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1. Introduction and Preliminaries

Best proximity point theory provides basic tools to find approximate solutions of
problems in mathematics and related disciplines, particularly whenever an exact solution
does not exist.

For a non-self-mapping T : M→ N, where M and N are two nonempty subsets of a
nonempty set Ω, a point m ∈ M is an exact solution or the fixed point (FP) of T if m = T m.
In the case where M and T (M) have an empty intersection, then T has no FP. For such
situations, it is better to find a point m ∈ M such that the distance between m and T m is
minimized. That is,

ς(m, T m) = ς(M, N) (1)

where
ς(M, N) = inf

m∈M,n∈N
ς(m, n),

and ς is a metric on Ω. A point m in M that satisfies (1) is called the best proximity point
(BPP) of T . In the literature, many mathematicians have contributed to the development
of the BPP theory of metric spaces. The main objective of this theory is to develop neces-
sary and sufficient conditions that ensure the existence of best proximity points (BPP(s))
of T (a non-self-mapping of certain distance space). For more details, one can see the
references [1–4].

If M = N = Ω, in (1) (that is, T is self-mapping), then ς(m, T m) = 0 or m = T m. In
this case, m becomes an FP of T . Therefore, BPP theory is a natural generalization of FP
theory.

In 1969, Fan [5] provided a remarkable result in BPP theory. After that, many math-
ematicians have contributed to the development of BPP theory with different proximal
contractions [6–8].
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One interesting proximal contraction is the α− ψ−proximal (αψ) contraction by Jleli
and Samet [9], and they have developed some BPP(s) results in metric space (in short, MS).
Abkar and Gabeleh [10] developed some BPP(s) for Suzuki-type contractions. Hussain
et al. [11] generalized the αψ contraction to the Suzuki-type αψ contraction and developed
some BPP(s) results for it.

Recently, Khan et al. [12] generalized the contraction used in [11] and developed some
BPP(s) results in the domain of MS.

After the development of fixed points (FP) results for multivalued mappings by
Nadler [13] in 1969, many mathematicians extended BPP theory from single-valued map-
pings to multivalued mappings. For instance, Ali et al. [14] in 2014 extended the αψ

contraction to αψ multivalued contractions and developed some BPP(s) results for them.
Later on, MS was extended to the b-metric space (b-MS) by Bakhtin [15] in 1989 and

by Czerwik [16] in 1993. After that, a new area of research for the existence of BPP in
b-MS is opened up, and many researchers have developed BPP(s) results for single- as
well as multivalued mappings in the domain of b-MS. For more details, one can see the
references [17–21].

In this paper, we introduce a new multivalued Suzuki-type αψ (cyclic) contractions
in the domain of b-MS and develop some BPP(s) results. Examples have been given to
explain our main results and to show that our main results are the proper generalization of
results given in [12]. As an application of our results, we develop the optimum solution for
a system of ordinary differential equations.

Definition 1 ([15]). The mapping ς : Ω×Ω→ [0, ∞) is a b-metric, and (Ω, ς) is called b-MS if
the following hold:

(b1) ς(κ1,κ2) = 0 if and only if κ1 = κ2 for all κ1,κ2 ∈ Ω;
(b2) ς(κ1,κ2) = ς(κ2,κ1) for all κ1,κ2 ∈ Ω;
(b3) There exists a real number k ≥ 1 such that ς(κ1,κ2) ≤ k[ς(κ1,κ3) + ς(κ3,κ2)] for all

κ1,κ2,κ3 ∈ Ω.

Remark 1. If k = 1, then ς becomes a metric.

In this article, R+, R, N, N1, 2Ω\∅, denote the set of non-negative reals, reals, positive
integers, non-negative integers, and nonempty subsets of Ω, respectively. Define

M0 = {m ∈ M : ς(m, n) = ς(M, N) for some n ∈ N} and
N0 = {n ∈ N : ς(m, n) = ς(M, N) for some m ∈ M}

where M, N ∈ 2Ω\∅. If M0 is nonempty, then (M, N) has a weak P−property (shortly as
weak Pp) (compare with [22]) if{

ς(m1, n1) = ς(M, N),
ς(m2, n2) = ς(M, N),

implies ς(m1, m2) ≤ ς(n1, n2),

for all m1, m2 ∈ M and n1, n2 ∈ N.

Definition 2. A mapping T : M ∪ N → 2M\∅ ∪ 2N\∅ is said to be cyclic if T (m) ⊂ N for all
m ∈ M and T (n) ⊂ M for all n ∈ N.

In the following, we introduce multivalued α−proximal admissibles with respect to p
(for short, m− αp) for multivalued mappings (compared with [12]).
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Definition 3. A mapping T : M→ 2N\∅ is m− αp if
α(m1, m2) ≥ p(m1, m2),
ς(m3, n1) = ς(M, N),
ς(m4, n2) = ς(M, N),

implies α(m3, m4) ≥ p(m3, m4),

for all m1, m2, m3, m4 ∈ M and n1 ∈ T m1, n2 ∈ T m2, where α : M × M → [0, ∞) and
p : M×M→ [1, ∞).

Remark 2.

(i) If T : M→ 2N\∅ is replaced by T : M→ N, then T is α−proximal admissible with respect
to p (shortly as αp) (see [12]).

(ii) If p = 1 in the Definition 3, then T is called multivalued α−proximal admissible (compare
with [14]).

(iii) If p = 1 and 2N\∅ is replaced by N in the Definition 3, then T is called α−proximal
admissible (compare with [9]).

(iv) If M = N = Ω in the Definition 3, then T is called α−admissible with respect to p (for short,
α− p).

Consider the following class:
Ψ is a class of functions ψ : [0, ∞)→ [0, ∞), such that ψ is monotone increasing and

there exist µ0 ∈ N, a ∈ (0, 1), b ∈ [1, ∞), and a convergent series of non-negative numbers
∑∞

µ=1 uµ such that for any Υ ≥ 0,

bµ+1ψµ+1(Υ) ≤ abµψµ(Υ) + uµ

for all µ ≥ µ0. A function ψ ∈ Ψ is a “Bianchini-Grandolfi gauge function (also known as
(c)-comparison function)”.

Lemma 1 ([23]). If ψ ∈ Ψ, then

(i) (ψµ(Υ))µ∈N converges to 0 as µ→ ∞ for all Υ ∈ R+;
(ii) ψ(Υ) < Υ, for any Υ ∈ (0, ∞);
(iii) ψ is continuous at 0;
(iv) The series ∑∞

µ=0 bµψµ(Υ) converges for any Υ ∈ R+.

Throughout this article, we denote kς∗(κ1,κ2) = ς(κ1,κ2)− kς(M, N); CL(Ω) as the
closed subsets of Ω; K(Ω) as the compact subsets of Ω; BPP(T ) as the set of BPP(s) of T ;
and FP(T ) as the set of FP(s) of T .

