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Abstract: In this paper, we analyse the specific behaviour of passengers in personal transport com-
muting to work or school during the COVID-19 pandemic, based on a sample of respondents from 
two countries. We classified the commuters based on a two-step cluster analysis into groups show-
ing the same characteristics. Data were obtained from an online survey, and the total sample size 
consists of 2000 respondents. We used five input variables, dividing the total sample into five clus-
ters using a two-step cluster analysis. We observed significant differences between gender, status, 
and car ownership when using public transport, cars, and other alternative means of transportation 
for commuting to work and school. We also examined differences between individual groups with 
the same socioeconomic and socio-demographic factors. In total, the respondents were classified 
into five clusters, and the results indicate that there are differences between gender and status. We 
found that ownership of a prepaid card for public transport and social status are the most important 
factors, as they reach a significance level of 100%, unlike compared to other factors with importance 
ranging from 60 to 80%. Moreover, the results demonstrate that prepaid cards are preferred mainly 
by female students. Understanding these factors can help in planning transport policy by knowing 
the habits of users. 
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1. Introduction 
The basic measure in the sustainability of transport is based on attracting a larger 

number of inhabitants to the public transport sector or active modes of transport [1]. One 
of the key factors in public transport is safety, and it is of great importance for the number 
of passengers [2,3]. This factor has been greatly disrupted by the COVID-19 pandemic in 
2020 [4]. The outbreak of COVID-19 has affected the whole world and raised safety con-
cerns [5] and feelings of anxiety in public transport [6], because people are usually close 
to each other in such environments, which facilitates the spread of infectious diseases [7]. 
In other words, most people preferred cars to public transport. 

Public transport is of the sources that spread the virus [8]; therefore, its use has been 
restricted worldwide through various measures and lockdowns [9]. Despite these 
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measures, many people use public transport as their primary or only mode of transport, 
which results in an increased risk of infection [10,11]. 

To combat sprawl and related inequalities, it is essential to focus on those people who 
continue to use public transport or other alternative options. Research on COVID-19 
quickly focused mainly on the following areas: 
(1) Detection of the decrease in traveling and mobility [12–14]; 
(2) Virus spread [15–17]. 

Several studies have examined changes in travel behaviour related to income, ethnic-
ity, psychological traits, and political views [18–20]. In this research, authors collected data 
using surveys (especially online) or data obtained from a mobile phone about movement, 
or the means of transport used. Recently, several studies have dealt with a comprehensive 
view of the relationships between socioeconomic factors and citizens’ changes in public 
transport use during the pandemic [21–23]. 

To slow the spread of COVID-19, many countries have imposed mobility restrictions, 
the temporary closure of businesses, and encouraged social distancing. A substantial ma-
jority of passengers abandoned public transport out of fear for their health and changed 
their usual mode of transport, according to research from around the world [24–27]. In his 
survey, Shibayama reports that 70–80% of respondents from Austria, Bulgaria, Germany, 
Hungary, and Japan changed their mode of commuting from public transport to another 
mode in order to eliminate risk [28]. This behaviour led to the abandonment of shared 
space and encouraged the use of individual transport vehicles. 

Collecting users’ opinions and analysing people’s traffic patterns [29] are some of the 
ways to identify gaps and deficiencies in public transport services and the necessary in-
frastructure [30–33]. The choice of the mode of transport is motivated by a whole range of 
locational, socio-demographic, psychological, and cultural factors, but lately mainly 
safety determinants [34,35]. 

The main problem is the heterogeneous subjective opinion of travellers and users in 
the analysis of service quality [36,37]. Dividing travellers into specific segments that have 
similar opinions or habits can bring a better view of differences in heterogeneity [38]. Seg-
mentation is applied either based on demographic and social characteristics or other tech-
niques such as cluster analysis [39]. Cluster analysis is used to obtain segments of the ini-
tial user sample; these segments represent passenger profiles [40]. The main goal of cluster 
analysis (CA) is to classify data with similar characteristics based on the similarity be-
tween elements within a cluster and the dissimilarity between elements between clusters 
[41]. Anable, in the study [42], demonstrates the utility of cluster analysis in extracting 
naturally occurring, relatively homogeneous, and meaningful clusters to be used for pro-
posing transport policies. 

