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Abstract: The article considers a non-stationary three-dimensional spatial mathematical model of 
biological kinetics and geochemical processes with nonlinear coefficients and source functions. Of-
ten, the step of analytical study in models of this kind is skipped. The purpose of this work is to fill 
this gap, which will allow for the application of numerical modeling methods to a model of bioge-
ochemical cycles and a computational experiment that adequately reflects reality. For this model, 
an initial-boundary value problem is posed and its linearization is carried out; for all the desired 
functions, their final spatial distributions for the previous time step are used. As a result, a chain of 
initial-boundary value problems is obtained, connected by initial–final data at each step of the time 
grid. To obtain inequalities that guarantee the convergence of solutions of a chain of linearized prob-
lems to the solution of the original nonlinear problems, the energy method, Gauss’s theorem, 
Green’s formula, and Poincaré’s inequality are used. The scientific novelty of this work lies in the 
proof of the convergence of solutions of a chain of linearized problems to the solution of the original 
nonlinear problems in the norm of the Hilbert space L2 as the time step τ tends to zero at the rate 
O(τ). 

Keywords: mathematical model; biogeochemical cycles; linearization; uniqueness of solution; solu-
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1. Introduction 
Every year, the ecological state of the coastal systems of the South of Russia is dete-

riorating due to the impact of natural and anthropogenic factors, such as global climate 
change, increasing water salinity, rising average annual temperatures, agricultural and 
industrial human activities, etc. Eutrophication of waters, particularly in the Taganrog 
Bay and the Azov Sea, causes degradation of both individual components of the ecosys-
tem and entire communities of organisms. The collection and analysis of information on 
the current and predicted states of coastal systems becomes significant. Their variability 
over time, on a scale of up to several weeks, requires prompt forecasting of adverse phe-
nomena, for which non-stationary spatially inhomogeneous interconnected mathematical 
models and effective numerical methods for their implementation have already been de-
veloped and continue to be improved, allowing us to “play” various scenarios of dynamic 
biological and geochemical processes in coastal systems. 

Coastal systems’ state variability has become the object of many studies by Russian 
and foreign scientists in the field of biochemistry and biological kinetics. Diagnosis of the 
state and forecast of changes in the thermo-hydrodynamics of water bodies’ ecosystems 
is considered in a number of works [1,2]. The article [3] presents estimates of the influence 
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of changes in the hydrological regime on the species composition of phytoplankton and 
the habitats of the main species. The works [4,5] present the principles of modeling and 
monitoring the spatio-temporal dynamics of water bodies. A significant amount of work 
belongs to scientists from the Marchuk Institute of Numerical Mathematics of the Russian 
Academy of Sciences (INM RAS) and the Shirshov Institute of Oceanology of Russian 
Academy of Sciences (IO RAS). Research is being conducted on the development of per-
spective procedures and algorithms for analyzing observational data (ensemble optimal 
interpolation, Kalman filters, three-dimensional and four-dimensional variational analy-
sis) [6,7]. In works [8–10] and others, biogeochemical transformations, hydrochemistry 
and rates of microbial processes in the water column, the assimilation of chemical ele-
ments by hydrobionts of various levels of trophic chains, and the influence of agriculture 
and industry on the state of the Black, Azov, and Caspian seas are studied. The hydrolog-
ical regime, models of movement of the aquatic environment, biochemistry, biological ki-
netics, dynamics of primary bioproduction, and biogenic pollution of water bodies in the 
South of Russia were studied in [11,12]. The Marine Hydrophysical Institute of Russian 
Academy of Sciences (MGI RAS) is engaged in the creation and development of a model 
for diagnosing and forecasting the evolution of the main hydrophysical fields of the Black 
Sea, which operates in an operational mode (up to 5 days) [13]. Russian and German sci-
entists jointly developed a 1D model of biogeochemical processes [14,15]. This hydrophys-
ical–biogeochemical model simulates the distribution of major nutrients (oxygen, nitro-
gen, sulfur, phosphorus, manganese, iron) in the pelagic redox layer for the Black and 
Baltic seas. An example of a three-dimensional model for modeling the processes of hy-
drodynamics, biological kinetics, and geochemical cycles in coastal systems is MARS [16]. 
This model is integrated with models of sediment dynamics, microbiology and pollution 
distribution, and biogeochemical cycles. Cycles of nitrogen transformations in the pres-
ence of oxygen and in an anaerobic environment are considered in detail in [17,18]. Exten-
sive studies of the influence of abiotic and biotic factors on phytoplankton communities 
are described in a number of works by Danish scientists. In [19], the influence of a tem-
perature increase over the course of a month on the development of populations of cya-
nobacteria and green algae in shallow lakes was studied. In this case, scenarios of low and 
high nutrient content, nitrogen in particular, were used. The work [20] describes a 1D 
mathematical model for modeling hydrodynamic and biogeochemical processes in a shal-
low lake. The modeling of nitrogen cycles in marine systems, including the absorption of 
nitrogen by bottom sediments, is considered in the work of American scientists [21]. At 
the same time, various approaches are used to describe denitrification processes: from 
mechanistic diagenetic models to empirical parameterizations of nitrogen fluxes across 
the sediment–water interface. A mathematical model of the hydrodynamics of coastal sys-
tems, which allows for the modeling of turbulent flows, is described in [22]. The results of 
the study of the oscillatory behavior of solutions of some classes of differential equations, 
which allow the modeling of many processes in the ocean, are presented in [23]. Numeri-
cal methods and difference schemes used to implement models of hydrodynamics and 
biogeochemistry are presented in [24–26]. 

