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Abstract: Network alignment aims to identify the correspondence of nodes between two or more networks.
It is the cornerstone of many network mining tasks, such as cross-platform recommendation and cross-
network data aggregation. Recently, with the development of network representation learning techniques,
researchers have proposed many embedding-based network alignment methods. The effect is better than
traditional methods. However, several issues and challenges remain for network alignment tasks, such as
lack of labeled data, mapping across network embedding spaces, and computational efficiency. Based
on the graph neural network (GNN), we propose the URNA (unsupervised rapid network alignment)
framework to achieve an effective balance between accuracy and efficiency. There are two phases: model
training and network alignment. We exploit coarse networks to accelerate the training of GNN after first
compressing the original networks into small networks. We also use parameter sharing to guarantee the
consistency of embedding spaces and an unsupervised loss function to update the parameters. In the
network alignment phase, we first use a once-pass forward propagation to learn node embeddings of
original networks, and then we use multi-order embeddings from the outputs of all convolutional layers
to calculate the similarity of nodes between the two networks via vector inner product for alignment.
Experimental results on real-world datasets show that the proposed method can significantly reduce
running time and memory requirements while guaranteeing alignment performance.

Keywords: network representation learning; network alignment; graph neural network; network
coarsening; multi-level embedding

MSC: 68T01

1. Introduction

In the real world, distinct objects as nodes link and communicate through certain
established relationships, organizing and building various networks, such as citation
networks, social networks, and protein–protein interaction (PPI) networks. Many network data
mining tasks involve converging data from multiple networks for joint analysis to receive further
information about objects. For instance, analyzing evolutionary relationships between various
species requires comparing different PPI network structures [1], detecting money laundering
requires collecting transaction records of suspects across various financial platforms [2], and
personalized recommendation across platforms requires identifying accounts of users across
various social media platforms [3].

Network alignment is the first problem faced when fusing data from multiple networks.
The main goal is to identify the node correspondence between two or more networks
through analysis of network structure and node attributes, which is the basis of multi-source
information fusion [4]. Earlier works mainly rely on explicit node similarity computation
and iterative matching optimization for network alignment, resulting in limited alignment
effects [5]. Since network representation learning approaches outperform other methods
in network feature extraction, researchers have applied network representation learning
techniques to solve network alignment in recent years [6].
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By constraining proximity between nodes, network representation learning (aka network
embedding) learns a low-dimensional vector for each node, and the learned node embeddings
contain implicit features of the network [7]. Network embedding techniques have provided
novel solutions to network alignment. While solving the network alignment, researchers
typically model it as a three stage process. The first stage is to learn the embedding of unified
length for each node, the second stage is to map embedding spaces of different networks into
the same vector space, and the third stage is to compare the distance or similarity between
nodes in the same embedding space to obtain the node alignment results. In addition, most
methods also introduce an iterative optimization strategy or an alignment results refinement
method. Currently, embedding-based methods have become the dominant technique for
solving network alignment and have achieved good results. With the development of deep
learning, some neural network models have been used to solve network alignment [8].

The current embedding-based network alignment approaches have two main challenges:
(1) the embedding process of most methods is independent, and it is impossible to align
nodes directly because the embedding spaces of different networks are independent of each
other [9]. The connection of the two networks mainly relies on pre-aligned nodes (anchor
links), using these anchor links to unify the embedding space of the two networks by
transforming and calibrating different vector spaces. Therefore, most related works focus
on supervised learning [10–14]. Their common drawback is that training requires a certain
number of anchor links. However, since anchor links are rare in real-world applications,
these strategies are not applicable in situations. Some unsupervised methods introduce an
iterative mechanism to select high-confidence seed node pairs from the results computed
by the algorithm for the next training round [15,16]. Training node alignments use linear
transformations via seed information. Some methods use an adversarial mechanism to
maintain the alignment of the embedding distribution [17,18]. These strategies might
significantly reduce the efficiency of the algorithm. (2) Networks in actual applications may
be large in scale, containing millions or even tens of millions of nodes, such as the user-item
network in the recommendation system and the user network in the social network. For
large-scale networks, network alignment algorithms need to consider execution efficiency
and accuracy. So far, the existing methods either have poor alignment performance, or the
training time is long, and the complexity is high, which is difficult to meet the actual needs.
How to solve the network alignment on the large-scale graph within the acceptable time
and space is also a challenge.

To address the above challenges, we propose an unsupervised rapid network alignment
framework, called URNA. Given the strong robustness and generalization ability of GNN, our
method uses a GNN model to learn the embedding of nodes in implicit spaces by aggregating
topological and node attribute information. For challenge (1), we train the GNN model by
unsupervised learning, and employ the weight-parameter sharing to learn the multi-layer
embedding of nodes under the same coding rules to achieve direct alignment of nodes. For
challenge (2), we approximate the original networks to the smaller coarsen networks that
keep the propagation characteristics and use the coarsen networks to train the GNN model
to reduce the training time and memory overhead. Then we infer node embeddings of the
original networks through once forward propagation. Our method has two phases: (1) we
select a suitable coarsening algorithm to reduce input networks, and output coarse networks
of smaller scale than the original networks and then train the GNN model based on coarsened
networks, (2) we infer the node embedding of the original networks through the weight
parameters sharing mechanism, and then achieve the alignment directly by calculating the
inner product of node vectors. Our method does not involve many complex computations
and has low memory consumption and rapid running time.