The application of cluster analysis of latent classes [43] in public transport during 
COVID-19 was used in Toronto. The results suggest that a subset of individuals used pub-
lic transportation for non-essential travel during the pandemic, likely due to a lack of ac-
cess to a private vehicle [44]. To predict the spread of COVID-19 in Mexico, they used 
cluster analysis based on mobility trends to commute to work in neighbourhoods sepa-
rately instead of all neighbourhoods at once. 

In Sicily, Basbas and others analysed three clusters of public transport users with 
specific socio-demographic characteristics and acceptance rates of national recommenda-
tions for public transport using descriptive and cluster analysis techniques [45]. In further 
research, they divided the respondents into five different groups according to socioeco-
nomic data, thus emphasizing how the pandemic affected people with different social 
backgrounds. The results show that those with poor financial backgrounds continue to 
travel by public transport, establishing a link between wealth and the risk of exposure to 
a potentially fatal disease [46]. 

By empirically testing a combination of objective and subjective characteristics such 
as spatial, socio-economic, and political structures and mobility-related preferences and 
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practices, the authors of another study analysed 44 German cities with more than 100,000 
inhabitants. By performing factor and cluster analysis, they obtained six clusters that dif-
fer in regime orientation as well as socio-economic and spatial characteristics [47]. Kop-
sidas et al. determined the factors influencing the behaviour of public transport travellers 
in Athens, Greece, after the pandemic using a clustering algorithm and the discrete dura-
tion model. The cluster model showed that students and regular travellers would like to 
use public transport for a long time after the COVID-19 pandemic [48]. 

In the available literature, we did not find an evaluation of passenger behaviour 
based on the criteria we mentioned. Attention was focused on the habits of travellers in 
two states that once formed a single state. The task is to know the habits of passengers 
well to be able to plan public transport or integrated transport not only at the national 
level but also at the international level. This understanding of behaviour is important to 
us, and we consider the sample to be specific. 

This paper aims to divide travellers based on common socio-demographic and other 
factors into the same groups during the COVID-19 pandemic in two countries with similar 
travel habits. In other words, we identify key differences in travel behaviour between the 
selected groups. Attention was focused on five variables: status, gender, vehicle availabil-
ity, commuting to school or work, and prepaid ticket. These findings help to focus on a 
potential group with specific characteristics. The purpose of this paper is to help transport 
companies reach these passengers not using public transport with appropriate marketing 
tools in targeted addressing. The originality of this paper represents knowledge in the 
area of commuting to work and school in this region, unlike other studies. 

The following research questions were formulated: 
 How many clusters of commuters to work or school with specifically different socio-

demographic and travel behaviour exist during the COVID-19 pandemic? 
 Which factor has the highest degree of significance in passenger segmentation during 

the COVID-19 pandemic? 
 Does owning a prepaid public transport card support public transport and trains 

during the COVID-19 pandemic? 
 Do employees mainly use the car as their usual means of transport for commuting to 

work? 

Our research applies a two-step cluster analysis algorithm in IBM SPSS 26 [49]. This 
procedure automatically selects the optimal number of clusters in the data set by detecting 
the increase in the distance between the two nearest clusters across all stages of hierar-
chical clustering. Clustering as a method is mostly used in the field of marketing as a 
technique to understand customer behaviour, but it is also used in other areas such as 
automation and transportation [50]. 

2. Methodology 
The total sample consists of almost 2000 respondents. Table 1 reveals that these re-

spondents are divided into three criteria: country, status, and gender. 

Table 1. Sample. 

Country   Gender 
Total 

Male Female 
Czech Republic Status Employee 145 167 312 

  Student 332 754 1086 
 Total  477 921 1398 

Slovak Republic Status Employee 93 108 201 
  Student 248 145 393 
 Total  341 253 594 

Total Status Employee 238 275 513 
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  Student 580 899 1479 
 Total  818 1174 1992 

As can be seen, respondents from the Czech Republic represent the majority (more 
than 70%). The largest group consists of female students (899 respondents, more than 
45%). On the other hand, less than 12% of respondents are male employees. Czech female 
students are the largest subgroup in the Czech Republic sub-sample, in contrast to the 
Slovak Republic sub-sample. This sub-sample consists mainly of male students. These 
data were obtained from an online questionnaire given from 27 April 2022 to 6 June 2022. 