This paper presents a three-dimensional non-stationary model of the dynamics of 
plankton populations and geochemical cycles, which describes the change in the concen-
trations of the main biogenic substances (compounds of phosphorus, nitrogen and silicon, 
etc.), considering the mechanisms of plankton development, which allows for the model-
ing of geographical dynamics of plankton populations, the change in species composition 
due to changes in biogenic factors, and the development of adverse and dangerous phe-
nomena (rapid flowering of poisonous species of phytoplankton and toxic algae, deadly 
phenomena). The initial-boundary value problem corresponding to the indicated model 
contains nonlinear terms, which significantly increases the computational complexity and 
the time required to solve it. To solve this type of problem, linearization methods are used 
such as, for example, Newton’s method or, applied to this problem, the method of intro-
ducing a time grid with values of nonlinear terms determined with a “delay”, and then 
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solving a system of grid equations using well-established working mechanisms. An over-
view of modern linearization methods as well as their advantages and disadvantages are 
presented in [27]. 

The authors performed a linearization of the initial-boundary value problem, i.e., a 
replacement of an approximate problem similar to it in terms of dynamic properties, the 
solution of which is quite close to the solution of the original problem. Linearization is 
carried out on a time grid; nonlinear coefficients are taken with a delay of one step of the 
time grid. Next, a problems chain, interrelated by initial conditions and the final solutions, 
linearized on a uniform time grid is built and, thus, the linearization of the 3D nonlinear 
model as a whole is carried out. 

The use of linearization allows us to replace the functions included in the problem 
with linear ones and obtain a problem with a linear operator, which can later be solved 
using numerical methods. 

Earlier, in the article [28], the authors’ team presented a description of some aspects 
of the construction and numerical implementation of the model of biogeochemical cycles 
and biological kinetics of the multispecies population model. To this end, effective numer-
ical methods and difference schemes have been developed that allow for the simulation 
of biogeochemical and hydrodynamic processes in a real computational domain of a com-
plex shape [24]. However, some issues of the analytical study of the model remained in 
the shadows. The authors attempted to close this gap. 

It is well-known that the main assumption that allows us to go from a nonlinear prob-
lem to a linearized one is the assumption that the deviations of the values of the functions 
included in the consideration from their analogs, taken as initial ones during linearization, 
are small. Therefore, questions of “proximity” of solutions to the original nonlinear initial-
boundary and linearized problems, on the basis of which the discrete model (difference 
scheme) was built, are of paramount importance. The scientific novelty of this work lies 
in the study of the convergence of a chain of linearized problems to the solution of the 
original nonlinear problems in the norm of the Hilbert space as the parameter, the step of 
the time grid on which the linearization was carried out, tends to zero. The originality of 
the work is determined not only by the results obtained, but also by the apparatus used, 
which is based on the methods of the theory of differential equations. 

It is worth noting that the conditions for the existence and uniqueness of the solution 
of linearized problems were obtained earlier, along with the definition of requirements 
for the smoothness classes of the input data of the problem [28]. 

2. Materials and Methods 
To model biogeochemical processes in coastal systems, a non-stationary three-di-

mensional mathematical model based on works [14,18,19], adapted for the Azov Sea, was 
used. When modeling, the influence of salinity and temperature (abiotic factors) on the 
growth and death of phytoplankton cells was taken into account. When describing the 
biogenic-dependent growth rate of phytoplankton, the mathematical equivalent of the 
Liebig principle was applied using the saturation concentration. The Michaelis–Menten 
dependence was used to describe the intensity of enzymatic reactions. The model was 
written on the assumption that in the process of excretion and death, phytoplankton re-
lease phosphorus in dissolved and particulate organic forms, which, in the process of 
phosphatification, turn into an inorganic form—phosphates, which are consumed by phy-
toplankton. The nitrogen cycle is also described: In the course of life, phytoplankton re-
lease nitrogen in an organic form, which decomposes to ammonia. Ammonia in the pro-
cess of nitrification is oxidized to nitrites, and then to nitrates. The consumption and ex-
cretion of silicon by diatoms has also been noted. 
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2.1. Mathematical Model of Biological Kinetics and Geochemical Cycles 
The mathematical model of biological kinetics and geochemical cycles is based on a 

system of diffusion–convection–reaction with nonlinear coefficients and source functions 

iqR : 

( )grad
i

i i i i
i q

q q q q
u v w div k q R

t x y z
∂ ∂ ∂ ∂

+ + + = +
∂ ∂ ∂ ∂


, (1)

where iq  is the concentration of the i-th component, [mg/L]; i∈M, M = {F1, F2, F3, PO4, 

POP, DOP, NO3, NO2, NH4, Si}; { }, ,V u v w=


 is the water flow velocity vector, [m/s]; 

( ), ,h hk k k kν=


 is the turbulent exchange coefficient, [m2/s]; and 
iqR  represents the chem-

ical–biological sources, [mg/(L∙s)]. The system of Equation (1) is written for the following 
substances: 1F  represents the green algae (Chlorella vulgaris), which forms the basis of nu-
trition for heterotrophs; 2F  represents the blue-green algae (Aphanizomenon flos–aquae, 
cyanobacteria), which competes with green algae for nutrients (toxic); 3F  represents the 
diatom algae (Sceletonema costatum), which consumes silicon, from which it builds frus-
tules—hard shells of cells; 4PO  represents the phosphates, the mineral form of phospho-
rus available for consumption by major phytoplankton species; DOP  represents the dis-
solved organic phosphorus, which is released by phytoplankton populations in the pro-
cess of excretion. In the process of phosphatification, it turns into 4PO ; POP  represents 
the particulate organic phosphorus, which is released by phytoplankton populations in 
the process of dying off. In the process of autolysis, it turns into DOP  and, in the process 
of phosphatization, into 4PO ; 3NO  represents the nitrates; 2NO  represents the nitrites 
oxidized to nitrates; 4NH  represents the ammonia oxidized to nitrite. Phytoplankton 
populations consume all three forms of nitrogen; and Si  represents the dissolved inor-
ganic silicon (silicic acids). 

