
Citation: Matouk, A.E.;

Abdelhameed, T.N.; Almutairi, D.K.;

Abdelkawy, M.A.; Herzallah, M.A.E.

Existence of Self-Excited and Hidden

Attractors in the Modified

Autonomous Van Der Pol-Duffing

Systems. Mathematics 2023, 11, 591.

https://doi.org/10.3390/

math11030591

Academic Editor: Jonathan

Blackledge

Received: 18 December 2022

Revised: 11 January 2023

Accepted: 18 January 2023

Published: 22 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Existence of Self-Excited and Hidden Attractors in the Modified
Autonomous Van Der Pol-Duffing Systems
A. E. Matouk 1,2,*, T. N. Abdelhameed 1,2,3, D. K. Almutairi 2 , M. A. Abdelkawy 3,4 and M. A. E. Herzallah 5,6

1 Department of Mathematics, College of Science Al-Zulfi, Majmaah University,
Al-Majmaah 11952, Saudi Arabia

2 College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia
3 Mathematics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
4 Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic

University (IMSIU), Riyadh 11564, Saudi Arabia
5 Faculty of Science, Zagazig University, Zagazig 44519, Egypt
6 Faculty of Science and Humanities, Shaqra University, Al-Dawadmi 11911, Saudi Arabia
* Correspondence: ae.mohamed@mu.edu.sa

Abstract: This study investigates the multistability phenomenon and coexisting attractors in the
modified Autonomous Van der Pol-Duffing (MAVPD) system and its fractional-order form. The ana-
lytical conditions for existence of periodic solutions in the integer-order system via Hopf bifurcation
are discussed. In addition, conditions for approximating the solutions of the fractional version to
periodic solutions are obtained via the Hopf bifurcation theory in fractional-order systems. Moreover,
the technique for hidden attractors localization in the integer-order MAVPD is provided. Therefore,
motivated by the previous discussion, the appearances of self-excited and hidden attractors are
explained in the integer- and fractional-order MAVPD systems. Phase transition of quasi-periodic
hidden attractors between the integer- and fractional-order MAVPD systems is observed. Through-
out this study, the existence of complex dynamics is also justified using some effective numerical
measures such as Lyapunov exponents, bifurcation diagrams and basin sets of attraction.

Keywords: integer-order MAVPD system; fractional-order; chaos; self-excited attractors; hidden attractors
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1. Introduction

Recently, fractional analysis (FA) has received increasing interest owing to its use-
fulness in various fields of science and technology [1]. For example, FA has potential
applications in image processing [2], heat transfer [3], food web models [4], thermoelec-
tricity models [5,6], biological models [7,8], physical models [9,10], image encryption
algorithm [11] and some models of the financial market [12].

In 2008, Matouk and Agiza introduced a new system that describes the dynamics
of the modified autonomous Van der Pol-Duffing oscillator [13], or simply the MAVPD
system. The proposed MAVPD equations are described by a system of three coupled
ordinary differential equations (ODEs) with a single cubic nonlinearity. In [13], conditions
of Hopf bifurcations and chaos synchronization were studied via the backstepping design
approach. Afterward, the MAVPD system received increasing attention from scientists
owing to its simple form, variety of rich, complex dynamics and ease of implementation in
engineering applications. For example, in [14], Fan presented a computer-assisted proof for
the existence of chaos in the MAVPD system based on the topological horseshoe theorem.
In [15], Braga et al. studied the local codimension 1, 2 and 3 bifurcations in the MAVPD
system. In [16], Wang and Li used an adaptive pulse perturbation scheme to control chaos
in the MAVPD system; they also presented a scheme of measuring the frequency of weak
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sinusoidal signal based on this system [17]. In [18], Zhao et al. studied hidden attractors
in a generalized version of the MAVPD system. In [19], El-Sayed et al. investigated the
conditions of pitchfork bifurcation in the MAVPD system based on the center manifold
theory. In [20], Cai et al. investigated the conditions of Hopf bifurcation control in the
MAVPD system. In [21], Zhou et al. investigated the conditions of Hopf bifurcation in the
MAVPD system based on calculations of the first Lyapunov coefficients. In [22], Han et al.
studied two novel delay-induced bursting patterns in the MAVPD system. In [23], Zhang
et al. investigated bursting oscillations in a modified three-dimensional version of the van
der Pol-Duffing circuit.