Definition 4. Let (Ω, ς) be a b-MS and for every M, N ∈ 2Ω, the Pompeiu–Hausdorff metric
induced by ς is given by

H(M, N) =


max{supm∈M ς(m, N), supn∈N ς(M, n)}, if M 6= N 6= ∅
0, if M = N = ∅
+∞, otherwise

where ς(m, N) = inf{ς(m, n), n ∈ N}.

Definition 5 ([12]). Let (Ω, ς) be an MS, M, N ∈ CL(Ω) and α : M×M→ [0, ∞). T : M→
N is a Suzuki-type generalized αψ contraction if

ς(m1, T m1)− ς(M, N) ≤ α(m1, m2)ς(m1, m2) (2)

implies ς(T m1, T m2) ≤ ψ(Γ(m1, m2)), (3)
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for all m1, m2 ∈ M, where ψ ∈ Ψ and

Γ(m1, m2) = max



ς(m1, m2), ς(m1, T m1)− ς(M, N),
ς(m2, T m2)− ς(M, N), ς(m2, T m1)− ς(M, N),
ς(m1, T m2)− ς(M, N)

2
,

(ς(m1, T m1)− ς(M, N))(ς(m2, T m2)− ς(M, N))

1 + (ς(m1, m2))


.

Theorem 1 ([12]). Let (Ω, ς) be a complete MS, and M, N ∈ CL(Ω) with (M, N) has Pp. T :
M→ N is αp, a Suzuki-type generalized αψ contraction, and for nonempty set M0, T (M0) ⊆ N0.
Also suppose α(m0, m1) ≥ p(m0, m1) and ς(m1, T m0) = ς(M, N) for some m0, m1 in M0, and
T are continuous. Then, BPP(T ) is singleton.

In the following, we introduce generalized multivalued Suzuki-type αψ contractions
in b-MS.

Definition 6. Let (Ω, ς) be a b-MS, M, N ∈ CL(Ω). T : M → CL(N) is called a generalized
multivalued Suzuki-type αψ contraction of v type if

ς∗(m1, T m1) ≤ α(m1, m2)ς(m1, m2) implies H(T m1, T m2) ≤ ψ(v(m1, m2)), (4)

for all m1, m2 ∈ M, where α : M×M→ [0, ∞), ψ ∈ Ψ and

v(m1, m2) = max



ς(m1, m2),
ς(m1, T m1)− kς(M, N)

k
,

ς(m2, T m2)− kς(M, N)

k
, ς(m2, T m1)− ς(M, N),

ς(m1, T m2)− kς(M, N)

2k2 ,
(ς(m1, T m1)− kς(M, N))(ς(m2, T m2)− kς(M, N))

k(1 + k(ς(m1, m2))


.

Definition 7. Let (Ω, ς) be a b-MS, M, N ∈ CL(Ω). T : M → CL(N) is called a generalized
multivalued Suzuki-type αψ contraction of ξ type if

ς∗(m1, T m1) ≤ α(m1, m2)ς(m1, m2) implies H(T m1, T m2) ≤ ψ(ξ(m1, m2)), (5)

for all m1, m2 ∈ M, where α : M×M→ [0, ∞), ψ ∈ Ψ and

ξ(m1, m2) = max


ς(m1, m2),

ς(m1, T m1)− kς(M, N)

k
ς(m2, T m2)− kς(M, N)

k
,

ς(m2, T m1)− kς(M, N)

k

.

Definition 8. Let (Ω, ς) be a b-MS, M, N ∈ CL(Ω). T : M ∪ N → CL(M) ∪ CL(N) is called
a generalized multivalued Suzuki-type αψ cyclic contraction of v type if

ς∗(m1, T m1) ≤ α(m1, m2)ς(m1, m2) implies H(T m1, T m2) ≤ ψ(v(m1, m2)),
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for all m1, m2 ∈ M ∪ N, where α : M ∪ N ×M ∪ N → [0, ∞), ψ ∈ Ψ and

v(m1, m2) = max



ς(m1, m2),
ς(m1, T m1)− kς(M, N)

k
,

ς(m2, T m2)− kς(M, N)

k
, ς(m2, T m1)− ς(M, N),

ς(m1, T m2)− kς(M, N)

2k2 ,
(ς(m1, T m1)− kς(M, N))(ς(m2, T m2)− kς(M, N))

k(1 + k(ς(m1, m2))


.

Definition 9. Let (Ω, ς) be a b-MS, M, N ∈ CL(Ω). T : M ∪ N → CL(M) ∪ CL(N) is called
a generalized multivalued Suzuki-type αψ cyclic contraction of ξ type if

ς∗(m1, T m1) ≤ α(m1, m2)ς(m1, m2) implies H(T m1, T m2) ≤ ψ(v(m1, m2)),

for all m1, m2 ∈ M ∪ N, where α : M ∪ N ×M ∪ N → [0, ∞), ψ ∈ Ψ and

ξ(m1, m2) = max


ς(m1, m2),

ς(m1, T m1)− kς(M, N)

k
ς(m2, T m2)− kς(M, N)

k
,

ς(m2, T m1)− kς(M, N)

k

.

Remark 3.

(i) If in Definitions 6 and 7, T : M → CL(N) is replaced by T : M → N, then T is called
a generalized Suzuki-type αψ contraction of v type and a generalized Suzuki-type αψ cyclic
contraction of ξ type, respectively.

(ii) If in Definition 6 T : M → CL(N) is replaced by T : M → N, and v is replaced by v′,
where

v′(m1, m2) = max



ς(m1, m2),
ς(m1, T m1)− kς(M, N)

k
,

ς(m2, T m2)− kς(M, N)

k
,

ς(m2, T m1)− kς(M, N)

k
,

ς(m1, T m2)− kς(M, N)

2k2 ,
(ς(m1, T m1)− kς(M, N))(ς(m2, T m2)− kς(M, N))

k(1 + k(ς(m1, m2))


,

then T is called a generalized Suzuki-type αψ contraction of v′ type.
(iii) If in Definitions 8 and 9 T : M ∪ N → CL(M) ∪ CL(N) is replaced by T : M ∪ N →

M ∪ N, then T is called a generalized Suzuki-type αψ cyclic contraction of v type and a
generalized Suzuki-type αψ cyclic contraction of ξ type, respectively.

2. Best Proximity Points Results for Generalized Multivalued Suzuki-Type
αψ Contractions

The following is our main result of this section.

Theorem 2. Let (Ω, ς) be a complete b-MS (b-CMS) M, N ∈ CL(Ω) with M0 6= φ. Let
T : M→ CL(N) be a generalized multivalued Suzuki-type αψ contraction of v type satisfying:

1. For each m ∈ M0, T (m) ⊆ N0 and (M, N) has a weak Pp;
2. T is m− αp;
3. There exist elements m0 and m1 in M0 and n1 ∈ T m0 such that ς(m1, n1) = ς(M, N) and

α(m0, m1) ≥ p(m0, m1);
4. T is continuous.