The main contributions of this paper are as follows:

(1) We propose an unsupervised rapid network alignment framework, URNA, which
has sub-linear training time and space cost by integrating multiple strategies. To be
more specific, URNA trains a GNN by the coarsest networks to achieve fast network
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embedding, and adopts the parameter sharing model so that nodes of two networks
have the same encoding rules to achieve fast alignment.

(2) We exploit the multi-layer embeddings created by the GNN to compute the alignment
matrix, which raises the accuracy of alignment.

(3) We conduct extensive experiments on several real-world datasets, and the experimen-
tal results confirm the effectiveness of our approach, which implements a balance
between expressiveness and efficiency and has high scalability.

The rest of the paper is organized as follows. In Section 2, we review related work
on embedding-based network alignment. The problem definition of network alignment
is presented in Section 3. The design ideas and implementation process of our approach
are covered in Section 4. The experimental results are reported in Section 5. The paper is
concluded in Section 6.

2. Related Work

Network alignment is essentially a graph isomorphism problem, described as identifying
anchor nodes between two or more networks belonging to the same entity. Most network
alignment approaches have used the network embedding technique in recent years, which solves
the problem of the difficulty of node feature extraction by traditional methods. Embedding-based
network alignment methods are typical components of three modules: embedding, interaction,
and alignment. The function of the embedding module is to produce node embeddings of the
network by leveraging existing embedding techniques and their improved series, and network
topology and node attributes are the two main pieces of information used by the embedding
module. The role of the interaction module is mainly to map the embedding spaces of different
networks into the same vector space. The primary function of the alignment module is to
compute the embedding distance between nodes. Depending on whether to use labeled data,
we classify network alignment methods as supervised, semi-supervised, and unsupervised.

2.1. Supervised and Semi-Supervised Network Alignment Methods

Supervised methods are the most basic and generic, and they were the first to be proposed.
These methods typically learn a suitable matching function to identify unlabeled node pairs
using features learned from anchor node pairs. Man et al. [11] proposed PALE, a robust
supervised alignment model, which uses network embedding and the anchor links as supervised
information to capture structural rules and further learn an identifiable cross-network node
alignment mapping for predicting anchor links. Zhang et al. [12] proposed FINAL, an attributed
network alignment method, which models the consistent alignment principle of attributes
and structures from the perspective of matrix optimization and gives an efficient and scalable
solution algorithm and a linear complexity query algorithm that balances accuracy and efficiency.
However, the absence of anchor links, which are challenging to collect in the real world, may
occasionally be a limitation for these algorithms. As a result, the supervised methods are not
applicable without sufficient numbers of anchor links.

To overcome the lack of labeled data, many researchers have proposed semi-supervised
solutions using small numbers of anchor links. These algorithms employ both labeled and
unlabeled nodes during training, and during testing, it checks whether the nodes of different
networks align with each other. Liu et al. [13] proposed IONE, a typical semi-supervised model,
which learns network embeddings by explicitly modeling the input and output contexts to
preserve the similarity of the users in follower/followee relationships. To ease the context
transference, they incorporate known and potential anchor links. In addition, they unify the
embedding and alignment steps under a common framework and use stochastic gradient
descent and negative sampling to learn the model. Zhou et al. [14] proposed DeepLink, which
learns node embedding by sampling the networks using random walks and then uses a deep
neural network to align anchor nodes.
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2.2. Unsupervised Network Alignment Method

Because anchor nodes are difficult to obtain, some methods use unsupervised learning.
Heimann et al. [19] proposed the REGAL framework, which aligns networks by matching
latent node embeddings. After extracting the structural and attribute information from the
nodes, they learn the node embeddings by factorizing a similarity matrix of the node attributes
and using an extension of the Nystrom [20] method for low-rank matrix approximation to
prevent the need for excessive computation. Finally, they align nodes by greedily matching
their embeddings. Nguyen et al. [17] proposed NAWAL, which learns node embeddings
using a known network embedding algorithm and then uses an unsupervised end-to-end
neural network model to align the embedding space of two networks via adversarial training.
Chen et al. [21] proposed CONE-Align, which learns node embeddings based on a random
walk embedding algorithm. It utilizes node embeddings to model intra-network proximity to
complete embedding subspaces alignment, and it uses embeddings similarity to match nodes
across networks. Zhang et al. [22] proposed a multi-granularity network alignment method,
MOANA, which takes advantage of the hierarchical nature of the network and provides an
unsupervised three-stage “coarsen–align–interpolation” strategy. First, input networks are
coarsened, then coarsened node embeddings are learned. Second, the coarsened networks are
aligned to obtain the alignment matrix. Finally, the final alignment matrix is computed by
interpolation. Since there is no prior knowledge, the alignment effect of most unsupervised
methods is not desirable.