On the other hand, the FA of the MAVPD system has received increasing atten-
tion. In [24], Matouk investigated the local stability conditions and chaotic dynamics in a
fractional-order version of the MAVPD system. Chaos synchronization was also studied
in the fractional MAVPD system via Takagi-Sugeno fuzzy approaches and backstepping
control [25].

The problems of investigating self-excited and hidden attractors in integer and fractional-
order systems have received growing interest from authors [26–28]. This line of research
has potential applications in industry, secure communications, and chaos-based applications.
In [28], Almatroud et al. investigated the multistability and coexisting hidden chaotic attractors
in the fractional-order Matouk’s system. In fact, the problem of the phase transition of
complex dynamics between the integer-order system and its fractional counterpart is still
under development. Most of the literature on the topic asserts that integer-order chaotic
systems have fractional-order chaotic counterparts. In [29], Matouk provided an example of
hidden chaotic attractors that exist only in the fractional-order Matouk’s system when using a
specific choice of parameter values and initial conditions.

Here, we discuss the multistability and coexisting attractors in the integer- and
fractional-order MAVPD systems due to the appearances of hidden and self-excited attrac-
tors. Our novel foundations can be outlined as follows: (i) coexistence of self-excited chaotic
(or non-chaotic) attractors and periodic orbits are found in the integer-order MAVPD
system; (ii) coexistence of hidden periodic (or quasi-periodic) attractors and periodic
orbits are found in the integer-order MAVPD system; (iii) coexistence of hidden quasi-
periodic attractors and chaotic attractors are found in the integer-order MAVPD system
and (iv) coexistence of hidden quasi-periodic attractors and chaotic attractors are found
in the fractional-order MAVPD system. Moreover, the existence of self-excited attractors
in the fractional-order MAVPD is observed. For these reasons, the conditions for Hopf
bifurcation in the MAVPD systems are studied in the integer- and fractional-order cases.
Furthermore, the technique for hidden attractors localization in the integer-order MAVPD
is provided to enhance the theoretical framework in this study.

The study is divided into eight sections as follows. The introductory part is provided
in Section 1. The preliminary part is provided in Section 2. The system’s description
is explained in Section 3. Hopf bifurcation’s discussion for the integer-order MAVPD
system and its fractional counterpart is provided in Section 4. The theoretical framework
for localizing the hidden oscillation in the integer-order MAVPD system is explained in
Section 5. Numerical examples for the existence of self-excited and hidden attractors in
the integer-order MAVPD system and its fractional version are, respectively, provided in
Sections 6 and 7. The Section 8 is devoted to drawing the conclusions for this work.

2. Preliminaries

A formal definition of fractional derivative, which is widely applied in several fields
of science, was introduced by Caputo [30] as follows

C
τ Dq

t0
β(τ) =

 τ∫
t0

(τ − µ)m−q−1β(m)(µ)dµ

/Γ(m− q), τ > 0, (1)
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where m− 1 < q < m, m ∈ N, Γ(.) is the classic Gamma function and β(m)(µ) = dm β(µ)
dµm .

The stability problem of a linearized fractional-order n-dimensional system was intro-
duced by Matignon [31] as follows

q <
2
π

∣∣arg(λj)
∣∣, j = 1, . . . , n, (2)

where λj is an eigenvalue of the linearized system’s Jacobin matrix. In other words, an
equilibrium point of the fractional-order dynamical system is locally asymptotically stable
(LAS) if the Conditions (2) hold. Afterwards, further investigations of such a stability
problem were studied in [32,33].

