 30]s. 

 
AECM1   AECM2   

m = 5 m = 10 m = 20 m = 5 m = 10 m = 20 

Preparation 7.2980 × 10−4 5.4800 × 10−4 7.3120 × 10−4 0.0027 0.0029 0.0029 

Recursion 25.7393 26.2247 27.3551 23.0725 23.5911 25.9989 

Total 25.7400 26.2252 27.3558 23.0752 23.5940 26.0018 

 Euler   RK4 

 ∆t = 0.001 ∆t = 0.0002 ∆t = 0.0001 ∆t = 0.002 ∆t = 0.0004 ∆t = 0.0002 

Preparation - - - - - - 

Recursion 16.3542 75.2145 155.6917 14.6172 58.4983 139.2688 

Total 16.3542 75.2145 155.6917 14.6172 58.4983 139.2688 

 

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

100

102

R
el

at
iv

e 
er

ro
rs

Time (s)

 m=5

 m=10

 m=20

 

0 5 10 15 20 25 30
10-10

10-8

10-6

10-4

10-2

100

102

 m=5

 m=10

 m=20

R
el

at
iv

e 
er

ro
rs

Time (s)
 

(a) (b) 

Figure 34. Relative errors of the AECM1 and AECM2 in displacement at the bottom story: (a) 

AECM1; and (b) AECM2. 

4.2.3. N-Degree-of-Freedom Mass-Spring System 

The last example considers an N-degree-of-freedom mass-spring system [59], as 

shown in Figure 35, to investigate the efficiency performances of the proposed methods 

in solving large-scale nonlinear problems. The system parameters are as follows: 

1    1, ,im i N= =  (83) 
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and 
( )

2

1

                                  1

1     2
i

i i

k i
k

k x x i N −

=
=   + −    

, (84) 

where k = 105N/m and α = -2. Additionally, all masses are subjected to the external forces 

of fi(t) = misin(t) (i = 1, …, N). In this example, two advanced time integration methods, the 

LMS2 [60] and the ρ∞-Bathe method [10], are considered for comparison. The two-step 

LMS2 is especially effective for stiff systems, and the two-sub-step ρ∞-Bathe method has 

been integrated with ADINA due to its superior properties. With zero initial conditions, 

two cases of N = 100 and 1000 are simulated.  

 

Figure 35. Mass-spring system. 

The results of the AECM1 (m = 3, Δt = 0.01s), the AECM2 (m = 3, Δt = 0.015s), the LMS2 

(Δt = 0.001s), and the ρ∞-Bathe method (Δt = 0.002s) are drawn in Figures 36 and 37, and 

their computations are provided in Tables 8 and 9. It can be concluded that under the 

same accuracy performances and compared with the LMS2 and the ρ∞-Bathe method, the 

AECM1 and the AECM2 perform considerable advantages in computational efficiency, 

especially for dynamic problems containing large degree-of-freedoms.  
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Figure 36. Displacement of the Nth mass (N = 100): (a) Simulations in the interval [0, 30]s; (b) Simu-

lations in the interval [27.44, 27.56]s. 

Table 8. CPUs of the AECM1, AECM2, LMS2, and 𝛒∞-Bathe method (N = 100, Total = 30s). 

 AECM1 AECM2 LMS2 𝛒∞-Bathe 

Preparation 0.0197 0.0184 - - 

Recursion 3.7715 2.4026 19.8547 19.5784 

Total 3.7912 2.4210 19.8547 19.5784 
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Table 9. CPUs of the AECM1, AECM2, LMS2, and 𝛒∞-Bathe method (N = 1000, Total = 30s). 

 AECM1 AECM2 LMS2 𝛒∞-Bathe 

Preparation 13.6961 22.8801 - - 

Recursion 339.4413 248.7944 820.9083 686.0195 

Total 353.1374 271.6745 820.9083 686.0195 

 

 

 

(a) (b) 

Figure 37. Displacement of the Nth mass (N = 1000): (a) Simulations in the interval [0, 30]s; (b) Sim-

ulations in the interval [25.44, 25.56]s. 

5. Conclusions 

For the analysis of dynamic systems, this work proposed a family of highly accurate 

and efficient time integration methods, named the AEC/DMn, based on the generalized 

Padé approximation, Gauss–Legendre quadrature, and explicit Runge–Kutta method, 

which was used to calculate function values at Gauss–Legendre quadrature points. The 

proposed methods can achieve higher-order accuracy, controllable dissipation, and un-

conditional stability. The 2m algorithm and the storage of an incremental matrix method 

were adopted in the proposed methods to quickly and accurately transfer the response of 

the linear responses, and the nonlinear responses are approximated by the Gauss–Legen-

dre quadrature and explicit Runge–Kutta method. For linear-free vibration problems, the 

proposed methods can converge to computer precision, and for linear-forced vibration 

problems and nonlinear problems, the proposed methods enjoy considerable advantages 

both in accuracy and efficiency compared with the widely-used time integration methods.  

The second-order method (AEC/DM1) and the fourth-order method (AEC/DM2) 

were deeply studied. Their numerical properties, including the spectral characteristics, 

the rounding errors, and the overshoot characteristics, are deliberately investigated. Ad-

ditionally, through the analysis of rounding errors, the critical values of sub-steps m that 

make numerical results converge to computer precision were found. Numerical experi-

ments validated that the two methods have obvious accuracy and efficiency advantages 

compared with some widely-used methods, and the critical values of m given in this work 

are reliable. It was concluded from the theoretical analysis and numerical experiments 

that the speed of the fourth-order AEC/DM2 in accuracy improvement is quicker than that 

of the second-order AEC/DM1. In a way, this work has provided good candidates for the 

analysis of transient problems that widely exist in structural dynamics, multibody dy-

namics, heat conduction, and so on. 
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