Nonlinear functions of the right-hand sides, describing chemical–biological interac-
tions, have the form: 

(1 )
i i i i i i i iF F F R F F D F F E FR C K q K q K q= − − − , 1,3i = , (2) 

3

1 i iPOP P F D F PD POP PN POP
i

R s K q K q K q
=

= − − , 

3

1 i iDOP P F E F PD POP DN DOP
i

R s K q K q K q
=

= + − , ( )4

3

1
1

i i iPO P F F R F PN POP DN DOP
i

R s C K q K q K q
=

= − + + , 

( )
( ) ( )

( ) ( )4

4 4

3 2 4

2
3 3

42
1 1

1
i i i i i i

N NH
NH N F F R F N F D F E F NH

i i
N NO NO NH

f q
R s C K q s K K q K q

f q ,q ,q= =
= − + + −  , 

( ) ( )
( )

3 2 4 2

2 4 2

2 33 2 4

1
3

42 23
1

,
( 1)

i i i

N NO NO NH NO
NO N F F R F NH NO

i NO NON NO NO NH

f q ,q q q
R s C K q K q K q

q qf q ,q ,q=
= − ⋅ + −

+
, 

( )
( ) ( )

( )
3 2 4 3

3 2

2 33 2 4

1
3

23
1

,
1

i i i

N NO NO NH NO
NO N F F R F NO

i NO NON NO NO NH

f q ,q q q
R s C K q K q

q qf q ,q ,q=
= − ⋅ +

+
, 
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( )3 3 3 3 3
1Si Si F F R F Si F D FR s C K q s K q= − + , 

where 
iF RK  is the specific phytoplankton respiration rate; 

iF DK  is the specific rate of 
phytoplankton dying; 

iF EK  is the specific rate of phytoplankton excretion; PDK  is the 
specific rate of autolysis POP ; PNK  is the phosphatification coefficient POP ; DNK  is 
the phosphatification coefficient DOP ; 42K  is the specific rate of oxidation of ammo-
nium to nitrites in the process of nitrification; 23K  is the specific rate of oxidation of ni-
trites to nitrates in the process of nitrification; and Ps , Ns , and Sis  are the normalization 
coefficients between the content of N, P, and Si in organic matter according to the stoichi-
ometric ratio. 

The growth rate of phytoplankton is limited by temperature, salinity, and nutrients 
and is determined by the expressions: 

( ) ( ) ( ) ( ){ }1,2 1,2 4 3 2 4F NF T S P PO N NO NO NHC  = K f T f S min f q , f q ,q ,q , 

( ) ( ) ( ) ( ) ( ){ }3 3 4 3 2 4
,F NF T S P PO N NO NO NH Si SiC  = K  f T f S min f q , f q ,q ,q f q , 

where NFK  is the maximum specific phytoplankton growth rate. 
Functional dependencies on abiogenic factors are described as follows: 

( ) ( ){ }( )2
expT l opt optf T a T T T= − − , 1,3l = ; ( ) ( ){ }( )2

expS l opt optf S b S S S= − − , 2,3l = ; 

( ) ( ){ }( )2

1

, for ,

exp , for ,

s opt

S
opt opt opt

k S S
f S

b S S S S S

≤
= 

− − >

 

where 1sk = ; optT  and optS  are the optimal temperature and salinity for a given type of 
aquatic organisms; and 0la >  and 0lb >  are the coefficients of the width of the range of 
aquatic organisms’ tolerance to temperature and salinity, respectively. 

Functional dependences of the growth rate of phytoplankton on the content of phos-
phates, silicon, and ammonia are taken in the form of Michaelis–Menten [29], and for ni-
trates and nitrites, they have the form: 

( ) ( ) ( )( )3 2 4 3 2 4 3 3 2
( , ) expN NO NO NH NO NO psi NH NO NO NOf q ,q q q q K q K q q= + − + + , 

where 
3NOK  is the half-saturation constant of nitrates and psiK  is the coefficient of am-

monium inhibition. 
We assume that the coefficients in the functional dependencies describing the sources 

of the calculated concentrations are positive and independent of time. 
Now we consider the corresponding initial and boundary conditions. The area G of 

the reservoir is a cylindrical area, the side surface of which is formed by the movement of 
the vertical axis along a piecewise-smooth closed line H∂Σ , and a bounding bottom sur-
face HΣ , which is a smooth surface with a “cover” in the chosen coordinate system 

H H hΣ = Σ ∪ Σ . The bottom base oΣ  is the undisturbed free surface of the reservoir, 
more precisely, the part of it that is “cut out” when the guide (parallel to the Oz axis) 
moves on the plane Z = 0. We then denote a cylindrical surface enclosed between HΣ  and 

oΣ  as 𝜎. Thus, the closure of the region G, G G= ∪Γ , where o H σΓ = Σ ∪Σ ∪ . Consid-
ering the introduced notation, the boundary and initial conditions for the system of Equa-
tion (1) are formulated as follows: 
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0iq = on σ , if 0nu < ; 0iq
n

∂
=

∂
 on σ , if 0nu ≥ ; (3)

0iq
z

∂
=

∂
 on oΣ ; i

i i
q q
z

ε∂
= −

∂
 on HΣ , (4)

where constants 0iε ≥ , i∈M, consider the sinking of phytoplankton to the bottom and 
their flooding for i∈{F1, F2, F3} and considers the absorption of nutrients by bottom sedi-
ments for i∈{PO4, POP, DOP, NO3, NO2, NH4, Si}. 