The hidden attractors’ problem is an old topic of dynamical systems, since it arose in
the early 20th century by David Hilbert, in association with the second part of Hilbert’s
sixteenth problem for investigating hidden periodic oscillations [34]. Additionally, this
kind of study deals with the investigation of mutual disposition and the number of limit
cycles in two-dimensional polynomial systems that are modeled by ODEs [35]. A formal
definition of hidden and self-excited attractors is described as follows:

Definition 1 ([26]). A self-excited attractor is an attractor whose basin of attraction intersects with
any open neighborhood of an equilibrium point (P); however, the basin set of attraction of a hidden
attractor is not connected with any small neighborhood of P.

Thus, attractors are divided into hidden and self-excited types in dynamical systems,
especially those with no equilibria and those with unique stable P.

3. The MAVPD Systems

The integer-order MAVPD equations [13] are modeled by:

.
y1 = −δ(−γy1 − y2 + y3

1),.
y2 = y1 − ξy2 − y3,
.
y3 = ρy2,

(3)

where yi, i = 1, 2, 3 represents a system’s state variable and the system’s parameters
are δ, ρ, ξ ∈ R+ and γ ∈ R. The MAVPD system has the equilibria P1 = (0, 0, 0) and
P2,3 = (±√γ, 0,±√γ). Furthermore, the system (3) exhibits a variety of rich complex
dynamics including periodic, quasi-periodic, and chaotic behaviors. Figure 1 shows the
evidence for the existence of such rich dynamics via calculations of the model’s Lyapunov
spectrum (See Ref. [36]), fixing the parameter values at γ = 0.1, δ = 100, ρ = 200 and
varying ξ. Moreover, the related calculation of the model’s bifurcation diagram is depicted
in Figure 2.
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Figure 2. The bifurcation diagram of system (3) using γ = 0.1, δ = 100, ρ = 200 and with initial
conditions [−0.4, 0.02, −0.3]T ..

Finally, a fractional-order version of the system (3), in the Caputo sense, is also
described by

C
t Dq

0y1 = −δ(−γy1 − y2 + y3
1),

C
t Dq

0y2 = y1 − ξy2 − y3,

C
t Dq

0y3 = ρy2.

(4)

4. Discussion on Hopf Bifurcation in the MAVPD Systems

Firstly, the classic Routh–Hurwitz conditions can be utilized to show that the origin
equilibrium point of system (3) with γ < 0 is LAS iff

ξ0 =
−(ρ− δ + γ2δ2) +

√
(ρ− δ + γ2δ2)2 + 4γ2δ3

−2γδ
> 0. (5)

However, when γ > 0, the other non-origin equilibrium points P2,3 = (±√γ, 0,±√γ)
appear and become LAS iff

ξ1 =
−(ρ− δ + 4γ2δ2) +

√
(ρ− δ + 4γ2δ2)2 + 16γ2δ3

4γδ
> 0. (6)

To discuss the existence of Hopf bifurcation in system (3), we recall the following
theorems [13,19]:

Theorem 1. The MAVPD system (3) exhibits a Hopf bifurcation at P1 = (0, 0, 0) forρ > 0, δ > 0
and γ < 0 in the neighborhood of (ξ = ξ0). Furthermore, by settingψ = ξ2

0 − δ− 2γδξ0, the
bifurcation type can be classified as follows; (i) if ψ > 0, the bifurcation is supercritical. (ii) if
ψ < 0, the bifurcation is subcritical.

Theorem 2. The MAVPD system (3) exhibits a Hopf bifurcation at P2,3 = (±√γ, 0,±√γ)
forρ > 0, δ > 0 and γ > 0 in the neighborhood of (ξ = ξ1). Furthermore, (i) if η > 0, the
bifurcation is supercritical. (ii) if η < 0, the bifurcation is subcritical, where η is the left-hand side
of Equation (13) in Ref. [19].
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For q ∈ (0, 1), the fractional-order system cannot exhibit periodic solutions according
to the proof given in [37]. Hence, the theory of Hopf bifurcation in fractional-order systems
is only used to obtain an approximation to the periodic solutions. In the following, we first
consider the case of P1 whose eigenvalue equation is described as

φ(λ) = λ3 + (ξ − γδ)λ2 + (ρ− δ− ξγδ)λ− γδρ = 0. (7)