Then, BPP(T ) is nonempty.
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Proof. From (3), there exist m0 and m1 in M0 and n1 ∈ T m0, such that

ς(m1, n1) = ς(M, N), α(m0, m1) ≥ p(m0, m1); (6)

if n1 ∈ T m1, then

ς(M, N) ≤ ς(m1, T m1) ≤ ς(m1, n1) = ς(M, N),

which implies ς(m1, T m1) = ς(M, N). That is, m1 is the BPP of T . Next, if n1 /∈ T m1, then,

ς(m0, T m0) ≤ ς(m0, n1) ≤ kς(m0, m1) + kς(m1, n1),

ς(m0, T m0) ≤ kς(m0, m1) + kς(M, N),

therefore,
kς∗(m0, T m0) ≤ kς(m0, m1).

Thus, we get:

ς∗(m0, T m0) ≤ ς(m0, m1) ≤ p(m0, m1)ς(m0, m1) ≤ α(m0, m1)ς(m0, m1).

From (4), we get:

H(T m0, T m1) ≤ ψ(v(m0, m1))

≤ ψ


max



ς(m0, m1),
ς(m0, T m0)− kς(M, N)

k
,

ς(m1, T m1)− kς(M, N)

k
, ς(m1, T m0)− ς(M, N),

ς(m0, T m1)− kς(M, N)

2k2 ,
(ς(m0, T m0)− kς(M, N)(ς(m1, T m1)− kς(M, N))

k(1 + kς(m0, m1))





≤ ψ


max



ς(m0, m1),
ς(m0, n1)− kς(M, N)

k
,

ς(m1, T m1)− kς(M, N)

k
, ς(m1, n1)− ς(M, N),

ς(m0, T m1)− k2ς(M, N)

2k2 ,
(ς(m0, n1)− kς(M, N)(ς(m1, T m1)− kς(M, N))

k(1 + kς(m0, m1))




.

Hence,
H(T m0, T m1) ≤ ψ max{ς(m0, m1), ς(n1, T m1)}.

Consequently,

ς(n1, T m1) ≤ H(T m0, T m1) ≤ ψ max{ς(m0, m1), ς(n1, T m1)}.

If max{ς(m0, m1), ς(n1, T m1)} = ς(n1, T m1), then

ς(n1, T m1) ≤ ψ(ς(n1, T m1) < ς(n1, T m1),

which is a contradiction. Hence,

ς(n1, T m1) ≤ ψ(ς(m0, m1)). (7)

Now for q > 1, there exists n2 ∈ T m1 such that

ς(n1, n2) < qς(n1, T m1),
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and using (7), we have
ς(n1, n2) < qψ(ς(m0, m1)). (8)

As n2 ∈ T m1 ⊆ N0, there exists m2 ∈ M0 such that

ς(m2, n2) = ς(M, N). (9)

Note that m2 6= m1; otherwise, m1 becomes the BPP of T . From (6) and (9), we get

α(m0, m1) ≥ p(m0, m1),
ς(m1, n1) = ς(M, N),
ς(m2, n2) = ς(M, N).

As T is m− αp, and (M, N) satisfies the weak Pp, we obtain

α(m1, m2) ≥ p(m1, m2), ς(m1, m2) ≤ ς(n1, n2). (10)

From (8) and (10), we get:

ς(m1, m2) ≤ ς(n1, n2) < qψ(ς(m0, m1)). (11)

Since ψ is strictly increasing, therefore,

ψς(m1, m2) < ψ(qψ(ς(m0, m1))).

Set

q1 =
ψ(qψ(ς(m0, m1)))

ψ(ς(m1, m2))
> 1. (12)

If n2 ∈ T m2, then m2 is the BPP of T and the proof completes. So, suppose n2 /∈ T m2, then

ς(m1, T m1) ≤ ς(m1, n2) ≤ kς(m1, m2) + kς(m2, n2);

therefore,

ς∗(m1, T m1) ≤ ς(m1, m2) ≤ p(m1, m2)ς(m1, m2) ≤ α(m1, m2)ς(m1, m2).

From (4), we get:
H(T m1, T m2) ≤ ψ(v(m1, m2)),

where

v(m1, m2) = max



ς(m1, m2),
ς(m1, T m1)− kς(M, N)

k
,

ς(m2, T m2)− kς(M, N)

k
, ς(m2, T m1)− ς(M, N),

ς(m1, T m2)− kς(M, N)

2k2 ,
(ς(m1, T m1)− kς(M, N)(ς(m2, T m2)− kς(M, N))

k(1 + kς(m1, m2))


≤ max{ς(m1, m2), ς(n2, T m2)}.

Hence,
H(T m1, T m2) ≤ ψ max{ς(m1, m2), ς(n2, T m2)}.

This implies

ς(n2, T m2) ≤ H(T m1, T m2) ≤ ψ max{ς(m1, m2), ς(n2, T m2)}.
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If max{ς(m1, m2), ς(n2, T m2)} = ς(n2, T m2), then

ς(n2, T m2) ≤ ψ(ς(n2, T m2) < ς(n2, T m2),

which is a contradiction. Hence,

ς(n2, T m2) ≤ ψ(ς(m1, m2)).

Now, again for q1 > 1, there exists n3 ∈ T m2 such that

ς(n2, n3) < q1ς(n2, T m2) ≤ q1ψ(ς(m1, m2)).

From above and (12), we get

ς(n2, n3) ≤ ψ(qψ(ς(m0, m1)). (13)

As n3 ∈ T m2 ⊆ N0, there exists m3 ∈ M0 such that

ς(m3, n3) = ς(M, N). (14)

Note that m3 6= m2; otherwise, m2 becomes the BPP of T . From (6) and (14), we get

α(m1, m2) ≥ p(m1, m2),
ς(m2, n2) = ς(M, N),
ς(m3, n3) = ς(M, N).

As T is m− αp and (M, N) satisfies the weak Pp, we obtain

α(m2, m3) ≥ p(m2, m3), ς(m2, m3) ≤ ς(n2, n3), (15)

From (13) and (15), we get

ς(m2, m3) ≤ ψ(qψ(ς(m0, m1)). (16)

Since ψ is strictly increasing, therefore

ψ(ς(m2, m3)) ≤ ψ2(qψ(ς(m0, m1)).

Continuing this, we obtain sequences {mµ} ⊆ M0 and {nµ} ⊆ N0, such that

α(mµ, mµ+1) ≥ p(mµ, mµ+1), (17)

ς(mµ+1, nµ+1) = ς(M, N),

ς(mµ+2, nµ+2) = ς(M, N),

ς(nµ+1, nµ+2) < qµ(ψ(ς(mµ, mµ+1))), (18)

where

qµ =
ψµ(qψ(ς(m0, m1)))

ψ(ς(mµ, mµ+1))
> 1, (19)

for all µ ∈ N. Using (19) in (18) we get

ς(nµ+1, nµ+2) < ψµ(qψ(ς(m0, m1))), (20)

for all µ ∈ N. Since T is m− αp and (M, N) satisfies the weak Pp, we obtain

α(mµ+1, mµ+2) ≥ p(mµ+1, mµ+2), ς(mµ+1, mµ+2) ≤ ς(nµ+1, nµ+2). (21)
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Now, to prove {mµ} is a Cauchy sequence in M, let ε > 0 be given. Since

∞

∑
µ=1

kµψµ(qψ(ς(m1, m0)) < ∞,

there exists some positive integer h = h(ε) such that

∞

∑
l≥h

klψl(qψ(ς(m1, m0)) < ε.