Given initial values of the components under study, as well as temperature and sa-
linity fields and the water flow velocity vector, at any moment of time for the system of 
Equation (1): 

( ) ( )0, , ,0 , ,i iq x y z q x y z= , ( ), ,x y z G∈ , 0t = , i∈M, 

( ) ( )0, , ,0 , ,V x y z V x y z=
 

, ( ) ( )0, , ,0 , ,T x y z T x y z= , ( ) ( )0, , ,0 , ,S x y z S x y z= . 

2.2. Continuous Model Linearization 
To linearize system (1), we construct a uniform time grid τω  with a time step τ  on 

the time interval 0 t T< < , where T is the characteristic period of biochemical cycles as-
sociated with the growing season of the main phytoplankton populations: 

{ }, 0,1,..., ;nt n n N N Tτω τ τ= = = = , (5)

At each time step 1n nt t t− < <  with numbers 1,2,...,n N= , we consider the system of 
Equation (1) linearized with respect to the functions of the right-hand sides 

iqR , i∈M, the 

solutions of which are the functions 
i

nq , 1,2,...,n N= , in the form: 

( ) ( )div div grad
i

n
n n ni
i i q

q
V q k q R

t
∂

+ ⋅ = ⋅ +
∂

   .  (6)

To Equation (6), we add the initial conditions of the form: 

( ) ( )1
0, , ,0 , ,i iq x y z q x y z= , ( ), ,x y z G∈ , 

( ) ( )1
1 1, , , , , ,n n

i n i nq x y z t q x y z t−
− −=  , ( ), ,x y z G∈ , 2,...,n N= , 

as well as the corresponding boundary conditions, similar to the conditions (3) and (4). 
For all t, 1n nt t t− < < , 1,2,...,n N= : 

0n
iq = , if 0nu < ; 0

n
iq
n

∂
=

∂
 , if 0nu ≥ , (7)

where n  is the outer normal to the side surface σ , ( ), ,x y z σ∈ ; 

0
n
iq
z

∂
=

∂
 , ( ) 0, ,x y z ∈ Σ ; 

n
ni

i i
q

q
z

ε∂
= −

∂
  , ( ), , Hx y z ∈Σ  (8)

In [28], the functions of the right-hand sides 
i

n
FR , 1,2,..., ,n N=  i M∈ , are defined 

and a theorem of existence and uniqueness of the solution is formulated under natural 
constraints on the smoothness of the input data for a linearized problem, with a simplified 
method of linearization. 
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3. Investigation of the Proximity of Solutions to the Linearized and Original  
Initial-Boundary Value Problems by the Energy Method 

For the convenience of the study, we formulate the original (nonlinearized) system 
(1) as a chain of coupled initial-boundary value problems of the form: 

( ) ( ) ( ) ( )div grad n
i

n n n n n n
i i i i i q

q uq vq wq k q R
t x y z

∂ ∂ ∂ ∂+ + + = ⋅ +
∂ ∂ ∂ ∂


,  (9)

where i M∈ , ( ), ,x y z G∈ , 1,2,...,n N= , 1n nt t t− < ≤ , and { }, 1,2,...,nt t n n Nτω τ∈ = = = , 
with initial conditions: 

( ) ( )1
0, , ,0 , ,i iq x y z q x y z= , ( ) ( )1

1 1, , , , , ,n n
i n i nq x y z t q x y z t−

− −= , ( ), ,x y z G∈ , 

as well as boundary conditions (3) and (4) considered on the interval 1n nt t t− < ≤  for Equa-
tion (9). 

For brevity, we do not give the definition of functions 
i

n
qR  on each time interval

1n nt t t− < ≤ , considering that: 

( ), , ,
i i

n
q qR R x y z t≡ , 1n nt t t− < ≤ . 

Now we consider the specifics of this problem: the specific respiration rate of each of 
the phytoplankton populations, given by a constant 

iF RK , such that 0 1
iF RK<  . 

This means that all the functions of the right-hand sides for the biogenic components  
( 4, 10i =  ) n

iR  and n
iR  are negative if we focus on the positiveness of all concentrations 

n
iq  and n

iq , 1,2, ,n N=  , and the type of functions n
iR  and n

iR , and the typical values 
of the coefficients, also considering 1 0

iF RK − < . 
Naturally, such a conclusion is valid if there are no external sources of biogenic con-

centrations (for example, deficiently treated sewage effluents in a reservoir). We assume 
that there are initial values of the concentrations of biogenic components ( )0 , ,iq x y z  suf-
ficient for the growth of phytoplankton populations in the time interval *0 t T T< ≤ < , 
where T  is the considered characteristic period for the entire system (for the Azov Sea, 
7–8 months). 

Now we turn to the analysis of the closeness of the solutions of the linearized and 
original problems, considering the assumptions made. We introduce the function: 

( ) ( ) ( ), , , , , , , , ,n n n
i i iz x y z t q x y z t q x y z t≡ − , i M∈ , 1n nt t t− < ≤ , ( ), ,x y z G∈ , 1,2, ,n N=  . 