Obviously, P1 has a pair of complex conjugate eigenvalues λ1,2 = σ± iθ and one real
eigenvalue λ0 when the discriminant of φ(λ) is a negative real value. Then, we define
the function Λ(q) = qπ

2 − tan−1( θ
σ ), where σ2 + θ2 = χ, χ3 + (δ − ρ + ξγδ)χ2 + δγρ

(δγ− ξ)χ− ρ2γ2δ2 = 0. Therefore, the origin point P1 = (0, 0, 0) changes its stability near
the critical value of the fractional parameter q(1)c = 2

π sec−1(
√

χ
σ ). It is also evident that

dΛ(q)
dq

∣∣∣
q=q(1)c

= π
2 6= 0.

Finally, we consider the case of the non-origin points P2,3 = (±√γ, 0,±√γ) whose
critical value of the fractional parameter is calculated as follows

q(2)c =
2
π

sec−1(

√
χ′

σ′
),σ′2 + θ′

2
= χ′, χ′

3 − (ρ− δ + 2ξγδ)χ′
2
+ 2δγρ(2δγ + ξ)χ′ − 4ρ2γ2δ2 = 0, (8)

where σ′, θ′ are, respectively, the real and imaginary parts of the two pairs of the eigenvalues
corresponding to the non-origin points P2,3 = (±√γ, 0,±√γ).

5. Hidden Oscillation Localization

Here, we will employ the algorithm presented in [38] that can be used to localize hidden
oscillations. Firstly, we consider that the MAVPD system is written on the Lur’e form

dY
dt

= MY + Θζ(s∗Y), (9)

where Y ∈ R3, M =

δγ δ 0
1 −ξ −1
0 ρ 0

, ζ(σ) = σ3, Θ = −δ

1
0
0

, s = −

1
0
0

.

Now, let α denote the coefficient of harmonic linearization, ω0 > 0 denote the starting
frequency and the parameter ε denote a small enough positive value, then system (9) can
be written as

dY
dt

= M0Y + Θεϕ(s∗Y), (10)

where M0 =

δ(γ + α) δ 0
1 −ξ −1
0 ρ 0

, λM0
1,2 = ±iω0, λM0

3 = −d < 0, ϕ(σ) = ζ(σ)− ασ.

Then, we consider the non-singular linear transformation Y = SZ that transforms the
system (10) into

dZ
dt

= TZ + Bεϕ(U∗Z), (11)

where T =

 0 −ω0 0
ω0 0 0
0 0 −d

, B =

b1
b2
1

, U =

 1
0
−h

.

According to [38], the transfer function WT(p) of system (11) is described as

WT(p) =
h

d + p
+

ω0b2 − pb1

ω2
0 + p2

, (12)

where p is a complex variable. Moreover, according to [38], the equality of transfer functions
of Equations (10) and (11)

WT(p) = s∗(M0 − pI)−1Θ (13)
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leads to the following calculations

α =
ρ−δ−δγξ−ω2

0
ξδ , d =

δ−ρ+ξ2+ω2
0

ξ , h = δ(ρ+d2−ξd)
d2+ω2

0
,

b1 =
δ(ρ−ω2

0−ξd)
d2+ω2

0
, b2 =

δd(ρ−ω2
0)

(d2+ω2
0)ω0

.
(14)

As we know, the above-mentioned non-singular transformation Y = SZ can reduce
system (10) to the form (11) given that

T = S−1M0S, B = S−1Θ, U∗ = s∗S, (15)

where the non-singular matrix S has the following form

S =

 1 0 −h
−(γ + α) −ω0

δ
h(d+δ(γ+α))

δ
ρ
δ − ρ(γ+α)

ω0
− ρh(d+δ(γ+α))

δd

.