As deep learning techniques have advanced rapidly in recent years, researchers have
used graph neural network models to solve network alignment problems. Qin et al. [23]
proposed G-CREWE, a network alignment framework based on the graph convolutional
network [24] (GCN), using node embedding, which integrates graph compression and
network alignment operations to align networks at two resolution levels. When there
is more edge noise in the network, appropriate network compression can achieve rela-
tively fast alignment while retaining high accuracy. Tuynh et al. [15] proposed GAlign, an
unsupervised network alignment approach for attributed networks, which learns node
multi-order embeddings via GCN and uses an alignment refinement method to detect
potential noise and adjust the embeddings accordingly. It aims to make the alignment
output robust to structural differences and attribute mismatching. Xiao et al. [25] proposed
GATAL, which replaces the GCN model in GAlign and uses the GAT [26] model to learn
node embeddings of the networks. Gao et al. [18] proposed WAlign, a network alignment
framework, which designs a lightweight graph neural network to capture the inherent cor-
relations between graph topology and node attributes. The framework uses a Wasserstein
distance discriminator to find the corresponding pairs and further updates the embedding
by using these pairs. Park et al. [16] proposed Grad-Align, a network alignment framework
based on graph isomorphic networks [27] (GIN) to learn multi-layer embeddings, using
iterative updating of the double-sensing similarity composed of embedment similarity and
Tversky similarity [28] to enable gradual matching.

The embedding module based on GNN can efficiently aggregate network structure and
attribute information. Many recent algorithms have increased network alignment accuracy
by utilizing the GNN model of various frameworks; however, some intrinsic flaws of graph
neural networks may impair network alignment performance. For example, as propagation
deepens, node features become indistinguishable [29], causing uncertainty in matching during
network alignment. At the moment, training by gradient descent has a high computational
cost that grows exponentially with the number of layers of a graph neural network in the
training process, and they require a large amount of memory space to save the input network
and embed each node in memory [30]. As a result, most network alignment methods based
on graph neural networks are unsuitable for large-scale networks.

3. Problems and Definitions

In this section, we first introduce some of the related definitions and then give a formal
definition of the network alignment problem.
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Definition 1 (Network). We define a network as an undirected graph G = {V, E, A, X}, where,
V is the set of nodes, E is the set of edges, A ∈ Rn×n is the adjacency matrix, X ∈ Rn× f is the
attribute matrix, n represents the total number of nodes in the network, and f represents the node
attribute dimension.

Definition 2 (Source network and Target network). This paper mainly researches network
alignment between two networks. We name these two networks as the source network and the
target network respectively, where Gs = {Vs, Es, As, Xs} represents the source network, and
Gt = {Vt, Et, At, Xt} represents the target network.

Definition 3 (Network Alignment). Given two networks, Gs and Gt, with n1 and n2 nodes,
respectively. Network alignment refers to finding nodes in the source network that might correspond
to them in the target network, and outputting a soft alignment matrix S ∈ Rn1×n2 , which S(i, j)
represents to what extent a node i in Gs is aligned with a node j in Gt.

4. URNA Model

URNA is an unsupervised network alignment method that does not require anchor
nodes to train the model. We divide it into two phases: model training and network
alignment. We illustrate our framework’s structure in Figure 1. During the model training
phase, we train the GNN model using two coarse networks of source and target network.
In the network alignment phase, we use the parameter sharing mechanism to capture the
multi-layer embeddings of two networks, then calculate the inner product of the vectors to
obtain alignment matrices.
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Figure 1. Overview of URNA framework.

4.1. Network Coarsening

To reduce the overhead of GNN training, we train the GNN model with two coarsen
networks as the source and target networks. In this section, we introduce the network
coarsening method that we use in our framework. The goal of network coarsening is
to approximate a large-scale network to a smaller small-scale network while retaining
propagation properties. We define a coarsening function π : (G, r)→ Gr , which takes
a network G = (V, E, X) with n nodes and a network compression ratio r ∈ (0, 1) as
inputs and returns an appropriate coarsen network Gr = (Vr, Er, Xr) with n′ = r × n
nodes. Ideally, the coarsen network should keep the key topological structure and attribute
information of the original network. Each node of the coarsen network can be viewed as a
hyper node Vr

j ∈ Vr, corresponding to a set of nodes C = π−1(Vr
j ) ∈ V, and the attribute

of the hyper node Vr
j is formed by merging attributes of all nodes in C.

Most current methods, such as the normalized heavy edge matching method [31]
or the community detection algorithm [32], can be used in the coarsening function. We
employ Loukas’ variation neighborhoods coarsening method [33] to build coarsen networks.
We obtained the Loukas method’s source code from https://github.com/loukasa/graph-
coarsening (accessed on 12 October 2022).

https://github.com/loukasa/graph-coarsening
https://github.com/loukasa/graph-coarsening
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The Loukas method can reduce the size of a network without significantly altering
its basic properties. The method handles the network reduction problem using restricted
spectral approximation, which is a modification of the spectral similarity metric used for
graph scarification. For further information, please see the original paper [33]. When
compared to both standard and advanced graph reduction methods, Loukas’ method
produces high-quality coarsen networks.