We subtract from Equation (6) each n
iq  (number i ) containing the equation of the 

number i  containing n
iq  from the system of Equation (9), 1,2, ,n N=  . Considering 

the linearity of the operators participating in the equations, we obtain a system of the 
form: 

( ) ( ) ( ) ( ) ( )div grad
i i

n
n n n n n ni
i i i i q q

z
uz vz wz k z R R

t x y z
∂ ∂ ∂ ∂+ + + = ⋅ + −
∂ ∂ ∂ ∂

  , 

where i M∈ , 1, ,n N=  , ( ), ,x y z G∈ , and 1n nt t t− < ≤ . 
It is easy to see that the initial conditions are written as follows: 

0 0iz = , i M∈ , ( ) ( )1
1 1, , , , , ,n n

i n i nz x y z t z x y z t−
− −= , ( ), ,x y z G∈ , 1,2, ,n N=  . 

It should be noted that due to the presence of periodicity conditions: 

( ), , , 0N
i Nz x y z t ≡ . 

However, this condition is not used in subsequent calculations. 
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The boundary conditions are formulated in an obvious way, based on the relation of 
(7) and (8), as well as that of (3) and (4): 

0n
iz = , if 0nu < , ( ), ,x y z σ∈ , (10)

0
n
iz
n

∂
=

∂
, if 0nu ≥ , ( ), ,x y z σ∈ , (11)

0
n
iz
z

∂
=

∂
, ( ) 0, ,x y z ∈ , (12)

n
ni

i i
z z
z

ε∂
= −

∂
, ( ), , Hx y z ∈ , 

1, 2, ,10i =  , 1, 2, ,n N=  , 1n nt t t− < ≤ . 

(13)

We assume that each of the functions n
iq  and n

iq  is “square”-integrable in the do-
main G  for all i M∈ , 1,2, ,n N=  . We introduce the scalar product of functions 

( ), , ,x y z tξ  and ( ), , ,x y z tη , such that for any 0 t T≤ ≤ , ( ), ,x y z G∈ , there exist bounded 

integrals ( )2 , , ,
G

x y z t dxdydzξ  and ( )2 , , ,
G

x y z t dxdydzη , each of which is a continuously 

differentiable function of the variable t . 
The scalar product ( ),ξ η  is the expression: 

( ) ( ) ( ), , , , , , ,
G

x y z t x y z t dxdydzξ η ξ η= ⋅ , 

which is a function depending on the variable t . Naturally, we assume that 
mesG const= < +∞ . 

Next, we introduce the Hilbert space H  for functions ( ), , ,x y z tξ , ( ), , ,x y z tη , …, 
square-integrable on G . We introduce the norm: 

( ) ( )
2

1
1 222

( , , ) , , , ,
L x y z

G
x y z t dxdydzξ ξ ξ ξ ≡ ≡  

 
. 

Obviously, each such norm is a non-negative function of the variable t , continu-
ously differentiable with respect to this variable. Further, for brevity, the product of dif-
ferentials dxdydz  is denoted as dG . 

Next, we multiply scalarly both parts of each i-th equation by the function n
iz  and 

integrate over the variable t  from 1nt −  to nt . We get: 

( )
1 1

div
n n

n n

nt t
n n ni
i i i

t G t G

z
z dG dt z V z dG dt

t− −

 ∂  ⋅ + ⋅ ⋅      ∂   


 

( ) ( )
1 1

div grad
n n

i i
n n

t t
n n n n n
i i q q i

t G t G
z k z dG dt R R z dG dt

− −

   − ⋅ ⋅ = −      
   

  . 

(14)

We first transform the left side of the resulting equality, which we denote as ( )n
iL z . 

We have: 

( ) ( ) ( )
1 1

2
1 div
2

n n

n n

nt tin n n
i i i

t G t G

z
L z dG dt z V z dG dt

t− −

 ∂   = ⋅ + ⋅ ⋅     ∂  
 


 

( )
1

div
n

n

t
n n
i i

t G
z k gradz dG dt

−

 − ⋅ ⋅  
 


. 

(15)
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It is obvious that: 

( ) ( )( )
1

2
21 1 , , ,

2 2
n

n

nt i n
i n

t G G

z
dG dt z x y z t dG

t−

 ∂ ⋅ =   ∂
 

 

( )( ) ( ) ( ) ( ) ( )2 2

2 1
1 1

1 1 1, , , , , , , , ,
2 2 2

n n n
i n i n i nL G L GG

z x y z t dG z x y z t z x y z t−
− −− = − . 

(16)

Here, we take advantage of the fact that: 

( ) ( )1
1 1, , , , , ,n n

i n i nz x y z t z x y z t−
− −≡ . 

Using the Gauss formula (theorem), we transform the second term on the left side of 
equality (15) considering the boundary conditions (10)–(13). For convenience, we intro-
duce the notation: 

( ), , , if 0
, if 0

n n

n

x y z u v
v

+
+  ∈ Γ ≡ ≥Σ = 

Φ <

 


. 

We have: 

( ) ( )
1 1

2
div

2
n n

n n

t t
n n nn
i i i

t G t

u
z V z dG dt z d dt

+
− −

+

Σ

  ⋅ ⋅ = Σ     
   


. (17)

Next, we transform the expression ( )
1

div grad
n

n

t
n n
i i

t G
z k z dG dt

−

 
  
 


, included in the ex-

pression for ( )n
iL z . We derive some generalization of Green’s first formula as applied to 

this expression. Then, we consider a vector function: 

A P i Q j R k≡ ⋅ + ⋅ + ⋅
  

, 

where ( ), , ,
n

n i
i h

zP x y z t z k
x

∂
≡

∂
, ( ), , ,

n
n i
i n

z
Q x y z t z k

y
∂

≡
∂

, ( ), , ,
n

n i
i v

zR x y z t z k
z

∂
≡

∂
, ( ), ,x y z G∈ , 

and 1n nt t t− ≤ ≤ , 1, ,n N=  . 
We consider the expression div

G
A dG


, which, in accordance with the Ostrograd-

sky–Gauss formula, can be written as the flow of a vector function A


 through the bound-
ary surface Γ  of the domain G : 

div nAdG A d= Σ  


, (18)

where nA  is the normal component of vector A


 (in the direction of the outer normal to 
Γ ) on the border Γ .  

