
Citation: Perić, Z.H.; Dinčić, M.R.

Optimization of the 24-Bit

Fixed-Point Format for the

Laplacian Source. Mathematics 2023,

11, 568. https://doi.org/10.3390/

math11030568

Academic Editors: Danny Barash and

Andrea Scozzari

Received: 29 September 2022

Revised: 1 January 2023

Accepted: 13 January 2023

Published: 21 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimization of the 24-Bit Fixed-Point Format for the
Laplacian Source
Zoran H. Perić and Milan R. Dinčić *

Faculty of Electronic Engineering Niš, University of Niš, 18104 Niš, Serbia
* Correspondence: milan.dincic@elfak.ni.ac.rs

Abstract: The 32-bit floating-point (FP32) binary format, commonly used for data representation
in computers, introduces high complexity, requiring powerful and expensive hardware for data
processing and high energy consumption, hence being unsuitable for implementation on sensor
nodes, edge devices, and other devices with limited hardware resources. Therefore, it is often
necessary to use binary formats of lower complexity than FP32. This paper proposes the usage of the
24-bit fixed-point format that will reduce the complexity in two ways, by decreasing the number of
bits and by the fact that the fixed-point format has significantly less complexity than the floating-point
format. The paper optimizes the 24-bit fixed-point format and examines its performance for data
with the Laplacian distribution, exploiting the analogy between fixed-point binary representation
and uniform quantization. Firstly, the optimization of the 24-bit uniform quantizer is performed by
deriving two new closed-form formulas for a very accurate calculation of its maximal amplitude.
Then, the 24-bit fixed-point format is optimized by optimization of its key parameter and by proposing
two adaptation procedures, with the aim to obtain the same performance as of the optimal uniform
quantizer in a wide range of variance of input data. It is shown that the proposed 24-bit fixed-point
format achieves for 18.425 dB higher performance than the floating-point format with the same
number of bits while being less complex.

Keywords: fixed-point binary representation; uniform quantizer; floating-point binary representation;
efficient data representation on sensor nodes and edge devices; Laplacian distribution

MSC: 68P30

1. Introduction

Due to the dominance of digital systems, almost all data are represented in binary
formats. As the number of bits in the binary representation is limited, special attention
should be paid to ensure required accuracy for a specific application, taking into account
the dynamic range and statistical characteristics of data. In addition, due to the increasing
amount of data being generated, it is necessary to find efficient binary representation
that will provide sufficient accuracy with as few bits as possible. All of this proves the
importance of studying binary formats.

The 32-bit floating-point (FP32) binary format defined by the IEEE 754 standard [1]
is commonly used in practice, especially for data representation in computers. Using a
large number of bits, FP32 provides high accuracy of binary representation in a very wide
range of variance of input data. Nevertheless, the floating-point formats (including the
FP32) introduce high complexity, requiring powerful and expensive hardware for data
processing, as well as high energy consumption [2]. Furthermore, the FP32 format requires
large memory space for data storage. It is especially impractical to implement the FP32
format on widespread sensor nodes, edge devices, and other devices with limited hardware
resources (i.e., with limited processing power, memory capacity, and available energy). In
fact, many embedded devices do not support the floating-point formats at all [3].

Mathematics 2023, 11, 568. https://doi.org/10.3390/math11030568 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11030568
https://doi.org/10.3390/math11030568
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8267-9541
https://doi.org/10.3390/math11030568
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11030568?type=check_update&version=1

Mathematics 2023, 11, 568 2 of 14

The FP32 format is also standardly used to represent the parameters of deep neural
networks (DNNs) [4], which are currently one of the most powerful techniques for solving
problems such as object detection [5], autonomous driving [6], natural language process-
ing [7], computer vision [8], and speech recognition [9]. A particularly current research
direction that involves great research effort is implementation of DNNs on sensor nodes
(obtaining smart sensors) and edge devices, in order to increase their availability and appli-
cability [10]. However, the fact that parameters in DNNs are represented in the FP32 format
significantly limits the implementation of DNNs on sensor nodes and edge devices [3,11].