In summary, the coarsening process consists of two parts. The coarsening function is
used to output a normalized partition matrix P ∈ Rn×n′ , and the partition matrix decides
which neighbors can join together to form super nodes. The second step is to calculate the
coarsen network’s attribute matrix based on the partition matrix, and the formula is as follows:

Xr = PTX (1)

4.2. Convolution Graph Neural Network

We employ the GNN model to learn topological and node attribute information to learn
the multi-layer embedding of cross-network nodes in the low-dimensional hidden space. This
subsection does not distinguish between source and target networks for clarity. Assuming that
the embedding of node i at layer k is h(k)i , we denote the embedding of node i at layer k− 1 as

h(k−1)
i . The network convolution propagation rule for the layer k is then written as follows:

h(k)i = σ(W(k)
1 h(k−1)

i + W(k)
2 ∑

j∈N(i)
ej,ih

(k−1)
j ) (2)

where N(i) is the neighbor set of node i, ej,i denotes the edge weight from source node j to

target node i, W(k)
1 and W(k)

2 are weight matrices at layer k. σ(·) is an activation function,
and we use the function Tanh(·) in the GNN.

GNN learns node embeddings by recursively aggregating features of neighboring
nodes, and high-order node features are obtained by superimposing convolutional layers.
Convolutional layers of different depths capture different semantic information, with
shallow layers influenced by node features and focused on network local information, and
deep layers influenced by network topology and focused on network global information.
In GNN, we save the output of each convolutional layer to obtain multi-layer embeddings,
which are then used to improve the performance of subsequent network alignment tasks.

To introduce the rest of the URNA more clearly, we define the output of the k layer as
Tanh(Gconv(G; Θ(k))), where Gconv(·) is the convolutional network layer and Θ(k) is the
training parameter to be learned for aggregation and updating in the k layer. The training
weight parameters are shared in two networks. In GNN, the two networks share training
parameters for all layers. This assures that the same coding rules are applied to all nodes,
which will better fit the needs of eventual network alignment operations.

We use a consistency loss function [15] to train the GNN model. Its optimization objective
is to encourage nodes with similar neighborhood structures to have similar embeddings and
uncorrelated nodes with high discrimination. While low-order embeddings can capture
local information, since some nodes in a network may be far apart but have similar features,
this leads to low-order embeddings that are similar to these nodes. Moreover, higher-order
embeddings of numerous nodes are too similar due to the over-smoothing problem in GNN.
This can lead to matching confusion problems during network alignment. In this way, we
compute the loss function from the embeddings at all layers to complement each other. The
objective function at the layer k is designed as follows:

Loss(k)G =
∥∥∥A(k)

hat −H(k)H(k)T
∥∥∥2

F
(3)

where ‖·‖F is the Frobenius norm, which allows us to measure the distance between

matrices. A(k)
hat is the symmetric normalized Laplacian matrix at layer k. We designed
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different Ahat for different convolutional layers to allow different convolutional layers to
learn their unique information and achieve variability in the embedding representation of
different layers. The computation of Ahat is performed as follows:

A(k)
hat = D̃

(k)−1/2
Ã
(k)

D̃
(k)−1/2

(4)

Ã
(k+1)
can = Ã

(k)
Ã
(k)
can (5)

Ã
(k+1)

= Ã
(k)

+ Ã
(k+1)
can (6)

where Ã
(0)

= A + In, In ∈ Rn×n is the identity matrix, n is the number of nodes in

the network, D̃
(k)

is a diagonal matrix, D(k)
ii represents the degree of the i-th node and

D(k)
ii = ∑j Ã(k)

i,j , Ã
(0)
can = Ã

(0)
.

4.3. Network Alignment

In this subsection, we describe our embedding-based network alignment. First, we
input the source and target networks to the GNN model that has completed training, and
then we use a forward propagation step to infer the node embeddings of the networks.
Since we use weight parameter sharing, there is no need to use a mapping function to map
the network embeddings into a common vector space.

To achieve alignment, we directly calculate the similarity between vectors. The correlation
between two nodes is stronger the higher the similarity value. There are numerous methods
to determine how similar two nodes are, including cosine similarity, Euclidean distance
similarity, and Hamming distance similarity. We use the inner product kernel function to
gauge how similar the two samples are. A higher value of the inner product of two more
similar pairs of nodes indicates a higher likelihood of an edge between those pairs.

Let H(k)
s and H(k)

t be the low-dimensional vector matrices of the source and target
networks at layer k, respectively, and then calculate the alignment matrix at layer k as follows:

S(k) = H(k)
s •H

(k)
t

T (7)

The final alignment matrix S is obtained by fusing all the alignment matrices. The
execution process of the URNA algorithm is summarized as Algorithm 1:

Algorithm 1: URNA

Input: source network Gs, target network Gt, compression ratio r, embedding dimension d, layers
k, epochs.
Output: alignment matrix S

1. Apply Loukas’ method on Gs and Gt, and output two coarsen networks Gr
s , Gr

t , and two
normalized partition matrixes Ps, Pt.

2. Compute coarsened feature matrices Xr
s and Xr

t by Equation (1).

3. Compute Ar(k)
s,hat and Ar(k)

t,hat by Equations (4)–(6).