Using the triangular inequality, we obtain

ς(mµ, mλ) ≤ kς(mµ, mµ+1) + k2ς(mµ+1, mµ+2)
+ · · ·+kλ−µς(mλ−1, mλ).

.

This implies

ς(mµ, mλ) ≤
kψµ−1(qψ(ς(m1, m0) + k2ψµ(qψ(ς(m1, m0))
+ · · · · ·+kλ−2ψλ−1(qψ(ς(m1, m0))

≤
1

kµ−2 (k
µ−1ψµ−1(qψ(ς(m1, m0)) + kµψµ(qψ(ς(m1, m0))

+ · · · · ·+kλ−2ψλ−2(qψ(ς(m1, m0)))

≤ 1
kµ−2

λ−1

∑
i=µ

kiψi(qψ(ς(m1, m0))

≤ 1
kµ−2

∞

∑
i≥h

kiψi(qψ(ς(m1, m0))

<
1

kµ−2 ε ≤ ε,

for all λ > µ > h′ > h, where h′ = max{2, h}. Thus, {mµ} is a Cauchy sequence in M.
Similarly, {nµ} is a Cauchy sequence in N. Since (Ω, ς) is complete and M and N are closed,
there exist m∗ ∈ M and n∗ ∈ N such that mµ → m∗ and nµ → n∗ as µ → ∞, respectively.
Since ς(mµ, nµ)→ ς(M, N) for all µ ∈ N. We conclude

lim
µ→∞

ς(mµ, nµ) = ς(m∗, n∗) = ς(M, N).

Continuity of T implies
lim

µ→∞
H(T mµ, T m∗) = 0.

As nµ+1 ∈ T mµ:

ς(n∗, T m∗) ≤ kς(n∗, nµ+1) + kς(nµ+1, T m∗) ≤ kς(n∗, nµ+1) + kH(T mµ, T m∗).

Letting µ→ ∞, we get:
ς(n∗, T m∗) ≤ 0,

which implies n∗ ∈ T m∗ = T m∗. Furthermore,

ς(M, N) ≤ ς(m∗, T m∗) ≤ ς(m∗, n∗) = ς(M, N);

hence,
ς(m∗, T m∗) = ς(M, N),

which implies m∗ is a BPP(T ).

Next is the single-valued version of Theorem 2.
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Theorem 3. Let (Ω, ς) be a b-CMS, M, N ∈ CL(Ω) with M0 6= φ. Let T : M → N be a
generalized Suzuki-type αψ contraction of v type satisfying the following:

1. For each m ∈ M0, we have T (m) ∈ N0, and (M, N) has the Pp;
2. T is αp;
3. There exist elements m0 and m1 in M0 such that ς(m1, T m0) = ς(M, N) and α(m0, m1) ≥

p(m0, m1);
4. T is continuous.

Then, BPP(T ) is nonempty.

Proof. The proof follows from Theorem 2.

Corollary 1. Let (Ω, ς) be a b-CMS, M, N ∈ CL(Ω) with M0 6= φ. Let T : M → N be a
generalized Suzuki-type αψ contraction of v′ type satisfying the following:

1. For each m ∈ M0, we have T (m) ∈ N0, and (M, N) has the Pp;
2. T is αp;
3. There exist elements m0 and m1 in M0 such that ς(m1, T m0) = ς(M, N) and α(m0, m1) ≥

p(m0, m1);
4. T is continuous.

Then, BPP(T ) is singleton.

Proof. The existence of BPP directly follows from Theorem 2. For uniqueness, suppose on
the contrary that m1 and m2 are two distinct BPP(s). Then,

ς(m1, T m1) = ς(M, N),

ς(m2, T m2) = ς(M, N).

Then, Pp implies
ς(m1, m2) = ς(T m1, T m2). (22)

Now,

ς∗(m1, T m1) =
1
k
(ς(m1, T m1)− kς(M, N))

=
1
k
(ς(M, N)− kς(M, N)) ≤ 0 ≤ α(m1, m2)ς(m1, m2),

which implies
ς(T m1, T m2) ≤ ψ(v′(m1, m2)).

It further implies

ς(m1, m2) ≤ ψ(↔′(m1, m2)) ≤ ψ(ς(m1, m2)) < ς(m1, m2),

which is a contradiction. Hence, BPP(T ) is singleton.

Remark 4. If we take b = 1 and p = 1, then Theorem 1 becomes the corollary of Corollary 1.

Now, we prove the following result without the assumption of continuity of the
mapping T .

Theorem 4. Let (Ω, ς) be a b-CMS, M, N ∈ K(Ω) with M0 6= φ. Let T : M → K(N) be a
generalized multivalued Suzuki-type αψ contraction of ξ type satisfying the following:

1. For each m ∈ M0, we have T (m) ⊆ N0, and (M, N) has a weak Pp;
2. T is m− αp;



Mathematics 2023, 11, 574 11 of 21

3. There exist elements m0 and m1 in M0 and n1 ∈ T m0 such that ς(m1, n1) = ς(M, N) and
α(m0, m1) ≥ p(m0, m1) ≥ 2k;

4. If {mµ} is a sequence in M such that α(mµ, mµ+1) ≥ p(mµ, mµ+1) ≥ 2k and mµ →
m ∈ M as µ → ∞, then there exists a subsequence {mµl} of {mµ} such that α(mµl , m) ≥
p(mµl , m) ≥ 2k for all l ≥ 1.

Then, BPP(T ) is nonempty.

Proof. From Theorem 2, we have:

ς(n1, T m1) ≤ ψ(ς(m0, m1)), (23)

as T m1 is compact; therefore, there exists n2 ∈ T m1 such that

ς(n1, n2) = ς(n1, T m1). (24)

Using (23) in (24), we get
ς(n1, n2) ≤ ψ(ς(m0, m1)). (25)

By assumption (1), we have T m1 ⊆ N0, so there exists m2 6= m1 ∈ M0 such that

ς(m2, n2) = ς(M, N); (26)

otherwise, m1 is the BPP of T . From (6) and (26), we get

α(m0, m1) ≥ p(m0, m1),
ς(m1, n1) = ς(M, N),
ς(m2, n2) = ς(M, N).

As T is m− αp and (M, N) satisfies the weak Pp, we obtain

α(m1, m2) ≥ p(m1, m2), ς(m1, m2) ≤ ς(n1, n2),

so
ς(m1, m2) ≤ ς(n1, n2) < ψ(ς(m0, m1)).