Based on the common practice of using digital words whose length is an integer
multiple of 8 bits, the first solution that arises as a replacement for 32-bit formats is the
usage of 24-bit formats, enabling a reduction in complexity without significantly degrading
performance. However, the reduction in complexity that would be achieved by using the
FP24 (24-bit floating-point) format [12] instead of the FP32 is often insufficient since the
FP24 also belongs to the class of floating-point formats.

The paper proposes the 24-bit fixed-point format as a better replacement for the
FP32 format than the FP24 format. This will reduce the complexity in two ways, by
decreasing the number of bits and by using the fixed-point format that has significantly less
computational complexity, consumes less power, requires less area on chip, and provides
faster calculations than floating-point formats [11,13–23], being much more suitable for
implementation on sensor nodes and devices with limited hardware resources (a typical
microcontroller has 128 KB RAM and 1 MB of flash, while a mobile phone can have 4 GB of
RAM and 64 GB of storage [24]). Therefore, the main goal of the paper is to optimize the
24-bit fixed-point format and to examine its performance. To achieve this goal, the analogy
between fixed-point binary representation and uniform quantization established in [25]
will be exploited, allowing us to express accuracy of fixed-point formats using objective
performance measures (distortion and SQNR (signal-to-quantization noise ratio)) of the
uniform quantizer.

To find an optimal binary representation of some dataset, the probability density
function (PDF) of data should be taken into account. In this paper, the Laplacian PDF is
considered since it can be used for statistical modeling of a number of data types [26,27].

The approach applied in the paper, based on the above mentioned analogy, is to first
optimize the 24-bit uniform quantizer and after that to optimize the 24-bit fixed-point
format with the aim to achieve the same performance as of the 24-bit optimal uniform
quantizer. Therefore, the design and performance calculation of the 24-bit optimal uniform
quantizer is firstly considered, deriving two new closed-form approximate formulas for a
very accurate calculation of its key parameter (the maximal amplitude) as a significant result
of the paper. It is worth noting that the derived approximate formulas are valid for any
bit-rate R, having general importance. Then, the 24-bit fixed-point format is optimized by
exploring the influence of the parameter n (the number of bits used to represent the integer
part of data) on the performance. The optimal value of n = 5 is obtained for the unit variance
Laplacian PDF. An important conclusion obtained from the analysis is that a wrong choice
for the value of n can drastically reduce the accuracy of the fixed-point representation.

Even with the optimal value n = 5, the 24-bit fixed-point format achieves lower SQNR
compared to the optimal uniform quantizer, due to a mismatch in the maximal amplitude.
Therefore, the paper proposes an adaptation procedure (called Adaptation 1) which enables
the 24-bit fixed-point format to achieve the maximal possible SQNR of 122.194 dB for the
unit variance, just like the optimal uniform quantizer.

However, there is a problem related to the 24-bit fixed-point format that SQNR changes
with the change of data variance. To solve this problem, the paper proposes an additional
adaptation procedure (called Adaptation_2) that converts the variance of the input data
to 1. The proposed joint application of Adaptation_1 and Adaptation_2 allows for the 24-bit
fixed-point quantizer to achieve the maximal SQNR for any variance of the input data,
being a notable result of the paper.

Mathematics 2023, 11, 568 3 of 14

Finally, the comparison with the FP24 format is performed, whereby the performance
of the FP24 is calculated using the analogy between the floating-point representation and
piecewise uniform quantization established in [28]. It is shown that the proposed 24-bit
fixed-point format with double adaptation achieves for 18.425 dB higher SQNR than the
FP24 format. An important conclusion that can be made based on the achieved results is
that the proposed 24-bit fixed-point format with the double adaptation is a much better
solution than the FP24 format, for two reasons: it achieves a significantly higher SQNR
having significantly less implementation complexity.