4. for some epochs do

5. for i = 1 to k do

6. Hr(k)
s = Tanh(Gconv(Gr

s ; Θ(k))).

7. Ht(k)
s = Tanh(Gconv(Gt

s; Θ(k))).

8. Evaluate the loss function by Equation (3) and get Loss(k)Gr
s

and Loss(k)Gr
t

.
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Algorithm 1: Cont.

9. Loss = Loss(k)Gr
s
+ Loss(k)Gr

t
.

10. Back propagate by gradient descent.

11. S = Om×n.

12. for i = 1 to k do

13. H(k)
s = Tanh(Gconv(Gs; Θ(k))).

14. H(k)
s = Tanh(Gconv(Gt; Θ(k))).

15. S(k) = H(k)
s ·H

(k)T
t .

16. S = S + (1/(k + 1))S(k).

17. Return S

The time complexity analysis of the URNA is performed below. The time complexity of
network coarsening is O(|V|2), and it needs to be carried out just once before training. The
time complexity of the normalized Laplacian matrix is O(k|E|), while the time complexity
of the computation for the GNN model is O(k(|V|d + |E|d2)). |V|d denotes the feature’s
multiplication link with the parameter matrix, and |E|d2 denotes the time consumption of
the neighborhood aggregation procedure. Because URNA employs small-scale networks, the
network’s compression ratio is assumed to be r, the number of nodes in the coarsen network
Gr is |Vr| = (1− r)|V|, and the upper bound of the number of edges is min(|E|, (1− r)2|V|2).
This means that training on the coarsen networks will have a worst-case computational
complexity (1 − r) times that of the original networks.

5. Experiments

In this section, we present the experimental part. We first introduce the evaluation
metrics, a comparison of methods and datasets, and parameter settings. Then, we give
the experimental results and analysis. Finally, we study model parameter selection and
parameter sensitivity. The hardware environment of the experiment is Intel (R) Core (TM)
i7-4790 CPU (processor base frequency is 3.60 GHz, total cores are 8), 32G memory, and the
Windows 10 operating system. We use Python to write codes and implement them based
on the PyTorch deep learning framework.

5.1. Evaluation Metrics

The experiments evaluate the network alignment effects using four metrics, including
Accuracy [6], MAP [15], Hit-precision [6], and Precision@K [15], to verify the performance of
the proposed method and baselines.

Accuracy is a straightforward metric. The larger the value of Accuracy, the better the
performance of network alignment methods. After obtaining the alignment matrix S, we
use the heuristic greedy matching algorithm as a post-processing step for each algorithm.
The heuristic algorithm iterates over the alignment matrix S to find the largest score Si,j
and record the node pair (i, j), then deletes any scores involving node i or nodes from the
matrix (replace them with zero values). The following formula calculates Accuracy:

Accuracy =
#Pcorr

#Na
(8)

where Pcorr denotes the correctly identified node pairs, Na denotes the truly aligned node pairs.
Accuracy is a metric of direct alignment that requires one-to-one node alignment, where

to select the node with the highest similarity is the sole pair of aligned nodes. Without loss
of generality, we use three metrics to evaluate the performance of network alignment from
ranking and prediction.
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For ranking metrics, we employ MAP (Mean Average Precision) and Hit-Precision.
MAP is defined as

MAP =
1

#Na
(∑Na

i
1

ranki
) (9)

Hit-Precision is defined as

Hit− precision =
1

#Na
(∑Na

i
(K + 2)− ranki

K + 1
) (10)

We construct a candidate list for the node i in the source network, select the Top-K
potential nodes most similar to the node i from the target network, and add them to the
candidate list. ranki is the index value of the node in the candidate list that correctly
matches the node i. MAP and Hit-Precision focus on the ranking value of correctly matched
nodes in the candidate list.

For prediction, we employ a general metric Precision@K. We calculate the similarity
of the node i in the source network and each node in the target network, rank them in
descending order, and take Top-K nodes as the potential matching nodes of the node i.
We compare the Id of the candidate matching node with the Id of the true matching node
in sequence, and if there is a hit, the nodes match successfully. The following formula
calculates Precision@K:

Precision@K =
1

#Na
∑Na

i Ii{Success@K} (11)

where Ii{·} is the indicating function, Ii{True} = 1, Ii{False} = 0, For a node i in the
source network, proposition Success@K represents if the true alignment node exists in the
potential matching nodes.

5.2. Baselines and Datasets

For the examination, we selected five state-of-the-art unsupervised embedding-based
network alignment methods for comparison with the URNA. We divide the baselines into
two categories: network alignment methods based on traditional representation learning and
graph neural networks. In the first type, REGAL [19] uses the low-rank matrix factorization
method, xNetMF, to learn node embeddings, and NAWAL [17] uses the DeepWalk [34] to learn
node embeddings. DeepWalk adopts random walk to sample node sequences, and the node
embeddings in the same sequence are closer to each other, preserving the homogeneity of nodes.
In the second type, GAlign [15] uses GCN [24] to learn embeddings for each node, and uses a
data augmentation and refinement mechanism to adapt the method to coincidence conflicts
and noise. WAlign [18] learns embeddings of the nodes using a lightweight graph neural
network (LGCN) [18] with a flat structure and then uses the Wasserstein distance discriminator
to discover candidate node pairs to update the node embeddings. Grad-Align [16] learns node
embeddings using a Graph Isomorphism Network (GIN) [27]. GIN can collect higher-order
node features. Grad-Align uses the generated embedding similarity and Tversky similarity [28]
to align node pairs progressively.