We use five independent variables: gender, social status, car ownership in the house-
hold, ownership of a prepaid card for public transport, and the most frequently used 
means of transport. We segmented passengers using two-step cluster analysis in the sta-
tistical-analytical program SPSS25. This program calculated the relative importance of the 
predictor based on the formula below. VI = − log sigmax ∈ − log sig  (1) 

where the components are as follows: 
Ω Set of predictor and evaluation fields; 
sigi The p-value computed from applying a certain test; if sigi  equals 0, set 

sigi= MinDouble, where MinDouble is a minimal double value [51]. 

The two-step cluster analysis segmented respondents to describe passenger behav-
iour and mobility during the COVID-19 pandemic period. The two-step cluster method 
analyses continuous and categorical variables. Quantitative variables with different scale 
units and nominal scaled may be simultaneously analysed. The process assumes that all 
variables are independent, continuous variables have a normal distribution, and behav-
iour-categorical variables have multinominal distribution. Moreover, the extra benefit in-
cludes the automatic determination of the optimal number of clusters. This method is ap-
plied to larger samples with more than 500 respondents [52,53]. 

This methodology includes several steps, such as cluster quality, optimal cluster 
number, and distance measure [54,55]. 

Cluster quality. Silhouette’s value measures the similarity of an object to its cluster 
(cohesion) compared to other clusters (separation). Cluster cohesion demonstrates the av-
erage distance between a sample and all other data points within the same cluster. In con-
trast, cluster separation explains the average distance between a sample and all other data 
points in the nearest cluster [56,57]. This metric ranges from 1 to −1. Silhouette’s value 
identifies the following: 
 Poor classification from -1.0 to 0.2; 
 Fair classification  from 0.2 to 0.5; 
 Good classification from 0.5 to 1.0 [58]. 

In other words, first, Silhouette’s value of 1 indicates that the object is far away from 
other clusters. Second, Silhouette’s value of 0 indicates that the object is between two 
neighbouring clusters. Finally, Silhouette’s value less than 0 indicates that those objects 
have been assigned to the wrong cluster. In other words, the higher value identifies that 
the object is better fitted to its cluster than to other clusters. Silhouette’s value is calculated 
as 

s i =
b i − a i

max b i ,  a i
 (2) 

S=
1
N S  (3) 
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where S i  Silhouette coefficients for i-th object; 
b i  Average of the minimum distance between i-th object in a different cluster (average 

inter-cluster distance); 
a i  Average of the minimum distance between i-th object in the same cluster (average 

intra-cluster distance); 𝑆̅ The average value for the Silhouette coefficients; 𝑁 Total number of observations [57]. 
Optimal cluster number. The optimal cluster is determined based on the lowest BIC 

score. Schwarz’s Bayesian Criterion (BIC) is calculated for each number of clusters within 
a specific range as 

BICR= -2 ξR+mR log N

R
r = 1  (4)

With 

mR=R 2KA+ Lk-1

KB
k = 1  (5)

where the components are as follows: 𝐵𝐼𝐶   Total number of clusters; 𝑅 Number of clusters; 
ξR The rth cluster variance; 
KA Number of continuous variables; 
KB Number of categorical variables; 𝑚  Ratio in r cluster developed during the hierarchical clustering stage; 𝐿𝑘 The number of groups in k categorical variables [58]. 

BIC with a lower value indicates the optimal number of clusters, and the optimal 
number of clusters has the lowest BIC value. In addition, we also monitored the large ratio 
of BIC changes and the large ratio of distance measures. However, the statistical-analytical 
program automatically determines the optimal number of clusters without the author’s 
decision [59] in the statistical-analytical program IBM SPSS 26. 