2. Design of the Optimal Uniform Quantizer

An R-bit uniform quantizer with N = 2R levels and with the support region [−xmax, xmax]
is defined by its decision thresholds xi = −xmax + i · ∆, (i = 0, . . . , N) and representation
levels yi = −xmax + (i − 1/2) · ∆, (i = 1, . . . , N), where xmax represents the maximal
amplitude and ∆ = 2xmax/N represents the quantization step-size. The uniform quantizer
maps each quantization interval [xi−1, xi) into the representation level yi = (xi−1 + xi)/2
placed in the middle of that interval [25].

In order to design an optimal quantizer, the probability density function (PDF) of
the input data has to be taken into account. This paper considers the Laplacian PDF
defined as [27]:

p(x) =
1√
2σ

exp

(
−|x|

√
2

σ

)
, (1)

where σ2 represents the variance of the input data.
Quantization process is shown in Figure 1. Let the input dataset consists of M elements

ri (i = 1, . . . , M). The variance of the input data is calculated as [26]:

σ2 =
1
M

M

∑
i=1

r2
i . (2)

Mathematics 2022, 10, x FOR PEER REVIEW 3 of 15

additional adaptation procedure (called Adaptation_2) that converts the variance of the

input data to 1. The proposed joint application of Adaptation_1 and Adaptation_2 allows

for the 24-bit fixed-point quantizer to achieve the maximal SQNR for any variance of the

input data, being a notable result of the paper.

Finally, the comparison with the FP24 format is performed, whereby the performance

of the FP24 is calculated using the analogy between the floating-point representation and

piecewise uniform quantization established in [28]. It is shown that the proposed 24-bit

fixed-point format with double adaptation achieves for 18.425 dB higher SQNR than the

FP24 format. An important conclusion that can be made based on the achieved results is

that the proposed 24-bit fixed-point format with the double adaptation is a much better

solution than the FP24 format, for two reasons: it achieves a significantly higher SQNR

having significantly less implementation complexity.

2. Design of the Optimal Uniform Quantizer

An R-bit uniform quantizer with N = 2R levels and with the support region
],[maxmax xx− is defined by its decision thresholds +−= ixxi max , (Ni ,...,0=) and

representation levels −+−=)2/1(max ixy i , (Ni ,...,1=), where maxx represents the

maximal amplitude and Nx /2 max= represents the quantization step-size. The uniform

quantizer maps each quantization interval),[1 ii xx − into the representation level

2/)(1 iii xxy += − placed in the middle of that interval [25].

In order to design an optimal quantizer, the probability density function (PDF) of the

input data has to be taken into account. This paper considers the Laplacian PDF defined

as [27]:

−=

2
exp

2

1
)(

x
xp

,

(1)

where 2 represents the variance of the input data.

Quantization process is shown in Figure 1. Let the input dataset consists of M

elements ir (Mi ,...,1=). The variance of the input data is calculated as [26]:

=

=
M

i
ir

M 1

22 1

.
(2)

{y
1
 , ..., y

N
}

r
i
*(r

i
)
2

r
i 24-bit optimal

uniform quantizer

(r
i
)
2

memory
decoder

24 24{x
0
 , x

1
 , ..., x

N
}

Figure 1. Process of the uniform quantization.

By quantization, each input element ir is compared with decision thresholds

},...,,{ 10 Nxxx of the quantizer, determining the quantization interval where the input

element belongs and generating an R-bit code-word (in our case, R = 24) that corresponds

to the determined quantization interval. The code-word is stored in memory. When we

want to reconstruct data from the binary form, a decoding has to be performed. Let *

ir

denotes the reconstructed value of the input element ir . The decoding is done in a way

that the reconstructed element *

ir takes the value of one of N discrete representation

values },...,{ 1 Nyy of the quantizer that is nearest to the value of the input element ir . An

irreversible error occurs during quantization, since the reconstructed values *

ir differ

Figure 1. Process of the uniform quantization.