Continuing in a similar way as in Theorem 2, we get sequences {mµ} in M0 and {nµ} in
N0 such that

α(mµ, mµ+1) ≥ p(mµ, mµ+1) and mµ 6= mµ+1,

nµ ∈ T mµ−1 and nµ /∈ T mµ,

ς(mµ, nµ) = ς(M, N) and (27)

ς(mµ, mµ+1) ≤ ς(nµ, nµ+1) ≤ ψ(ς(mµ−1, mµ))).

Along similar lines as in Theorem 2, we can prove that {mµ} and {nµ} are Cauchy sequences
in M and N, respectively. Since (Ω, ς) is complete and M and N are closed, there exist
m∗ ∈ M and n∗ ∈ N such that mµ → m∗ and nµ → n∗ as µ → ∞, respectively, and
ς(m∗, n∗) = ς(M, N). Now, we show that m∗ is the BPP of T . If there exists a subsequence
{mµl} of {mµ} such that T mµl = T m∗ for all l ≥ 1, then

ς(M, N) ≤ ς(mµl+1, T mµl ) ≤ ς(mµl+1, nµl+1) = ς(M, N),

ς(M, N) ≤ ς(mµl+1, T m∗) ≤ ς(M, N) for all l ≥ 1.

Letting l → ∞, we obtain

ς(M, N) ≤ ς(m∗, T m∗) ≤ ς(M, N).
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Hence, m∗ is the BPP of T . Thus, we may assume T mµ 6= T m∗ for all µ ∈ N. From assump-
tion (4), we have a subsequence {mµl} of {mµ} such that α(mµl , m∗) ≥ p(mµl , m∗) ≥ 2k
for all l ≥ 1. For nµl+1 ∈ T mµl

ς(mµl , T mµl ) ≤ ς(mµl , nµl+1) ≤ kς(mµl , mµl+1) + kς(mµl+1, nµl+1),

ς(mµl , T mµl ) ≤ kς(mµl , mµl+1) + kς(M, N);

therefore,
ς∗(mµl , T mµl ) ≤ ς(mµl , mµl+1) (28)

and

kς∗(mµl+1, T mµl+1) = ς(mµl+1, T mµl+1)− kς(M, N)

≤ kς(mµl+1, mµl+2) + kς(mµl+2, T mµl+1)− kς(M, N)

≤ kς(mµl+1, mµl+2) + kς(mµl+2, nµl+2)− kς(M, N).

Using ς(mµl+2, nµl+2) = ς(M, N) and (27), we get

ς∗(mµl+1, T mµl+1) ≤ ς(mµl+1, mµl+2) < ς(mµl , mµl+1), (29)

and adding (28) and (29), we get

ς∗(mµl , T mµl ) + ς∗(mµl+1, T mµl+1) < 2ς(mµl , mµl+1).

Now, for α(mµl , m∗) ≥ p(mµl , m∗) ≥ 2k, if for some l ∈ N,

ς∗(mµl , T mµl ) ≥ α(mµl , m∗)ς(mµl , m∗) (30)

and
ς∗(mµl+1, T mµl+1) ≥ α(mµl+1, m∗)ς(mµl+1, m∗) (31)

holds, then we get

ς∗(mµl , T mµl ) ≥ α(mµl , m∗)ς(mµl , m∗) ≥ 2kς(mµl , m∗)

and
ς∗(mµl+1, T mµl+1) ≥ α(mµl+1, m∗)ς(mµl+1, m∗) ≥ 2kς(mµl+1, m∗).

By triangular inequality,

2ς(mµl , mµl+1) ≤ 2kς(mµl , m∗) + 2kς(mµl+1, m∗)

≤ ς∗(mµl , T mµl ) + ς∗(mµl+1, T mµl+1) < 2ς(mµl , mµl+1),

which is a contradiction. Hence, either

ς∗(mµl+1, T mµl+1) ≤ α(mµl+1, m∗)ς(mµl+1, m∗) (32)

or
ς∗(mµl , T mµl ) ≤ α(mµl , m∗)ς(mµl , m∗) (33)

holds for infinitely many l ∈ N. If (32) holds for infinitely many l ∈ N, then from (5), we get

H(T mµl , T m∗) ≤ ψ(ξ(mµl , m∗)).

For nµl+1 ∈ T mµl , we have ς(nµl+1, T m∗) ≤ H(T mµl , T m∗); therefore,

ς(nµl+1, T m∗) ≤ ψξ(mµl , m∗)), (34)
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where

ξ(mµl , m∗) = max


ς(mµl , m∗),

ς(mµl , T mµl )− kς(M, N)

k
,

ς(m∗, T m∗)− kς(M, N)

k
,

ς(m∗, T mµl )− kς(M, N)

k


≤ max

 ς(mµl , m∗), ς(mµl , mµl+1),
ς(m∗, T m∗)− kς(M, N)

k
, ς(m∗, mµl+1)

 ,

if

max
{

ς(mµl , m∗), ς(mµl , mµl+1),
ς(m∗, T m∗)− kς(M, N)

k
, ς(m∗, mµl+1)

}
=

ς(m∗, T m∗)− kς(M, N)

k
.

Then, from (34), we have

ς(nµl+1, T m∗) ≤ ψ

(
ς(m∗, T m∗)− kς(M, N)

k

)
. (35)

By triangular inequality, we have

1
k
(ς(mµl+1, T m∗)− kς(T mµl , mµl+1)) ≤ ς(T mµl , T m∗) ≤ ς(nµl+1, T m∗).

Using the fact that nµl+1 ∈ T mµl and by (35)

1
k
(ς(mµl+1, T m∗)− kς(M, N)) ≤ ψ

(
ς(m∗, T m∗)− kς(M, N)

k

)
.

Letting l → ∞ and using ψ(Υ) < Υ, we get

ς(m∗, T m∗)− kς(M, N)

k
<

ς(m∗, T m∗)− kς(M, N)

k
,

which is a contradiction. Hence,

ς(nµl+1, T m∗) ≤ ψ
(
max

{
ς(mµl , m∗), ς(mµl , mµl+1), ς(m∗, mµl+1)

})
.

Letting l → ∞, we get
n∗ ∈ T m∗.

Hence,
ς(M, N) ≤ ς(m∗, T m∗) ≤ ς(m∗, n∗) = ς(M, N).

Hence,
ς(m∗, T m∗) = ς(M, N),

which implies m∗ ∈ BPP(T ). Similarly, if (33) holds for infinitely many l ∈ N, the conclusion
holds.

Theorem 5. Let (Ω, ς) be a b-CMS, M, N ∈ CL(Ω) with M0 6= φ. Let T : M → N be a
generalized Suzuki-type αψ contraction of ξ type satisfying the following:

1. For each m ∈ M0, we have T (m) ∈ N0, and (M, N) has the Pp;
2. T is αp;
3. There exist elements m0 and m1 in M0 and n1 = T m0 such that ς(m1, n1) = ς(M, N) and

α(m0, m1) ≥ p(m0, m1) ≥ 2k;
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4. If {mµ} is a sequence in M such that α(mµ, mµ+1) ≥ p(mµ, mµ+1) ≥ 2k and mµ → m ∈
M as µ → ∞, then there exists a subsequence {mµl} of {mµ} such that α(mµl , m) ≥
p(mµl , m) ≥ 2k for all l ≥ 1.