Distance measure. Log-likelihood measures object similarity using mixed categorical 
and numerical variables compared to the Euclidian algorithm [56]. This algorithm is cho-
sen only for continuous variables. The formula of log-likelihood distance can be seen as 
follows: 

d R S =ξR+ξS-ξ R,S  (6)

ξv=-Nv
1
2

KA

k=1

log σk
2+σv. k

2 + Ev. k

KB

k=1

 (7)

Ev. k=-
Nv.k.1

Nv
* log

Nv.k.1

Nv

Lk

l=1

 (8)

where the components are as follows: 
1𝐾    Total number of continuous variables; 𝐾    Total number of categorical variables; 𝑅    The interval of the k continuous variable; 𝑁   Number of observations; 
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𝑁    Number of objects in the k cluster; 𝜎    Estimated variance of the k continuous variable for all data; 𝜎    The estimated variance of the k continuous variables in the R cluster; 𝑁  Number of objects in the R cluster, and k categorical variables take the l cate-
gory; 𝑑  Distance between the R and the S; 𝑅, 𝑆  An index representing clusters by joining the clusters R and S [60,61]. 

3. Results 
3.1. Model Summary 

Table 2 shows that the sample consists of almost 2000 respondents from the Czech 
and Slovak Republics. As can be seen, only 29 respondents (less than 2% of all) are ex-
cluded from the sample due to missing data. Unfortunately, these respondents did not 
answer all the questions focusing on passengers’ behaviour and mobility in the question-
naire during the COVID-19 pandemic. The cluster analysis divides the total sample into 
five clusters, and each cluster has more than 300 respondents. The fourth cluster has the 
most respondents (almost 500), while on the other hand, the third cluster has the fewest 
respondents (less than 330). 

Table 2. Cluster distribution. 

 N 
% of Total  

(with Excluded  
Respondents) 

% of Total 

Cluster 1 333 17.00 16.70 
 2 445 22.70 22.30 
 3 323 16.50 16.20 
 4 478 24.40 24.00 
 5 384 19.60 19.30 
 Combined 1963 100.00 98.50 

Excluded  
respondents 

 29  1.50 

We applied the two-step cluster analysis to segment respondents to describe passen-
ger behaviour and mobility during the COVID-19 pandemic. We used five independent 
variables: gender, social status, car ownership in the household, ownership of a prepaid 
card for public transport, and the most frequently used means of transport. All these input 
variables are important factors to describe passenger behaviour, and because the predictor 
importance is higher than 60%, independent variables such as social status and ownership 
of a prepaid card for public transport have the greatest impact on the classification of 
passengers commuting to work or school. Figure 1 shows all categorical variables used in 
a two-step cluster analysis with predictor importance. 



Mathematics 2023, 11, 583 7 of 18 
 

 

 
Figure 1. Five important predictors in segmentation in everyday travel behaviour. 

These input variables divide the total sample into five clusters. This paper aims to 
identify the specific passenger behaviours in personal transport commuting to work or 
school during the COVID-19 pandemic. Figure 2 demonstrates that the cluster analysis 
with five independent variables is good/fair because Silhouette’s measure of cohesion and 
separation indicates 0.5 (between the fair and good band) [52]. If Silhouette’s measure is 
higher than 0.2, this metric demonstrates the fair zone. These results demonstrate that the 
behaviours are significantly different from each other, but respondents in individual 
groups have similar behaviours in passenger mobility. 

 
Figure 2. Model summary and cluster quality based on Silhouette’s measure of cohesion and sepa-
ration. 
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3.2. Clusters 
Table 3 reveals that five clusters are the optimal number based on the highest ratio 

of distance measures. In addition to this metric, we demonstrate BIC, BIC change, and the 
ratio of BIC changes. Table 3 demonstrates the BIC values calculated for 15 clusters. In 
general, a high number of clusters leads to a difficult model. The statistical-analytical pro-
gram adopts an automatic solution based on a compromise between a large ratio of BIC 
changes and a large ratio of distance measures. The optimal number of clusters is five 
(ratio of BIC changes = 0.538, ratio of distance measures = 1.638). 