By quantization, each input element ri is compared with decision thresholds {x0, x1, . . . , xN}
of the quantizer, determining the quantization interval where the input element belongs
and generating an R-bit code-word (in our case, R = 24) that corresponds to the determined
quantization interval. The code-word is stored in memory. When we want to reconstruct
data from the binary form, a decoding has to be performed. Let r∗i denotes the reconstructed
value of the input element ri. The decoding is done in a way that the reconstructed
element r∗i takes the value of one of N discrete representation values {y1, . . . , yN} of the
quantizer that is nearest to the value of the input element ri. An irreversible error occurs
during quantization, since the reconstructed values r∗i differ from the original values ri
(i = 1, . . . , M). Distortion D represents the mean-square quantization error and based on
the Figure 1, it can be defined as:

D =
1
M

M

∑
i=1

(ri − r∗i)
2. (3)

Mathematics 2023, 11, 568 4 of 14

The distortion D can be also defined in another way, based on the statistical ap-
proach, as [26]:

D =
N

∑
j=1

xj∫
xj−1

p(x)(x− yj)
2dx, (4)

where p(x) denotes the probability density function (PDF) of the input data.
For the asymptotic analysis which assumes that the number of quantization levels N is

large enough, Formulas (3) and (4) for the distortion D are equivalent. For further analysis
in this section, we will use the Formula (4) which for the uniform quantizer becomes [25,29]:

D =
∆2

12
+ 2

+∞∫
xmax

(x− xmax)
2 p(x)dx. (5)

The first term in (5) represents the granular distortion that occurs during quantization
of data from the support region [−xmax, xmax], while the second term in (5) represents the
overload distortion that occurs during quantization of data outside of the support region.
For p(x) defined by (1) and for ∆ = 2xmax/N, the expression (5) becomes:

D(σ) =
x2

max
3N2 + σ2 exp

(
− xmax

√
2

σ

)
. (6)

The quality of quantization is usually measured by SQNR which is defined as [16]:

SQNR(σ) [dB] = 10 · log10
σ2

D(σ)
. (7)

Standard approach for designing quantizers is to minimize distortion D or to maximize
SQNR for some referent variance σ2

0 . Common practice in literature [26], that will also
be applied in this paper, is to take the unit variance as the referent variance (σ2

0 = 1).
Expressions (6) and (7) for the distortion and SQNR of the uniform quantizer for σ2

0 = 1
becomes, respectively:

D(σ = 1) =
x2

max
3N2 + exp

(
−xmax

√
2
)

, (8)

SQNR(σ = 1) [dB] = −10 · log10 D(σ = 1) = −10 · log10

[
x2

max
3N2 + exp

(
−xmax

√
2
)]

. (9)

The maximal amplitude xmax can be considered as a key parameter of the uniform
quantizer, since all other parameters (∆, xi, yi) can be calculated based on xmax. Therefore,
the key task in designing the uniform quantizer is to determine the optimal value of xmax
by minimizing the distortion D(σ = 1).

Lemma 1. Distortion D(σ = 1) of the uniform quantizer has a unique global minimum.

Proof of Lemma 1. For D(σ = 1) defined with (8), we have that:

∂D(σ = 1)
∂xmax

=
2xmax

3N2 −
√

2 exp
(
−
√

2xmax

)
, (10)

∂2D(σ = 1)
∂x2

max
=

2
3N2 + 2 exp

(
−
√

2xmax

)
. (11)

From the condition ∂D(σ = 1)/∂xmax = 0 we obtain the equation
√

2xmax/(3N2) =

exp
(
−
√

2xmax

)
. As the increasing linear function

√
2xmax/(3N2) and the decreasing expo-

Mathematics 2023, 11, 568 5 of 14

nential function exp
(
−
√

2xmax

)
have a unique intersection point for xmax > 0, the distortion

D(σ = 1) must have a unique extremum. It follows from (11) that ∂2D(σ = 1)/∂x2
max > 0,

meaning that this unique extremum of D(σ = 1) is in fact a unique minimum of distortion
D(σ = 1), being a global minimum of D(σ = 1). This proves Lemma 1. �

Let xopt
max denote the value of xmax where D(σ = 1) achieves the global minimum.