Then, for the sake of localization of the hidden oscillation, the following set of initial
conditions can be chosen (when ε is small enough)

Z(0) =

z1(0)
z2(0)
z3(0)

 =

a0
0
0

 (16)

for the first step of the multistep procedure. So, the relations between the initial conditions
of systems (10) and (11) can be expressed with the aid of (16) as follows

Y(0) = SZ(0) = S

a0
0
0

 =

 a0
−(γ + α)a0

ρa0
δ

 (17)

where a0 is obtained from the describing function [38]

Φ(a) =
2π/ω0∫

0

[ϕ1((cos ω0t)a, (sin ω0t)a, 0) cos ω0t + ϕ2((cos ω0t)a, (sin ω0t)a, 0) sin ω0t]dt, (18)

given that Φ(a0) = 0 and the quantity (Φ′(a0))b1 is not vanished, where the dash refers to
the first integer-order derivative.

6. Existence of Self-Excited and Hidden Attractors in the Integer-Order
MAVPD System

In the following, we will discuss some complex dynamics in the integer-order MAVPD
system. The simulation results are performed based on the MATLAB command ODE45 with
a relative error tolerance of 1e-4. We will also consider the parameter ξ as the dynamical
parameter and use the above-mentioned values of the other parameters. So, the critical
Hopf bifurcation value is ξ1 = 3.5078 and P2,3 are LAS if and only if ξ > ξ1. For ξ = 3.4,
coexistence of self-excited attractor and a limit cycle is found. For ξ = 2.85, coexistence
of self-excited chaotic attractor and one-scroll chaotic attractor around P2 is found. The
results are illustrated in Figure 3 in which the self-excited attractors have the green domain.
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Figure 3. Phase graphs of the system (3) with γ = 0.1, δ = 100, ρ = 200 and: (a) ξ = 3.4 using the
initial conditions [0.4, 0.1, 0.3]T (green domain) and [−0.4, 0.02,− 0.3]T (blue domain); (b) ξ = 2.85
using the initial conditions [−0.4, 0.1, −0.3]T (green domain) and [0.4, 0.01, 0.3]T (red domain).

On the other hand, hidden attractors exist in this system where their initial conditions
are selected based on the above-mentioned analysis. For example, when ξ = 3.5, the
coexistence of a hidden periodic attractor surrounds the limit cycle that bifurcates from
P2 and a limit cycle around P3 is observed. When ξ = 3.1, the existence of a hidden
quasi-periodic attractor surrounds the coexisting two period-2 limit cycles that bifurcate
from P2 and P3, is observed. When ξ = 3.05, the existence of a hidden quasi-periodic
attractor surrounds the coexisting two period-4 limit cycles that bifurcate from P2 and
P3, is observed. When ξ = 2.85, the existence of a hidden quasi-periodic attractor that
surrounds the coexisting two one-band chaotic attractors, is found. Finally, when ξ = 2.6,
the existence of a hidden quasi-periodic attractor that surrounds the double-band chaotic
attractors is found. The explanation is given as follows; when the dynamical parameter
lies below its critical value ξ1 = 3.5078, the two non-origin points P2 and P3 change their
stability to the saddle type of index 2. In this case, the origin point is also the saddle point
of index 2. Hence, any trajectory originating from the initial states given in Table 1 will
not converge to any of these equilibria or the unstable periodic orbits bifurcating from
P1 and P2 and P3 due to the existence of subcritical Hopf bifurcation around all these
points. Thus, the hidden attractors occur because the trajectories originate from the above-
mentioned initial states cannot be initiated from the point of an unstable manifold in the
neighborhoods of P1, P2 and P3. Figure 4 summarizes all these results in which the hidden
attractors are shown (green domain) and the initial conditions [1× 10−5, 0, 1× 10−5]

T ,
[−1× 10−5, 0, −1× 10−5]

T are associated with the red and blue attractors, respectively.
Moreover, based on the above-mentioned analysis in Section 5, the selection of the initial
conditions corresponding to hidden attractors are specified in the following table.

Table 1. Calculations of the initial conditions for locating hidden oscillations in the MAVPD system (3).