Considering the boundary conditions (10)–(13), it is easy to see that: 

( )2

H H

n
n ni

n v i i v i
Г

z
A d k z d k z d

z
ε

Σ Σ

∂
Σ = ⋅ ⋅ Σ = − ⋅ Σ  ∂

 , (19)

since the flow is zero on the remaining parts of the boundary Γ  (relations (10), (11), (12)). 
We then return to the expression div

G
A dG


, which can be represented as: 

( )
2 2

2 2div
n n

n i i
h i

G G

z z
A dG k z dG

x y
 ∂ ∂

= ⋅ +   ∂ ∂ 


 (20)
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222n n
n i i i i
i v h v

G G G

z z z z
z k dG k dG k dG

z z x y z

    ∂ ∂ ∂ ∂ ∂  + + + +        ∂ ∂ ∂ ∂ ∂       
. 

From relations (18), (19), and (20), we have an equality, which can be considered the 
first Green’s formula in relation to our problem: 

2 2

2 2

n n n
n i i i

h i i v
G

z z z
k z z k dG

z zx y
    ∂ ∂ ∂∂+ + =     ∂ ∂∂ ∂     

 

( )
2 2 2

2

H

n n n
n i i i

i v i h v
G G

z z zk z d k dG k dG
x y z

ε
Σ

      ∂ ∂ ∂
 = − Σ − + −       ∂ ∂ ∂       

 

(21)

Substituting the right parts of equalities (16), (17), and (21)—the last one with a minus 
sign—into relation (15), we obtain:  

( ) ( ) ( ) ( ) ( ) ( )
2 2

1

21
1

1 1, , , , , ,
2 2 2

n

n

t
n n n nn
i i n i n iL G L G t

u
L z z x y z t z x y z t z d dt

+
−

+
−

−
Σ

 
= − + Σ  

 


 

1

2 2 2
n

n

n n nt
i i i

h v
t G G

z z zk dG k dG dt
x y z−

       ∂ ∂ ∂  + + +        ∂ ∂ ∂        
 

( )
1

2n

n

t
n

i v i
t

k z d dtε
+

− Σ

 + Σ  
 

 

(22)

Let xH , yH , and zH  be the maximum dimensions of the region G  in the direc-
tions of the coordinate axes Ox , Oy , and Oz , respectively: 

( )sup ,x
A G
A G

H A Aρ
′∈
′′∈

′ ′′= , where ( ), ,A x y z G′ ′= ∈ , ( ), ,A x y z G′′ ′′= ∈ , 

( )sup ,y
B G
B G

H B Bρ
′∈
′′∈

′ ′′= , where ( ), ,B x y z G′ ′= ∈ , ( ), ,B x y z G′′ ′′= ∈ , 

( )sup ,z
C G
C G

H C Cρ
′∈
′′∈

′ ′′= , where ( ), ,C x y z G′ ′= ∈ , ( ), ,C x y z G′′ ′′= ∈ , 

where ( ),P Qρ  is the Euclidean distance function in G . Then, the Poincaré inequalities 
take place, which are further used to estimate the functional (22) and, as a result, to esti-
mate ( ) ( )2

, , ,n
i n L G

z x y z t : 

( )
2 2

2

2 2

1 14
n n

ni i
h h i

G Gx y

z zk dG k z dG
x y H H

      ∂ ∂
 + ≥ +       ∂ ∂       

, (23)

( )
min

2
2

2

14
n

ni
v v i

G Gz

zk dG k z dG
z H

 ∂
≥  ∂ 

, (24)

where 
( ){ }

min
min , ,v vG

k k x y z=
. 

Considering Equations (14) and (22), as well as inequalities (23) and (24), we arrive 
at the following inequality: 

( )
( )

( )
( )2 2

2 21
1

1 1, , , , , ,
2 2L G L G

n n
i n i nz x y z t z x y z t−

−≤  (25)
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( )( ) ( )
1 1

2

2
n n

i i
n n

t t
n n n nn
q q i i

t G t

u
R R z dG dt z d dt

+
− −

+

Σ

  + − − Σ     
   

  

( )
min

1

2

2 2 2

1 1 14 4
n

n

t
n

h v i
t G x y z

k k z dG dt
H H H−

   
 − + +          

 

( )
1

2n

n

t
n

i v i
t

k z d dtε
+

− Σ

 − Σ  
 

 

In what follows, on the right side of the inequality, we omit the terms of the form: 

( )
1

2

2
n

n

t
nn
i

t

u
z d dt

+
−

+

Σ

 
− Σ  

 


 and ( )

1

2n

n

t
n

i v i
t

k z d dtε
+

− Σ

 − Σ  
 

. 

Because of this, the right side of inequality (25) only increases. To complete the eval-
uation, we consider the expression: 

( )( )
1

n

i i
n

t
n n n n
q q i i

t G
R R z dG dt S

−

 − ≡  
 

 . 