Table 3. Auto-Clustering. 

Number  
of Clusters 

Schwarz’s  
Bayesian  

Criterion (BIC) 
BIC Change a Ratio of BIC 

Changes b 
Ratio of Distance  

Measures c 

1 14,281.882    
2 12,153.995 −2,127.887 1.000 1.164 
3 10,334.258 −1,819.737 0.855 1.366 
4 9,018.404 −1,315.855 0.618 1.141 
5 7,873.041 −1,145.362 0.538 1.638 
6 7,197.318 −675.723 0.318 1.016 
7 6,532.913 −664.405 0.312 1.365 
8 6,062.276 −470.637 0.221 1.039 
9 5,611.429 −450.847 0.212 1.295 
10 5,277.087 −334.342 0.157 1.041 
11 4,958.395 −318.692 0.150 1.138 
12 4,685.766 −272.629 0.128 1.058 
13 4,431.516 −254.250 0.119 1.057 
14 4,194.208 −237.309 0.112 1.069 
15 3,976.103 −218.105 0.102 1.095 

a The changes are from the previous number of clusters in the table. b The ratios of changes are 
relative to the change for the two-cluster solution. c The ratios of distance measures are based on the 
current number of clusters against the previous number of clusters. 

Figure 3 summarizes the results of the two-step cluster analysis as the cluster size, 
the importance of the input variables (see the scale), and the most numerous groups of 
respondents depending on the selected independent variable. Figure 3 reveals the ranking 
of the input predictors according to within-group importance in each cluster. We find that 
gender is the most significant factor in the fourth and fifth clusters, unlike the others. 
Moreover, the results show that status is the most significant predictor in the second clus-
ter, which is almost exclusively made up of employees. On the other hand, the first and 
third clusters differ from the others because socio-demographic characteristics such as 
gender and status do not play such a significant role compared to ownership of a car in 
the household in the first cluster or the ownership of a prepaid time ticket in the third 
cluster. 
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Figure 3. Clusters. 

Table 4 reveals that three of the five clusters are made up of only students. The second 
and third clusters are composed of students and employees. The second cluster, unlike 
the other clusters, consists mainly of employees (almost 86% of all employees in the sam-
ple). Finally, the sample consists mainly of students (almost 75% of all). 

Table 4. Status. 

 Employee Student 
Frequency % Frequency % 

Cluster 1 0 0.00 333 22.90 
 2 434 85.80 11 0.80 
 3 72 14.20 251 17.20 
 4 0 0.00 478 32.80 
 5 0 0.00 384 26.40 
 Combined 506 100.00 1457 100.00 

Table 5 shows that the fourth cluster consists only of women, unlike the fifth cluster. 
The other clusters are made up of both men and women, but women dominate in all these 
clusters. The second cluster has approximately equal representation of men and women, 
and approximately twice as many women are in the first and third clusters. The sample 
consists mainly of women (almost 60%). 
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Table 5. Gender. 

 Male Female 
Frequency % Frequency % 

Cluster 1 99 12.30 234 20.20 
 2 212 26.30 233 20.10 
 3 111 13.80 212 18.30 
 4 0 0.00 478 41.30 
 5 384 47.60 0 0.00 
 Combined 806 100.00 1157 100.00 

Table 6 reveals that the car and the train are the most frequently used means of 
transport for commuting to work or school. On the other hand, alternative means of 
transport such as shared bicycles and scooters, but also public transport, are less preferred 
means of transport compared to others. Alternative means of transport are used as the 
most frequent means of transport for commuting to work or school by only 41 respond-
ents. The results show that the first cluster prefers walking and the train as a means of 
commuting to work or school. On the other hand, the second, fourth, and fifth clusters 
prefer a car. The third cluster prefers public transport. We find that the train is a popular 
means of transport in all clusters except the second cluster, because the train is the second 
most frequently used means of transport for commuting to work or school. Respondents 
in the second cluster prefer walking as a second way to commute to work or school. How-
ever, walking is not a popular mode of transportation to work or school for the fourth 
cluster. Moreover, the fourth and fifth clusters do not contain any respondents using an 
alternative means of transport. 