Bifurcation Parameter ξ ω0 α Initial Conditions

ξ = 3.5 10.2344 0.1136 [0.3651, 0.005, 0.7303]T

ξ = 3.1 18.6143 0.8951 [0.3651, 0.2903, 0.7303]T

ξ = 3.05 18.6261 0.9096 [0.3651, 0.2956, 0.7303]T

ξ = 2.85 18.6711 0.9723 [0.3651, 0.3185, 0.7303]T

ξ = 2.6 18.7228 1.0636 [0.3651, 0.3519, 0.7303]T



Mathematics 2023, 11, 591 8 of 13

Mathematics 2023, 11, 591 9 of 15 
 

 

Table 1. Calculations of the initial conditions for locating hidden oscillations in the MAVPD system 
(3). 

Bifurcation Parameter ξ  0ω  α  Initial Conditions 
5.3=ξ  10.2344 0.1136  T]7303.0,005.0,3651.0[  
1.3=ξ  18.6143 0.8951 T]7303.0,2903.0,3651.0[  

05.3=ξ  18.6261 0.9096 T]7303.0,2956.0,3651.0[  
85.2=ξ  18.6711 0.9723 T]7303.0,3185.0,3651.0[  
6.2=ξ  18.7228 1.0636 T]7303.0,3519.0,3651.0[  

The corresponding bifurcation diagrams are depicted in Figure 5, in which a route to 
chaos via period-doubling bifurcation is shown. The last figure shows that all the points 

1P , 2P  and 3P  lose their stability below the value 51.31 ≈ξ  where subcritical Hopf bi-
furcation around the non-origin points takes place. It is also shown that the coexistence of 
a quasi-periodic hidden attractor (green plot) and periodic orbits (blue and red plots) is 
found when )51.3,04.3(∈ξ  and the coexistence of a quasi-periodic hidden attractor 
(green plot) and chaotic attractors (blue and red plots) is found when )04.3,5.2(∈ξ .  

We also carried out computations for the system’s basin sets of attraction (BSA) that 
are useful to illustrate the existence of the hidden attractors and coexistence of multi-at-
tractors. In Figure 6, we use the parameters 200,100,1.0 === ρδγ  and vary ξ . The 
BSA in part a of Figure 6 depicts the regions of hidden quasi-periodic attractors (red and 
blued domains) and the coexisting two one-band chaotic attractors around 2P  (turquoise 

domain) and 3P  (yellow domain). The BSA in part b of Figure 6 depicts the regions of 
hidden quasi-periodic attractors (red and blued domains) and the coexisting two periodic 
orbits around 2P  (turquoise domain) and 3P  (yellow domain).  

(a) (b) 

Mathematics 2023, 11, 591 10 of 15 
 

 

(c) (d) 

 
(e) 

Figure 4. The phase graphs of the system (3) using 200,100,1.0 === ρδγ  and: (a) 5.3=ξ , 
(b) 1.3=ξ , (c) 05.3=ξ , (d) 85.2=ξ  and (e) 6.2=ξ . 

 
Figure 5. The bifurcation diagram of the integer−order MAVPD system with 

200,100,1.0 === ρδγ  and initial conditions T]7303.0,3519.0,3651.0[  (green domain), 
T]101,0,101[ 55 −− ××  (red domain) and T]101,0,101[ 55 −− ×−×−  (blue domain). 

Figure 4. The phase graphs of the system (3) using γ = 0.1, δ = 100, ρ = 200 and: (a) ξ = 3.5,
(b) ξ = 3.1, (c) ξ = 3.05, (d) ξ = 2.85 and (e) ξ = 2.6.



Mathematics 2023, 11, 591 9 of 13

The corresponding bifurcation diagrams are depicted in Figure 5, in which a route to
chaos via period-doubling bifurcation is shown. The last figure shows that all the points P1,
P2 and P3 lose their stability below the value ξ1 ≈ 3.51 where subcritical Hopf bifurcation
around the non-origin points takes place. It is also shown that the coexistence of a quasi-
periodic hidden attractor (green plot) and periodic orbits (blue and red plots) is found
when ξ ∈ (3.04, 3.51) and the coexistence of a quasi-periodic hidden attractor (green plot)
and chaotic attractors (blue and red plots) is found when ξ ∈ (2.5, 3.04).
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T
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We also carried out computations for the system’s basin sets of attraction (BSA) that are
useful to illustrate the existence of the hidden attractors and coexistence of multi-attractors.
In Figure 6, we use the parameters γ = 0.1, δ = 100, ρ = 200 and vary ξ. The BSA in
part a of Figure 6 depicts the regions of hidden quasi-periodic attractors (red and blued
domains) and the coexisting two one-band chaotic attractors around P2 (turquoise domain)
and P3 (yellow domain). The BSA in part b of Figure 6 depicts the regions of hidden
quasi-periodic attractors (red and blued domains) and the coexisting two periodic orbits
around P2 (turquoise domain) and P3 (yellow domain).
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7. Existence of Self-Excited and Hidden Attractors in the Fractional-Order
MAVPD System