Then, BPP(T ) is singleton.

Proof. The existence of BPP(s) follows from Theorem 4, and the uniqueness follows from
Theorem 3.

We give an example to illustrate the above theorems.

Example 1. Let Ω = R2, ς(P1, P2) = |x1 − x2|2 + |y1 − y2|2, where

P1(x1, y1), P2(x2, y2) ∈ Ω.

Then, ς is a b-metric with k = 2. Let

M = {(1, 2µ) : µ ∈ N1}, N =

{(
0,

1
2µ

)
: µ ∈ N1

}
∪ {(0, 0)},

which implies
ς(M, N) = 1.

Define mapping T : M→ 2N\∅ as

T (1, 2µ) =

{(
0,

1
2a

)
: 0 ≤ a ≤ µ

}
.

We have
M0 = {(1, 1)} and N0 = {(0, 1)},

which implies
T (M0) ⊆ N0.

α(κ1,κ2) =

{
ς(κ1,κ2) if κ1 6= κ2,
2 otherwise,

, ψ(Υ) =
9

10
Υ, and p(κ1,κ2) = 2.

Let P1 = (1, 2µ1), P2 = (1, 2µ2) ∈ M, where µ2 > µ1.
Now,

T (P1) =

{(
0,

1
2µ1

)
, · · ·, (0, 1)

}
and T (P2) =

{(
0,

1
2µ2

)
, · · ·, (0, 1)

}
.

It implies

H(T (P1), T (P2)) =

(
1

2µ1
− 1

2µ2

)2
=

(
2µ2−µ1 − 1

2µ2

)2

,

as µ2 − µ1 ≤ µ2 it implies
(

2µ2−µ1 − 1
2µ2

)2

<
1
4

; therefore,

H(T (P1), T (P2)) <
1
4

. (36)

Now, consider
ς(P1, P2) = (2µ2 − 2µ1)2 ≥ 1;

it implies
v(x, y) ≥ 1.

Therefore,

ψ(v(x, y)) ≥ 9
10

, (37)
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(36) and (37) implies
H(T (P1), T (P2)) < ψ(v(x, y)).

Therefore, T is generalized multivalued Suzuki-type αψ contraction of v type. Note that T (M0) ⊆ N0
and (M, N) satisfies a weak Pp. Furthermore, T is clearly m− αp. Theorem 2 implies T has a BPP,
which is (1, 1).

Now, we give an example that satisfies all the conditions of Theorem 3, whereas
Theorem 1 will not be applicable.

Example 2. Let Ω = {1, 2, 3, 4, 5}, such that

ς(1, 2) = 1, ς(1, 3) = 5, ς(1, 4) = 4, ς(1, 5) = 8, ς(2, 3) = 3,

ς(2, 4) = 6, ς(2, 5) = 9, ς(3, 4) = 7, ς(3, 5) = 10, ς(4, 5) = 13,

ς(x, y) = ς(y, x) and ς(x, x) = 0 for all x, y in Ω.

ς is not metric because
ς(1, 3) = 5 � 1 + 3 = ς(1, 2) + ς(2, 3).

For k =
5
4

, (Ω, ς) is a b-MS.

Suppose M = {2, 4} and N = {1, 3, 5}. Define T : M→ N by

T (2) = 1, T (4) = 3.

α(κ1,κ2) =

{
ς(κ1,κ2) if κ1 6= κ2,
0 otherwise,

, ψ(Υ) =
9

10
Υ, and p(κ1,κ2) = 2.

Note that
ς(M, N) = 1, M0 = {2} and N0 = {1}.

Here, we discuss different cases. Case (i), x = 2, y = 4, is as follows:

ς(2, T 2)− kς(M, N) = ς(2, 1)− kς(M, N) = 1− 5
4
= −1

4
≤ 36 = α(2, 4)ς(2, 4),

and
ς(T 2, T 4) = ς(1, 3) = 5 ≤ 9

10
(6) = ψ(v′(2, 4)).

Case (ii), x = 4, y = 2, is as follows:

ς(4, T 4)− kς(M, N) = ς(4, 3) = 7− 5
4
=

23
4
≤ 36 = α(4, 2)ς(4, 2),

and
ς(T 4, T 2) = ς(3, 1) = 5 ≤ 9

10
(6) = ψ(v′(4, 2).

Therefore T is a Suzuki-type generalized αψ contraction of v′ type. Note that T (M0) ⊆ N0, and
the pair (M, N) has Pp. Furthermore, T is clearly αp. All axioms of Theorems 3, hold. Therefore,
T has a unique BPP, which is 2.

However, if we define the usual metric d(x, y) = |x− y| on Ω, then Theorem 1 is not
applicable. For instance, if x = 2, y = 4, then

d(2, T 2)− d(M, N) = d(2, 1)− d(M, N) = 0 ≤ 4 = α(2, 4)d(2, 4),

whereas
d(T 2, T 4) = d(1, 3) = 2 � 9

10
(2) = ψ(Γ(2, 4).

Therefore, our results are the proper generalization of the results already exist in the literature.
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3. Best Proximity Points Results for Generalized Multivalued Suzuki-Type αψ

Cyclic Contractions

In this section, we derive the existence of BPP(s) for generalized multivalued Suzuki-
type αψ cyclic contractions.

Theorem 6. Let (Ω, ς) be a b-CMS, M, N ∈ CL(Ω) with M0 6= φ. Let T : M ∪ N →
CL(M) ∪ CL(N) be a generalized multivalued Suzuki-type αψ cyclic contraction of v type
satisfying the following:

(i) For every m ∈ M0, T (m) ⊆ N0, and for every n ∈ N0, T (n) ⊆ M0. (M, N) has the
weak Pp;

(ii) T is m− αp;
(iii) For m0, m1 in M0 and n1 ∈ T m0 such that ς(m1, n1) = ς(M, N) and α(m0, m1) ≥

p(m0, m1) for n0 and n1 in N0 and m1 ∈ T n0, such that ς(m1, n1) = ς(M, N) and
α(n0, n1) ≥ p(n0, n1);

(iv) T is continuous.

Then, there exist m∗ ∈ M such that ς(m∗, T m∗) = ς(M, N) and n∗ ∈ N such that
ς(n∗, T n∗) = ς(M, N).

Proof. Consider the restrictions T ′ : M → CL(N) and T ′′ : N → CL(M) of T on M and
N, defined as

T ′(m) = T (m) for all m ∈ M and T ′′(n) = T (n) for all n ∈ N,

respectively. Then, T ′ and T ′′ satisfy all the conditions of Theorem 2. Hence, by Theorem 2,
with mappings T ′ and T ′′, there exist m∗ ∈ M such that

ς(m∗, T ′m∗) = ς(m∗, T m∗) = ς(M, N)

and n∗ ∈ N such that ς(n∗, T ′′n∗) = ς(n∗, T n∗) = ς(M, N). This completes the proof.