We used four public datasets with attribute information: douban [6], allmv/imdb [15],
flickr/myspace [6], and flickr/lastfm [6]. Each dataset contains two real-world networks,
and we present the basic statistics for these datasets in Table 1. Dataset douban comes
from a social network with two sub-networks: an offline activity network and an online
follower network. Each node is a user. Offline activity networks connect users based on
their co-occurrence in offline activities. Each edge of the online following network presents
who follows who in Douban. The node attribute is the location information of the user.
Dataset allmv/imdb comes from two Internet movie databases, AllMovie and Internet
Movie Database (IMDB). Each node is a movie, and the edge means that at least one actor is
the same in both films. Datasets flickr/myspace and flickr/lastfm come from three different
online social platforms, Flickr, MySpace, and Last. FM, where each node is a user and node
attributes are part of the user’s profile information.
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Table 1. Statistics of the datasets. Here, the symbol # means “number of”.

Datasets # Nodes # Edges # Attributes # Anchor Links

douban online/offline 3906/1118 8164/1511 538 1118
allmv/imdb 6011/5713 124,709/119,073 14 5175

flickr/myspace 6714/10,733 7333/11,081 3 267
flickr/lastfm 12,974/15,436 16,149/16,319 3 451

5.3. Parameter Setting

To ensure the fairness of the trial, the comparison algorithms all use the default
parameters of their papers. When the settings used for initialization are repeated, the
URNA and comparison algorithms keep the same parameter values. For URNA, we set
the network compression ratio r = 0.8, the embedding dimension d = 200, the number of
convolutional layers k = 2, the intermediate layer dimension to the same as the embedding
dimension, the Adam optimizer to 0.001, and the weight decay rate to 5 × 10−4.

5.4. Experimental Results and Analysis

To evaluate the performance of FSNA, we first evaluate the computational efficiency
and alignment performance of FSNA and baselines on the datasets douban, allmv/imdb,
flickr/myspace, and flickr/lastfm by three metrics, namely Accuracy, MAP, and Hit-precision,
and the experimental results are shown in Table 2.

Table 2. Network alignment comparison of four real-world datasets. Here, the best and second best
performers are highlighted by bold and underline, respectively.

Evaluation Metrics REGAL GAlign NAWAL WAlign Grad-Align URNA

douban

Accuracy 0.0063 0.2478 0.0000 0.2120 0.4016 0.4435
MAP 0.0652 0.5471 0.0089 0.3265 0.5933 0.6340

Hit-precision 0.8785 0.9899 0.5230 0.9754 0.9873 0.9934
Time(s) 11.50 78.44 774.65 203.55 389.16 17.58

allmv/imdb

Accuracy / 0.6410 0.0002 0.6370 0.4741 0.6924
MAP / 0.6898 0.0017 0.6751 0.6019 0.7216

Hit-precision / 0.9961 0.5089 0.9954 0.9931 0.9961
Time(s) / 353.69 1832.61 654.13 7141.36 65.02

flickr/myspace

Accuracy 0.0037 0.0000 0.0000 0.0037 0.0000 0.0150
MAP 0.0132 0.0230 0.0028 0.0308 0.0085 0.0350

Hit-precision 0.6889 0.5138 0.4931 0.8618 0.5741 0.8791
Time(s) 42.08 636.14 2274.72 1262.18 14,327.69 27.41

flickr/lastfm

Accuracy 0.0000 0.0022 0.0000 0.0067 0.0044 0.0111
MAP 0.0073 0.0207 0.0004 0.0286 0.0229 0.0360

Hit-precision 0.8205 0.8396 0.4619 0.9011 0.8111 0.9524
Time(s) 75.96 1685.54 4389.22 3589.53 54,327.69 53.08

According to the experimental results shown in Table 2, REGAL, which uses matrix
factorization to learn node embeddings, is more computationally time efficient than the
baselines based on graph neural networks, but has lower alignment performance. In
terms of time complexity, GAlign < WAlign < Grad-Align for the baselines based on graph
neural networks. WAlign uses adversarial training to map the embedding space of the two
networks to the same vector space. While this End-to-End training approach can update
embeddings in real-time and enhance alignment precision, it also adds the computational
burden of the model. Grad-Align uses an iterative mechanism to select node pairs with high
similarity by node embeddings and gradually align nodes in combination with Tversky
similarity; however, this strategy consumes a significant amount of memory space and
significantly lengthens the computation time of the algorithm. Our method has a significant
computational speed advantage on the four datasets and performs best on all data sets
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except for the douban dataset, where the computational time efficiency is slightly lower
than that of REGAL. Compared to GAlign, running time is reduced by 77.59% on the dual
dataset, 81.61% on the allmv/imdb dataset, 95.69% on the flickr/myspace dataset, and
96.85% on the flickr/lastfm dataset. The experimental results validate the efficiency of
URNA. The advantage of URNA becomes more apparent as network size rises, and it can
use for network alignment tasks on large-scale networks.