Table 6. How do you most often get to work? 

 
Walking Public Transport Car Train Alternative  

Transport Modes 
Fre-

quency % Frequency % 
Fre-

quency % 
Fre-

quency % Frequency % 

Cluster 1 160 46.00 40 14.10 10 1.20 117 24.00 6 14.60 
 2 83 23.90 20 7.10 279 34.70 34 7.00 29 70.70 
 3 36 10.30 143 50.50 18 2.20 120 24.60 6 14.60 
 4 0 0.00 40 14.10 314 39.10 124 25.40 0 0.00 
 5 69 19.80 40 14.10 182 22.70 93 19.10 0 0.00 

Combined 348 100.0 283 100.0 803 100.0 488 100.0 41 100.0 

Table 7 shows that the fourth and fifth clusters consisted of respondents living in a 
household with a car. The other groups are composed of respondents without access or 
with access to a car in the household. The first cluster, unlike the second and third clusters, 
consists mainly of respondents without access to a car. Most respondents have access to a 
car (less than 77% of all). 

Table 7. Are you a household member with a car? 

 Never Always/Sometimes 
Frequency % Frequency % 

Cluster 1 271 59.20 62 4.10 
 2 50 10.90 395 26.20 
 3 137 29.90 186 12.40 
 4 0 0.00 478 31.80 
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 5 0 0.00 384 25.50 
 Combined 458 100.00 1505 100.00 

Table 8 reveals that the majority of respondents do not have a prepaid card for public 
transport (more than 83% of all). Three of the five clusters consist only of respondents 
without a prepaid card. On the other hand, the third cluster consists of more than 300 
respondents with a prepaid card for public transport (almost 98% of all respondents with 
a prepaid card). Other respondents with a prepaid card for public transport are part of the 
fourth cluster. 

Table 8. Do you own a prepaid time ticket for public transport? 

 No Yes 
Frequency % Frequency % 

Cluster 1 333 20.40 0 0.00 
 2 445 27.30 0 0.00 
 3 0 0.00 323 97.90 
 4 471 28.80 7 2.10 
 5 384 23.50 0 0.00 
 Combined 1.633 100.00 330 100.00 

3.3. Cluster Comparison 
Figure 4 shows that the fifth (dark blue) cluster consists exclusively of male students 

living in a household with a car, preferring a car or train as one of the most frequently 
used means of transport for commuting to school. Moreover, none of them have a prepaid 
card for public transport. On the other hand, the third (yellow) cluster consists of 251 stu-
dents and 72 employees. The results show that the majority of respondents live in a house-
hold with access to a car, and there are almost twice as many women as men in this cluster. 
Nevertheless, these respondents mostly prefer public transport or the train compared to 
walking, driving, and alternative means of transport such as shared bicycles or scooters 
for commuting to work or study. We find that all these respondents have prepaid cards 
for public transport. This cluster is one of the two groups in which there are respondents 
with a prepaid ticket for public transport. However, the fourth cluster has only seven re-
spondents with this ticket, and most respondents do not have such a ticket. These results 
demonstrate that the third cluster prefers combined and sustainable transport for lower 
transport costs than the comfort of a private car. 
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Figure 4. Cluster comparison. 

The second (red) and third (yellow) clusters are composed of students and employ-
ees. Other groups are made up of students only. The second cluster contains almost 86% 
employees. On the other hand, this cluster consists of only 11 students (less than 1% of all 
students). This cluster comprises mainly women; nevertheless, the cluster has an equal 
representation of men and women. The results show that employees dominantly prefer 
the car as one of the means of transportation for commuting to work. However, some of 
them, specifically 83 respondents, most often walk to work or school. 

The first (green), fourth (light blue), and fifth (dark blue) clusters consist only of stu-
dents. The fourth cluster consists only of women and the fifth cluster consists only of men. 
The first cluster is a combination of both sexes, but women make up more than 70% of all 
respondents. Many students from the first cluster do not live in a household with access 
to a car, so these respondents walk or take the train to school. Moreover, the results show 
that the fourth and fifth clusters most often prefer the same means of transport, namely 
the car and the train for commuting to school. We find that the majority of women in the 
fourth cluster choose the car, train, and public transport: other transport options such as 
walking and alternative means of transport are not interesting for this group. The cluster 
analysis demonstrates that these two groups differ in that male students are willing to 
walk to school, unlike females, as the fourth cluster does not prefer walking at all. 