Theorem 7. Let (Ω, ς) be a b-CMS, M, N ∈ CL(Ω) with M0 6= φ. Let T : M ∪ N → M ∪ N
be a generalized Suzuki-type αψ cyclic contraction of v type satisfying the following conditions:

(i) For every m ∈ M0, T (m) ∈ N0, and for every n ∈ N0, T (n) ∈ M0; (M, N) has the Pp;
(ii) T is m− αp;
(iii) For m0, m1 in M0 and n1 = T m0 such that ς(m1, n1) = ς(M, N) and α(m0, m1) ≥

p(m0, m1) and for n0 and n1 in N0 and m1 = T n0, such that ς(m1, n1) = ς(M, N) and
α(n0, n1) ≥ p(n0, n1);

(iv) T is continuous.
Then there exist m∗ ∈ M such that ς(m∗, T m∗) = ς(M, N) and n∗ ∈ N such that
ς(n∗, T n∗) = ς(M, N).

Proof. Following along similar lines of Theorem 6, we will obtain the required results.

In the following, we derived some fixed-points theorems from our main results.
If we take M = N = Ω in Theorems 2 and 4, then we have the following results.

Theorem 8. Let (Ω, ς) be a b-CMS and T : Ω→ CL(Ω) be an α− p such that

ς(κ1, T κ1) ≤ kα(κ1, y)ς(κ1,κ2) implies H(T κ1, T κ2) ≤ ψ(v(κ1,κ2)),

for all κ1,κ2 ∈ Ω where ψ ∈ Ψ satisfying the following:

(i) There exists κ0 ∈ Ω such that α(κ0, T κ0) ≥ p(κ0, T κ0);
(ii) T is continuous.

Then, FP(T ) is nonempty.
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Theorem 9. Let (Ω, ς) be a b-CMS and T : Ω→ K(Ω) be an α− p such that

ς(κ1, T κ1) ≤ kα(κ1,κ2)ς(κ1,κ2) implies H(T κ1, T κ2) ≤ ψ(ξ(κ1,κ2)),

for all κ1,κ2 ∈ Ω, where ψ ∈ Ψ satisfies the following:

(i) There exists κ0 ∈ Ω such that α(κ0, T κ0) ≥ p(κ0, T κ0) ≥ 2k;
(ii) If {κµ} is a sequence in Ω such that α(κµ,κµ+1) ≥ p(κµ,κµ+1) ≥ 2k andκµ → κ ∈ Ω as

µ→ ∞, then there exists a subsequence {κµl} of {κµ} such that α(κµl ,κ) ≥ p(κµl ,κ) ≥
2k for all l ≥ 1.

Then, FP(T ) is nonempty.

If we take ψ(Υ) = qΥ in Theorems 8 and 9, where 0 ≤ q < 1, then we can conclude
the following theorems.

Theorem 10. Let (Ω, ς) be a b-CMS and T : Ω→ CL(Ω) be an α− p such that

ς(κ1, T κ1) ≤ kα(κ1,κ2)ς(κ1,κ2) implies H(T κ1, T κ2) ≤ q(v(κ1,κ2)),

for all κ1,κ2 ∈ Ω, where q ∈ [0, 1) satisfies the following:

(i) There exists κ0 ∈ Ω such that α(κ0, T κ0) ≥ p(κ0, T κ0);
(ii) T is continuous.

Then, FP(T ) is nonempty.

Theorem 11. Let (Ω, ς) be a b-CMS and T : Ω→ K(Ω) be an α− p such that

ς(κ1, T κ1) ≤ kα(κ1,κ2)ς(κ1,κ2) implies H(T κ1, T κ2) ≤ q(ξ(κ1,κ2)),

for all κ1,κ2 ∈ Ω, where q ∈ [0, 1) satisfies the following:

(i) There exists κ0 ∈ Ω such that α(κ0, T κ0) ≥ p(κ0, T κ0) ≥ 2k;
(ii) If {κµ} is a sequence in Ω such that α(κµ,κµ+1) ≥ p(κµ,κµ+1) ≥ 2k andκµ → κ ∈ Ω as

µ→ ∞, then there exists a subsequence {κµl} of {κµ} such that α(κµl ,κ) ≥ p(κµl ,κ) ≥
2k for all l ≥ 1.

Then, FP(T ) is nonempty.

4. Applications to Differential Equations

BPP theory plays an important role in approximating many problems, especially in the
fields of differential equations and integral equations. For more details, one can see [24–26].
In this section, we obtain the optimum solution of system of differential equations by
applying our obtained results. Consider the following system of differential equations:

dρ

dσ
= $(σ, ρ); ρ(σ0) = ρ1, (38)

dη

dσ
= ϕ(σ, η); η(σ0) = η1,

where (σ0, ρ0) ∈ R2 and (σ, ρ1), (σ, η1) are the points in

S =
{
(σ, ρ) ∈ R2 : |σ− σ0| ≤ a, |ρ− ρ0| ≤ b

}
, (39)

for some a, b > 0. The b-metric is given as follows:

ς(ρ(σ),℘(σ)) = ‖ρ− ℘‖2,
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where
‖ρ− ℘‖ = max

t∈[σ0−a,σ0+a]
|ρ(t)− ℘(t)|.

Define
Ca = {ρ ∈ C[σ0 − a, σ0 + a] : |ρ(σ)− ρ0| ≤ b},

M = {ρ ∈ Ca : ρ(σ0) = ρ1} (40)

and

N = {ρ ∈ Ca : ρ(σ0) = η1}. (41)

Then, for any ρ ∈ M and ℘ ∈ N, ‖ρ− ℘‖2 ≥ |η1 − ρ1|2 and ς(M, N) = |η1 − ρ1|2.

Theorem 12. Let S, M, and N be as defined in (39), (40), and (41), respectively, and let ρ1 < η1.
Suppose $ and ϕ are continuous functions defined on S satisfying the following:

(1) |$(σ,℘)− ϕ(σ, ρ)| ≤ K|ρ− ℘| − 1
β
|η1 − ρ1| for some K > 0 whenever K|ρ− ℘| ≥

1
β
|η1 − ρ1|;

(2) $(σ,℘) ≥ ϕ(σ, ρ), if σ ≤ σ0 and $(σ,℘) ≤ ϕ(σ, ρ), if σ ≥ σ0, whenever K|ρ− ℘| ≤
1
β
|η1 − ρ1|.