On four datasets, the alignment performance of different algorithms varies signif-
icantly in terms of Accuracy, MAP, and Hit-precision. Among them, DeepWalk-based
NAWAL performs the worst and is nearly comparable to random alignment, which is
logically reasonable given that it cannot capture the similarity of nodes between the two
networks. REGAL requires information on the degrees of neighbors of different orders as
structural features to express nodes. We cannot obtain the experimental results because
the allmv/imdb dataset contains some isolated nodes. It can be seen that baselines using
the graph neural network have a better and more stable network alignment performance.
On all four datasets, URNA achieved optimal results. Experimental results validate the
usefulness of URNA in network alignment tasks.

Next, we evaluate the soft alignment performance of all algorithms using the metric
Precision@K, and the experimental results are shown in Tables 3–6. Experimental results
show that URNA exhibits excellent performance overall. For the soft alignment, the GNN-
based GAlign, WAlign, and Grad-Align algorithms also show stable and better performance
in different K values. GAlign outperforms the other baselines on the datasets douban and
allmv/imdb, which have the most attribute information, and WAlign outperforms the
other baselines on the datasets flickr/myspace and flickr/lastfm, which have little attribute
information, demonstrating that using training methods based on generative adversarial
methods can exploit uncertain information in the network to improve network alignment
correctness. On the four datasets, URNA outperforms the other baselines. Precision@1
outperforms the best-performing Grad-Align on the douban dataset by 23.45%, the best-
performing WAlign on the allmv/imdb dataset by 4.78%, the best-performing WAlign in
the baselines on the flickr/myspace dataset by 56.25%, and the best-performing WAlign in
the baselines on the flickr/lastfm dataset by 49.44%. In conclusion, the URNA outperforms
other baselines in datasets of various sizes in terms of running time and alignment accuracy.

Table 3. Experimental results on Douban given different Precision@K settings. Here, the best and
second best performers are highlighted by bold and underline, respectively.

Precision@K 1 5 10 15 20 25 30

REGAL 0.0224 0.0912 0.1458 0.1896 0.2263 0.2648 0.2871
GAlign 0.4311 0.6646 0.7701 0.8309 0.8623 0.8873 0.8989

NAWAL 0.0018 0.0072 0.0089 0.0116 0.0188 0.0259 0.0304
WAlign 0.2156 0.4329 0.5501 0.6306 0.6887 0.7147 0.7451

Grad-Align 0.4875 0.7120 0.7809 0.8122 0.8327 0.8462 0.8649
URNA 0.5322 0.7540 0.8318 0.8721 0.8980 0.9213 0.9320

Table 4. Experimental results on allmv/imdb given different Precision@K settings. Here, the best and
second best performers are highlighted by bold and underline, respectively.

Precision@K 1 5 10 15 20 25 30

REGAL / / / / / / /
GAlign 0.6177 0.7699 0.8226 0.8507 0.8692 0.8814 0.8924

NAWAL 0.0004 0.0008 0.0017 0.0023 0.0035 0.0037 0.0048
WAlign 0.6039 0.7554 0.8045 0.8350 0.8516 0.8655 0.8754

Grad-Align 0.4917 0.7318 0.8018 0.8333 0.8555 0.8738 0.8881
URNA 0.6472 0.8101 0.8522 0.8742 0.8916 0.9024 0.9121
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Table 5. Experimental results on flickr/myspace given different Precision@K settings. Here, the best
and second best performers are highlighted by bold and underline, respectively.

Precision@K 1 5 10 15 20 25 30

REGAL 0.0037 0.0112 0.0112 0.0225 0.0375 0.0562 0.0562
GAlign 0.0075 0.0300 0.0412 0.0524 0.0674 0.0787 0.0824

NAWAL 0.0000 0.0037 0.0037 0.0037 0.0037 0.0037 0.0037
WAlign 0.0112 0.0375 0.0562 0.0749 0.1086 0.1236 0.1311

Grad-Align 0.0000 0.0112 0.0150 0.0225 0.0412 0.0524 0.0562
URNA 0.0175 0.0382 0.0565 0.0787 0.1149 0.1261 0.1315

Table 6. Experimental results on flickr/lastfm given different Precision@K settings. Here, the best and
second best performers are highlighted by bold and underline, respectively.

Precision@K 1 5 10 15 20 25 30

REGAL 0.0000 0.0022 0.0067 0.0177 0.0244 0.0443 0.0554
GAlign 0.0022 0.0333 0.0421 0.0754 0.0865 0.1109 0.1197

NAWAL 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WAlign 0.0089 0.0377 0.0621 0.0776 0.0976 0.1086 0.1220

Grad-Align 0.0044 0.0288 0.0510 0.0710 0.0953 0.1153 0.1397
URNA 0.0133 0.0386 0.0621 0.0976 0.1220 0.1619 0.1774

5.5. Hyper-Parameter Sensitivity Analysis

We analyze the sensitivity of the hyper-parameters affecting our method on four
datasets to investigate the effect of different hyper-parameters on the experimental results.
The network compression ratio r, the embedding dimension d, and the number of con-
volutional layers k are compared. The hyper-parameters are r = 0.8, d = 200, and k = 2
if not indicated otherwise. The variation of hyper-parameters reflects the relevance of
the elements that affect our strategy. The metric Precision@5 is used to compare network
alignment effects.