Alternative means of transport are generally not among the commonly used means 
of transport for commuting to work or school, as only 41 respondents prefer shared bicy-
cles and scooters. Twenty-nine of all respondents preferring alternative means of 
transport make up the second cluster. This cluster is mainly made up of employees, and 
women and men have approximately the same representation. 

4. Discussion 
The onset of the COVID-19 pandemic caused a global transformation of economic, 

political, and social aspects, including changes in the behaviour and direction of the entire 
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population. The safety of the transport system is defined as one of the decisive require-
ments when choosing a mode of travel. Due to the onset of the COVID-19 pandemic, this 
term acquired two meanings. In addition to the level of safety due to the nature of road 
traffic or the security system in the railway sector, the need to ensure the safety of passen-
gers against the spread of infection inside the means of transport was highlighted. 

Patterns of citizen behaviour within society as well as activities in businesses in the 
context of the COVID-19 pandemic were recognized and defined in many studies through 
cluster analysis. The hierarchical clustering method outlined the economic and behav-
ioural patterns of e-commerce activity while comparing the value of e-commerce sales and 
customer relationship management to meet the demands of online customers [62]. Cluster 
analysis also evaluated individual mobility considering the mode of transport in Mexico 
[63]. Due to the temporary stoppage of economic and social aspects, businesses were 
forced to change their mindset and accelerate the onset of digitization. The active intro-
duction of online applications allowed businesses to continue their economic activity con-
tinuously during the pandemic situation [64–66]. A study in Turkey investigated the im-
pact of the pandemic on mobility and confirmed the importance of some types of mobility, 
such as regarding grocery stores or workplaces [67] 

Prediction of COVID-19 severity was evaluated in another study using longwise clus-
ter analysis, which was evaluated as an effective way of redistributing patients based on 
different clinics [68]. The high accuracy of the cluster analysis was also shown in a contri-
bution focused on the allocation of vaccines in the fight against pandemics, where indi-
vidual clusters were based on the level of spread of infection [69]. Mobility during the 
COVID-19 pandemic depended on the degree of fear of contagion and various psychoso-
cial factors, which were addressed by several studies [70–72]. 

The cluster analysis in our study focused on delineating independent variables to 
determine the severity of their influence on the classification of commuters during 
COVID-19. Our research showed that passengers can be divided into five different clus-
ters based on specific characteristics. Input variables consisted of gender, status, owner-
ship of a car in the household, ownership of a prepaid card for public transport, and the 
usual means of transport used for commuting to work and school. The limitation of our 
study can be considered the availability of population mobility data within the consider-
ation of two EU states, while future studies could be devoted to analyses within the scope 
of the expansion and diversification of the territory. Another important limitation of this 
study was that the sample of travellers was under-represented in all demographic groups, 
especially age. This is due to the inherent weaknesses of online surveys, which do not 
attract the attention of older people but are the only viable survey tool under the COVID-
19 containment measures. 

The travel survey of the German population brought insight into individual changes 
in behaviour in using not only public transport but also bicycles and individual car 
transport. The study evaluated individual car transport as a convenient and safe mode of 
transport during the pandemic and singled out public transport as negative due to the 
higher risk of infection [73]. 

A study in Greece, with a similar approach to our study, assessed the influence of 
personal identity on the choice of transport mode. The respondents were divided into 
three clusters according to specific characteristics. The importance of individual identities 
was emphasized in understanding different travel behaviours to design targeted strate-
gies for achieving sustainable urban mobility [74]. 