For simplicity, we consider the case 1i F= . 
Based on equalities (2) and (5), we conclude that the value of this expression is max-

imum when there is no limit on the growth of the phytoplankton population by nutrients 
and abiogenic factors, that is, the population growth rate is the highest. Then, the value of 
the expression 1

nS  is the largest and is also the largest (”worst”) estimate of the error. 
Based on the maximum value of the coefficient 

1

n
FC , which is equal to the constant 

1NFK , 
we come to the estimate: 

( ) ( )
1 1 1 1

1

2

1 1
n

n

t
n n

NF F R F D F E i
t G

S K K K K z dG dt
−

  ≤ − − − ⋅      
. (26)

We note that, in accordance with the hydrobiological meaning of the constants in-
cluded in the expression in square brackets, 

1
0 1F RK<  , 

1
0F DK > , and 

1
0F EK >  and up 

to a certain point in time, when 
1 1

n
F NFC K= , the concentration may increase. Considering 

inequalities (25) and (26), we obtain (for 1i F= ),  

( )
( )

( )
( )

( )1 1 1 1
2 2

2 21
1 1 1, , , , , , 2 1

L G L G

n n
n n NF F R F D F Ez x y z t z x y z t K K K K−

−
≤ + − − −  

( )( )
min

1

2

12 2 2

1 1 14 , , ,
n

n

t
n

h v
t Gx y z

k k z x y z t dG dt
H H H −

    − + + ⋅           
 

(27)

We note that: 

( ) ( ) ( )( )
1

1 *1
1 1 1 1 1, , , , , , , , ,

n
n n

n n n n
zz x y z t z x y z t x y z t t t

t

−
−

− − −
∂

= + −
∂

, (28)

where 
*

1 1n n nt t t− −≤ ≤ , 
*

1 1n nt t t− −< ≤ , and 1nt t τ−− ≤ . 

Since all partial derivatives 
1n

iq
t

−∂
∂
  and 

1n
iq
t

−∂
∂

 are assumed to be continuous at the 

closure of the domain of definition, they are bounded; therefore: 
1 11

11
1 0

n nn
ni iq qz K const

t t t

− −−
−∂ ∂∂

= − ≤ ≡ >
∂ ∂ ∂


. (29)

Therefore, from (28) and (29), we have: 
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( )( ) ( )( )2 21 1
1 1 1 1, , , , , ,n n n

nz x y z t z x y z t K τ− −
−≤ + ≤  

( ) ( )( )2 21 1 2
1 12 n nz K τ− −≤ ⋅ +  

(30)

Then we have, considering (30): 

( )( ) ( )( )
1 1

2 2

1 1, , , , , ,
n n

n n

t t
n n

t G G t
z x y z t dG dt z x y z t dt dG

− −

   = ≤         
 

( )( ) ( )2 21 1 3
1 1 12 , , , 2 mesn n

n
G

z x y z t dG K Gτ τ− −
−≤ +  

(31)

where 
mes

G
G dG≡ 

. 
Considering estimates (27) and (31), we have the inequality: 

( )
( )

( )( 1 1 1 1
2

2

1 , , , 1 4 1
L G

n
n NF F R F E F Dz x y z t K K K Kτ ≤ + − − −  

( )
( )min

2

21
1 12 2 2

1 1 14 , , ,
L G

n
h v n

x y z

k k z x y z t
H H H

−
−

  
− + + ⋅        

 

( )21 3
12 mesnK Gτ−+  

(32)

For convenience, we denote: 

( )1 1 1 1 min2 2 2

1 1 14 1 4NF F R F E F D h v
x y z

K K K K k k
H H H

ατ τ
   
 ≡ − − − − + +        

, 

( )23 1 3
12 mesnK Gβτ τ−≥ , ( )( )21

11
max 2mesn

n N
K Gβ −

≤ ≤
= ⋅ . 

Then, estimate (32) can be written in a compact form as follows: 

( )
( )

( ) ( )
( )2 2

2 21 3
1 1 1, , , 1 , , ,

L G L G

n n
n nz x y z t z x y z tατ βτ−

−≤ − + . 

It is easy to distinguish (can be proved by induction) that the chain of inequalities–
equalities is true: 

( )
( )

( ) ( )
( )

( )
2 2

22 2 3
1 1 2, , , 1 , , , 1

L G L G

n
n nz x y z t z x y z tατ ατ βτ−

−
 ≤ + + + 
 

 

( ) ( )
( )

( )
2

223 2 3 3
1 21 , , , 1

L G

n
nz x y z tβτ ατ ατ βτ βτ−

−+ = + + + + ≤  

( ) ( )
( )

( ) ( )
2

22 3 3 3 3
1 31 , , , 1 1

L G

n
nz x y z tατ ατ βτ ατ βτ βτ−

−
 ≤ + + + + + + = 
 

 

( ) ( )
( )

( ) ( )( )
2

23 23 3
1 31 , , , 1 1 1

L G

n
nz x y z tατ ατ ατ βτ−

−= + + + + + + ≤  

( ) ( )
( )

( )
2

2 10 3
1 0

1
1 , , , 1

L G

nn K

K
z x y z tατ βτ ατ −

=
≤ + + +  

(33)

We note that: 

( )0
1 0, , , 0z x y z t ≡ ,  (34)
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and the sum ( ) 1

1
1

n K
n

K
S ατ −

=
≡ +  is estimated as follows: It is obvious that 

( )
( )

( )
1

1
1

1

1
1

1

n
n K

n n
K

S
ατ

ατ
ατ

−
−

−
=

+
= + =

+
 

( )
( ) ( )

1
2 1

1 1 11 1
1 1 1

n
nατ

ατ ατ ατ
−

−

 
 = + + + + +
 + + + 

  

(35)

The final sum in parentheses on the right side of equality (35) is the sum of a finite 
number (n terms) of a convergent geometric progression, in which the first term is 1 and 

the denominator is 1
1

q
ατ

≡
+

. Then, the sum is written as: 

( )
( )

1
1

1 11 1
1 1

n
n nS ατ

ατ ατ
−

−

 
 = + + + + =
 + + 

  

( )
( ) ( ) ( )1

0

1 1 11 11 1 1
11

n n T
n

n

eC
αατ ατ

ατ
ατ ατ ατ ατατ

−
   + − +
  = − + − = ≤ ≤
   ++  

 

(36)

where 0C const= . Considering (33), (34), and (36), we obtain the following estimate: 

( )
( )2

32 20
1 0, , ,

L G

n
n

Cz x y z t C βτβ τ
ατ α

≤ ≤ . 