For γ = 0.1, δ = 100, ρ = 200 and ξ = 1.6, system (4) is numerically integrated using
the PECE method [1] with a step size of 0.01 and with different values of the fractional
orders. In this case, based on condition (2), all the equilibrium points are not LAS when q is
greater than 0.9586. In addition, the critical value for the approximating periodic solution
around the non-origin points P2 and P3 is q(2)c ≈ 0.96. On the other hand, motivated by the
above-mentioned discussion, double-band chaos around all the equilibria and/or one-band
chaos around each of the non-origin equilibria is expected when 1 < q < 0.96. Therefore, hid-
den attractors may appear for 1 < q < 0.96 as the trajectories originate near the approximating
periodic (or quasi-periodic) trajectories cannot be initiated from the point of an unstable
manifold in the neighborhoods of P1, P2 and P3. The results are outlined in Figure 7
where the initial conditions are selected as [1× 10−1, 1× 10−1, 1× 10−1]

T for the green
domain, [1× 10−5, 0, 1× 10−5]

T for the red domain and [−1× 10−5, 0, −1× 10−5]
T for

the blue domain. This figure shows that a hidden quasi-periodic attractor surrounding
a double-band chaotic attractor exists when q = 0.98; A hidden quasi-periodic attractor
surrounding the coexisting two one-band chaotic attractors exists when q = 0.97; A self-
excited quasi-periodic attractor surrounding the coexisting two periodic attractors near P2
and P3 exists when q = 0.96 and a self-excited attractor surrounding the coexisting two
asymptotic attractors near P2 and P3 exists when q = 0.94.
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The corresponding bifurcation diagrams are depicted in Figure 8 in which a route to
chaos is observed. This bifurcation diagram shows that all the equilibria lose their stability
when q passes forward 0.9586. Then, approximating periodic trajectories are shown when
q becomes near the critical value q(2)c ≈ 0.96. Moreover, it is also shown that a self-excited
attractor (green plot) and approximating periodic trajectories (blue and red plots) are found
when q ∈ (0.9, 0.965] and the coexistence of a quasi-periodic hidden attractor (green plot)
and chaotic attractors (blue and red plots) is found for q ∈ (0.967, 0.99). Furthermore, the
figure shows that the indicated hidden attractor disappears for q ∈ [0.99, 1].
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8. Conclusions

In this study, the multistability and coexisting attractors in the MAVPD systems due to
the appearances of hidden and self-excited attractors have been studied in the integer- and
fractional-order cases. The analytical conditions for the existence of periodic solutions in
the integer-order systems via Hopf bifurcation have been discussed. In addition, conditions
for approximating the solutions of the fractional version to periodic solutions have been
discussed via Hopf bifurcation theory in fractional-order systems. The method for hidden
attractors localization in the integer-order MAVPD has been explained to enhance the
theoretical framework in this study. Numerical examples that show the existence of self-
excited and hidden attractors have been illustrated in the integer-order MAVPD system
and its fractional counterpart. Further numerical tools such as the bifurcation diagrams
and the basin of attraction have been utilized to confirm the multistability and coexisting
attractors in the integer- and fractional-order MAVPD systems.

Future studies on the topic can be extended to study the theoretical framework for
localizing hidden attractors in fractional-order chaotic systems and also to experimentally
demonstrate the self-excited and hidden attractors in this system. Moreover, the problem
of investigating the phase transition of the chaotic states between the integer-order system
and its fractional-order form still requires further investigations.
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