Define T : M ∪ N → M ∪ N as follows:

T (ρ(σ)) = η1 +
∫ σ

σ0

ϕ(t, ρ(t))dt, ρ ∈ M, (42)

T (℘(σ)) = ρ1 +
∫ σ

σ0

ϕ(t,℘(t))dt, ℘ ∈ N,

satisfying the following:

(i) For each ρ(σ) ∈ M0, we have T ρ(σ) ∈ N0, and for each ℘(σ) ∈ N0, we have T (℘(σ)) ∈
M0; (M, N) has the Pp;

(ii) There exist elements ρ0(σ) and η1(σ) in M0 and℘1(σ) = T ρ0(σ) such that ς(η1(σ),℘1(σ)) =
ς(M, N) and there exist elements ℘0(σ) and ℘1(σ) in N0 and η1(σ) = T ℘0(σ), such that
ς(η1(σ),℘1(σ)) = ς(M, N). The b-metric is given as follows:

ς(ρ(σ),℘(σ)) = ‖ρ− ℘‖2.

Then, for any

β < min
{

a,
b− |η1 − ρ0|

P
,

b− |ρ1 − ρ0|
P

,
1
K

,
|η1 − ρ1|

Q

}
,

where P is the bound for both $ and ϕ and

Q = sup
{
|$(σ,℘)− ϕ(σ, ρ)| : K|ρ− ℘| ≤ 1

β
|η1 − ρ1|

}
,

(38) has an optimum solution; that is, there exists ρ∗ ∈ M such that ς(ρ∗, T ρ∗) = |η1 − ρ1|2,
and there exists ℘∗ ∈ N such that ς(℘∗, T ℘∗) = |η1 − ρ1|2.
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Proof. Let ρ ∈ M0; then, T (ρ(σ0)) = η1 and

|T (ρ(σ))− ρ0| =

∣∣∣∣η1 − ρ0 +
∫ σ

σ0

ϕ(t, ρ(t))dt
∣∣∣∣

≤ |η1 − ρ0|+
∣∣∣∣∫ σ

σ0

ϕ(t, ρ(t))dt
∣∣∣∣

≤ |η1 − ρ0|+ P|σ− σ0|
≤ |η1 − ρ0|+ βP ≤ b.

This implies T (ρ(σ)) ∈ N. Hence, T (M) ⊆ N. Similarly, we can prove T (N) ⊆ M. To
prove that T is a generalized Suzuki-type αψ cyclic contraction of v type. Take ρ ∈ M,℘ ∈
N, and assume σ ≥ σ0,

|T ρ(σ)− T ℘(σ)|2 =

∣∣∣∣ρ1 − η1 +
∫ σ

σ0

($(t,℘(t))− ϕ(t, ρ(t)))dt
∣∣∣∣2. (43)

Now, ∫ σ

σ0

($(t,℘(t))− ϕ(t, ρ(t)))ςt =
∫
[σ0,σ]

($(t,℘(t))− ϕ(t, ρ(t)))dt,

where
∫
[σ0,σ]($(t,℘(t))− ϕ(t, ρ(t)))dt is the Lebesgue integral of ($(t,℘(t))− ϕ(t, ρ(t)))

over the interval [σ0, σ]. Now, let

C1 =

{
t ∈ [σ0, σ0 + β] : K|ρ(t)− ℘(t)| > 1

β
|η1 − ρ1|

}
,

C2 =

{
t ∈ [σ0, σ0 + β] : K|ρ(t)− ℘(t)| ≤ 1

β
|η1 − ρ1|

}
.

Since ρ and ℘ are continuous functions, we have both C1 and C2 are disjoint measurable
sets. Therefore,

∫ σ

σ0

($(t,℘(t))− ϕ(t, ρ(t)))dt =

∫
C1
($(t,℘(t))− ϕ(t, ρ(t)))dt+∫

C2
($(t,℘(t))− ϕ(t, ρ(t)))dt.

Hence, from (43), we have

|T (ρ(σ))− T (℘(σ))|2 =

∣∣∣∣∣ ρ1 − η1 +
∫

C1
($(t,℘(t))− ϕ(t, ρ(t)))ςt+∫

C2
($(t,℘(t))− ϕ(t, ρ(t)))ςt

∣∣∣∣∣
2

≤

 ∣∣∣ρ1 − η1 +
∫

C1
($(t,℘(t))− ϕ(t, ρ(t)))ςt

∣∣∣+∣∣∣∫C2
($(t,℘(t))− ϕ(t, ρ(t)))ςt

∣∣∣
2

.

In C2, K|ρ(t)− ℘(t)| ≤ 1
β
|η1 − ρ1|, for σ ≥ σ0 by condition (2), we get $(t,℘(t)) ≤

ϕ(t, ρ(t)), so
∫

C2
($(t,℘(t))− ϕ(t, ρ(t))) ≤ 0 and∣∣∣∣∫C2

($(t,℘(t))− ϕ(t, ρ(t)))dt
∣∣∣∣ ≤ ∫

C2

|($(t,℘(t))− ϕ(t, ρ(t)))|dt

≤ Q
∫

C2

dt ≤ Q|σ− σ0|

≤ Qβ < |η1 − ρ1|.
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Therefore,

|T (ρ(σ))− T (℘(σ))|2 ≤
(
|ρ1 − η1|+

∫
C1

|($(t,℘(t))− ϕ(t, ρ(t)))|dt
)2

.

Hence,

ς(T (ρ(σ)), T (℘(σ))) = sup
(
|T (ρ(σ))− T (℘(σ))|2

)
≤

(
|ρ1 − η1|+∫

C1
(K|ρ(t)− ℘(t)| − 1

β |η1 − ρ1|)dt

)2

,

≤
(
|ρ1 − η1|+ β maxt∈[σ0−β,σ0+β]

(K|ρ(t)− ℘(t)| − 1
β |η1 − ρ1|)

)2

≤ (|ρ1 − η1|+ Kβ‖ρ− ℘‖ − |η1 − ρ1|)2

≤ (Kβ‖ρ− ℘‖)2 ≤ Kβ‖ρ− ℘‖2,

which implies

ς(T (ρ(σ)), T (℘(σ))) ≤ Kβς(ρ(σ),℘(σ)) ≤ Kβv(ρ(σ),℘(σ)).

Hence, T is a generalized Suzuki-type αψ cyclic contraction of v type. T is clearly αp.
Thus, all axioms of Theorem 7 hold for α(x) = x and p(x) = x. Therefore, by Theorem 7,
there exists ρ∗ ∈ M such that ς(ρ∗, T ρ∗) = |η1 − ρ1|2 and ℘∗ ∈ N such that ς(℘∗, T ℘∗) =
|η1 − ρ1|2. This completes the proof.

5. Conclusions

In this article, we have established multivalued generalized Suzuki-type α−ψ−proximal
(cyclic) contractions of b-metric spaces along with the provision of the existence of BPP(s)
of multivalued generalized Suzuki-type α− ψ−proximal (cyclic) contractions of b-metric
spaces. Examples are given to explain our results and to show that our results are the
proper generalization of the already existing results in the literature. In the end, we have
developed the optimum solution for a system of ordinary differential equations with initial
data. In the future, these results can further be investigated in the context of partially
ordered asymmetric distance spaces and Riesz spaces with some example applications.
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