First, we investigated the hyper-parameter r. During the experiment, we kept the
other parameters constant, and increased the r value from 0.1 to 0.9, increasing it by 0.1
each time, and the experimental results are shown in Figures 2 and 3. Figure 2 indicates
the trend of our method’s running time in the four data sets with the change of the r
value. Figure 3 represents the trend of our method’s metric Precision@5 in the four data
sets with the change of r value. As can be observed in Figure 2, the computational time
efficiency of the model increases significantly with increasing r values in the four datasets.
The dataset flickr/lastfm shows the most significant improvement in the computational
efficiency of the model when compared to the other three datasets. When the r value hits
0.8, the model’s running time on the four datasets lowers by 75.11%, 74.52%, 90.69%, and
94.04%, respectively, when compared to the un-coarsened network.
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For Precision@5, the fluctuation amplitude of the four broken lines in Figure 3 is small,
indicating that the value of r has little influence on the performance index within the
above value range, indicating that our method has low sensitivity to parameter r. Even
when the d value reaches 0.8, it still maintains good performance. Compared to the un-
coarsened network, the Precision@5 in the dataset douban increases by 0.60%, in the dataset
allmv/imdb, the Precision@5 drops by 6.42%, and the same level is maintained in the
Precision@5 in the dataset flickr/myspace, and in the dataset flickr/lastfm, the Precision@5
increases by 25.00 percent. In general, as the value of r increases, the alignment performance
of our approach does not change significantly. As a result, by greatly compressing the
network size, we can guarantee the alignment accuracy of the network and reduce the
training time and memory requirements of the GNN model to achieve more outstanding
performance on large-scale datasets.

Next, we study how the embedding dimension d affects the performance of URNA.
In the experiments, we set the values of d to 5, 10, 25, 50, 100, 150, and 200 in order, while
keeping the other parameters fixed. Figure 4 shows the experimental results, which depict
the trend in the variation of the metric Precision@5 for different values of d on the four
datasets. We can see from Figure 4 that the metric values change differently for the four
datasets as the value of d increases. Overall, the metric Precision@5 increases steadily with
an increasing value of d. On the dataset Douban, the metric reaches its optimal value
for d = 150, and on the datasets allmv/imdb and flickr/myspace, the metric reaches its
optimal value for d = 200. On the other hand, on the dataset flickr/lastfm, the metric value
is optimal when the value of d = 50, which may be related to the large size of the dataset.
On the other hand, on the flickr/myspace and flickr/lastfm datasets, the model effects
fluctuate with increasing values of d, which may be related to the fact that the datasets have
too few attributes.
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Finally, we study how the number of convolutional layers k affects the performance of
URNA. In the experiments, we kept the other parameters fixed and increased the value of k
from 2 to 8, increasing it by 1 each time. The experimental results are shown in Figure 5.
We can observe that the metric Precision@5 achieves better results for a smaller number of
k values on the four datasets. For values of k above 5, the effect of the model decreases
precipitously. This is because we stack multiple convolutional layers by cascade. Although
the deeper convolution layer aggregates the higher-order features of the nodes, it also
leads to the over-smoothing of the node embedding [29]. More similar node embeddings
lead to the matching confusion problem during network alignment. In addition, we do
not distinguish the importance of different alignment matrices, resulting in a significant
worsening of the alignment effect. The difference is that the metric Precision@5 reaches
optimal at k = 3 for the datasets douban, flickr/myspace, and flickr/lastfm, and at k =5
for the dataset allmv/imdb, which may be related to the excessive number of edges in the
dataset allmv/imdb relative to the number of nodes.
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6. Conclusions

We propose URNA, an unsupervised rapid network alignment algorithm based on
GNN with two phases: model training and network alignment. During the model training
phase, we use the coarsening function to approximate the input networks to smaller-scale
coarse networks that keep the propagation properties, then train a GNN model using coarsen
networks, which significantly reduces the training overhead of the GNN. The main goal of the
network alignment phase is to use the trained GNN to infer embeddings for the two networks
and achieve direct alignment. Our framework uses two parameter sharing mechanisms, one
between coarse and original networks and one across networks. In addition, the proposed
framework can learn node embeddings at multiple convolutional layers, preserving local and
global semantic information in the network. Comparative experimental results show that
our proposed network alignment method generally outperforms existing embedding-based
network alignment algorithms, guaranteeing model operation efficiency while achieving
fast alignment. Overall, URNA is practical and scalable and can be applied to large-scale
network alignment tasks. Although the proposed network alignment algorithm outperforms
the existing methods, there is still room for improvement in the accuracy rate. For example,
introducing an attention mechanism and assigning different weights to each alignment matrix
will continue to improve the performance of the model in the network alignment task.
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