The last inequality implies an estimate that guarantees the closeness (convergence at 
0τ → ) of the solutions of the linearized and nonlinear problems for the substation 1F  

(initial function 
1 1Fq q≡ ) in ( )2L G  on the sequence of grids ( )0τω τ → , and the fulfill-

ment in the case of any τ  inequality: 

( )
( )2

1

2

1 1
1,2, ,

0

, , ,
L G

n
n

n N
C const

z x y z t C τ
=

≡ >

≤


. 

It should be noted that from the condition of periodicity ( ) ( )
1 1

, , , 0 , , ,F Fq x y z q x y z T=

and the chosen method of linearization of the problem, it follows that ( )1 , , , 0N
Nz x y z t = . 

In addition, there is a (perhaps not the only) moment of time *
1T , *

1T T< , after which 
the decrease in the error begins. Non-uniqueness can be caused by the entry of biogenic 
components into area G  from any source. By analogous reasoning, one can prove that: 

( ) ( )2
2 2, , ,n

n L G
z x y z t C τ≤ , ( ) ( )2

3 3, , ,n
n L G

z x y z t C τ≤ , 

where 2C  and 3C  are positive constants. 

4. Discussion 
Analytical study of a mathematical model is an important stage of mathematical 

modeling, and should precede computational experiments. Often, this step is skipped and 
researchers immediately proceed to the application of numerical methods and computa-
tional experiments. Previously, in [29], the authors’ team researched the continuous prob-
lem (1) with initial and boundary conditions attached to it. For the proposed model, non-
linear source functions are linearized on a uniform time grid, wherein the values of the 
nonlinear terms are determined as their final values in the previous time layer (with a 
delay) and a chain of initial and final solutions of diffusion–convection–reactions initial-
boundary value problems is formed. Sufficient conditions for the solutions’ existence and 
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uniqueness to initial-boundary value problems of the dynamics of plankton populations 
and biogeochemical cycles for a system of partial differential equations in the Hilbert 
space L2 are determined. For this, quadratic functionals are constructed and, on the basis 
of the energy method, the Gauss and Poincaré theorems are referred to, inequalities are 
determined that guarantee their positivity, and the solutions existence, uniqueness and 
continuous dependence on the right-hand side functions. In this work, the analytical 
study of the model is continued. Along with the study of the correctness of the formula-
tion of the initial-boundary problem of biological kinetics and geochemical processes, the 
convergence of the above chain of linearized problems to the solution of the initial non-
linear problems in the L2 space norm was carried out as the time step tended to zero. In 
the course of the study, it was shown that the sequence of solutions of the resulting chain 
of linearized equations, as the time step tends to zero, tends to solve the original nonlinear 
problem in the L2 space norm. 

According to the authors, there are no similar results in this area. The analytical study 
of the described model of biological kinetics and geochemical cycles is quite new, since 
the authors of other works were focused on practical results and forecasting. There are 
practically no analytical studies of the correctness and uniqueness of the solution of the 
formulated problems. 

5. Conclusions 
The authors studied the mathematical aspects of the model of geochemical cycles and 

biological kinetics of a multispecies model of populations, considering the following fac-
tors: the movement of the water flow, the spatially uneven distribution of temperature 
and salinity, as well as the interaction of the main biogenic substances—compounds of 
nitrogen, phosphorus, and the main species of plankton populations, including their 
growth, reproduction, natural decrease in numbers, etc. The input data for the model of 
biogeochemical processes are of the form of the velocity vector of the aquatic environ-
ment, which is calculated on the basis of the model of hydrodynamics of coastal systems 
[30]. Combining these two models allows us to simulate the researched processes in a 
medium with a significant density gradient and a large difference in depths and considers 
the complex shape of the computational domain. The authors’ team developed difference 
schemes that allow for the consideration of these features of coastal systems [24]. 

The analytical study presented in this article allowed us to apply numerical methods 
to the proposed model of biogeochemical processes and to conduct a number of compu-
tational experiments. For example, the geographic dynamics of phytoplankton popula-
tions in the northeastern part of the Azov Sea (Taganrog Bay) was studied depending on 
changes in the hydrological regime [27], and forecasts were made for changes in algal 
habitats under conditions of increased water salinity. The results of diagnostic modeling 
are in good agreement with field data; the obtained distributions of phytoplankton con-
centrations qualitatively coincide with satellite images. A further goal of the study of this 
model is to determine, using numerical analysis, a set of parameters for problems of the 
dynamics of plankton populations and biogeochemical cycles, on the basis of the obtained 
analytical estimates, the infinitesimal change of which leads to bifurcation of the solutions 
of the dynamic system. This would explain such phenomenon as the emergence of stable 
spatial structures of phytoplankton. We also plan to validate the constructed model based 
on Earth remote sensing data.  
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