A global study including 124 countries evaluated and confirmed the change in mo-
bility based on the stringency level of anti-COVID-19 government policy and human mo-
bility changes using cluster analysis for four country groups [75]. The following study 
confirmed the impact of the pandemic on public transport and also dealt with the issue of 
the gender gap in travel behaviour during the development of the pandemic. This contri-
bution, as well as the results of our research, highlighted the increased risk of infection in 
women [76]. A study in Belgium about mobility indicated a high proportion of infected 
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women out of the total number of people infected with the COVID-19 virus. Women were 
predominantly frontline workers using mainly public transport during the lockdown [77]. 
Our study also confirmed the higher risk of infection for women, as they prefer public 
transport over individual car transport. A two-tier hierarchical mobility model was also 
proposed in Brazil based on mobile network data. Identified clusters according to the in-
tensity of traffic made it possible to apply targeted blocking measures and restrictions 
[78]. Our study was based on the online questionnaire survey reflecting travel habits due 
to the COVID-19 pandemic. The spatiotemporal pattern of human mobility was modelled 
based on a spatiotemporal cluster analysis of COVID-19 cases, which confirmed the link 
between lockdown and traveling [79]. 

Burke et al. [80] used cluster analysis in the evaluation of an alternative mode of 
transport, namely cycling transport. Their research shows that even if the pandemic had 
an impact on the popularity of cycling, only its subsequent promotion and investment in 
cycling infrastructure will result in a more permanent benefit to its preference in the fu-
ture. 

This study dealt with the daily mobility of people affected by the pandemic. Patterns 
of behaviour and factors influencing decision making were analysed, while also focusing 
on differences between different social groups. The research confirmed the change in mo-
bility due to the fear of infection by the pandemic [81]. 

5. Conclusions 
During the COVID-19 pandemic situation, anti-epidemiological measures and traffic 

restrictions affecting the movement of people were approved. In general, mobility rates 
are closely related to travel behaviour. This paper focused on assessing the impact of the 
COVID-19 pandemic on passenger mobility segmentation using a two-step cluster analy-
sis. 

A broad-spectrum cluster analysis was chosen to evaluate the impact of the pan-
demic on mobility within individual groups. From the analysis of a large number of 
sources of the application of cluster analysis, it can be concluded that its use is frequent in 
various areas and provides a high accuracy of outputs. 

The paper aimed to segment travellers based on common socio-demographic and 
other factors into the same groups during the COVID-19 pandemic. In other words, we 
identified key differences in travel behaviour between selected groups. These findings 
helped target a potential group with specific characteristics. This research focused on a 
two-step cluster analysis in which the analysed sample of respondents was naturally re-
distributed into five clusters. Each of the clusters consisted of at least 300 respondents. 
These five independent variables included gender, ownership of a car in the household, 
and the most frequently used means of transport. However, variables such as social status 
and ownership of a prepaid public transport card had the greatest influence on passenger 
classification. 

Individual clusters were analysed in more detail and compared with each other. We 
found that gender is the most significant factor in the fourth and fifth clusters, unlike the 
others. Moreover, the results showed that status is the most significant predictor in the 
second cluster, which is almost exclusively made up of employees. On the other hand, the 
first and third clusters differed from the others because socio-demographic characteristics 
such as gender and status did not play such a significant role compared to ownership of 
a car in the household in the first cluster or the ownership of a prepaid time ticket in the 
third cluster. 

The research task focused on segmenting passengers into individual clusters accord-
ing to specific characteristics. We identified significant differences in passenger behaviour 
across individual clusters. They were also evaluated based on the comparison of students 
and employees, as well as the difference in the travel habits of men and women. Individ-
ual car transport and the train took the leading places when comparing the use of means 
of transport, while alternative modes of transport represented only a small percentage. 
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We found that ownership of a prepaid card for public transport and social status are the 
most important factors. The research showed that 80% of the analysed sample of respond-
ents did not have a public transport card. There is therefore an opportunity for public 
transport to offer competitive services in the future and to attract passengers to public 
transport or convince them to use alternative modes of transport. 

In this paper, this segmentation analysis provided a clear overview of population 
behaviour on mobility affected by COVID-19. In our opinion, this study opens the possi-
bility of applying a cluster analysis as a suitable tool for the redistribution of the analysed 
variables in future studies as well. 
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