For xmax = xopt
max, the uniform quantizer achieves the maximal SQNR that is expressed,

using (9), as:

SQNRmax = −10 log10

(

xopt
max

)2

3N2 + exp
(
−
√

2xopt
max

). (12)

The value of xopt
max can be calculated numerically in the Mathematica software package.

For the 24-bit uniform quantizer we obtain the value xopt
max= 21.876, achieving SQNRmax

of 122.194 dB.
Nevertheless, to facilitate the design of the uniform quantizer, it is desirable to derive

an approximate closed-form formula for calculation of the optimal xmax. The following
approximate formula for xmax was proposed in [29]:

xmax =
√

2 ln N. (13)

However, this formula is not accurate enough: for R = 24 bits it gives xmax= 23.526,
producing an error of 7.542 % in relation to the optimal value xopt

max, that can be too high for
a number of applications.

As an important contribution of the paper, we will derive below two closed-form
approximate formulas for very accurate calculation of xmax. For the optimal value of
xmax, the distortion D(σ = 1) should be minimal, meaning that its first derivative de-
fined by (10) should be equal to 0. If we equate the expression (10) with 0, it follows
that exp(−

√
2xmax) =

√
2xmax/(3N2). By logarithmization of this expression, it is ob-

tained that:

xmax =
1√
2

ln
3N2
√

2xmax
. (14)

Based on the Equation (14), we can define the iterative process

x(i)max =
1√
2

ln
3N2

√
2x(i−1)

max

, (15)

for calculation of xmax. If we take the value defined by (13) as the starting point x(0)max of
the iterative process (15), i.e., x(0)max =

√
2 ln N, we will obtain a value for xmax that is very

close to xopt
max just after the first iteration. Therefore, we can take the expression for the first

iteration x(1)max as a closed-form approximate formula for xmax:

xmax ∼= x(1)max =
1√
2

ln
3N2

2 ln N
. (16)

For R = 24 bits, the Formula (16) gives the value of xmax = 21.825, producing an error
of only 0.235 % in relation to the optimal value xopt

max. Thus, the formula (16) is much more
accurate than the Formula (13), providing satisfactory accuracy for a lot of applications.
However, if an even more accurate calculation of xmax is required for some applications,

Mathematics 2023, 11, 568 6 of 14

the second iteration x(2)max of the iterative process (15), obtained by putting (16) in (15), can
be used as a closed-form approximate formula for a very accurate calculation of xmax :

xmax ∼= x(2)max =
1√
2

ln
3N2

ln 3N2

2 ln N

. (17)

For R = 24 bits, the Formula (17) gives the value xmax= 21.878 that differs from xopt
max by

only 0.009 %.

3. 24-Bit Fixed-Point Quantizer

A real number x can be represented in the R-bit fixed-point representation as [25]:

x = (san−1an−2 . . . a1a0 . a−1 . . . a−m)2, (18)

where we use one bit ‘s’ to encode the sign of x, n bits (an−1an−2 . . . a1a0) to encode the
integer part of x and m bits (a−1 . . . a−m) to encode the fractional part of x. Hence, we have
that R = n + m + 1. Each bit ai (i = −m, . . . , n− 1) in the fixed-point representation has
the weight of 2i, allowing for easy calculation of x from the fixed-point binary form as
x = (−1)s∑n−1

i=−m ai2i. The number 0 is represented with all bits equal to 0. The largest pos-
itive number that can be represented in the fixed-point format is xmax = (1 . . . 1.1 . . . 1)2 =

∑n−1
i=−m 2i = 2−m∑n+m−1

i=0 2i = 2−m(2n+m − 1) = 2n − 2−m ≈ 2n. Due to the symmetry with
respect to 0, the largest negative number that can be represented is −2n.

Let us consider the first few positive numbers represented in the R-bit fixed-point
format. The smallest positive number that can be represented is (0...0.0...01)2 = 2−m, the
next number is (0...0.0...010)2 = 2−(m−1) = 2 · 2−m, the next is (0...0.0...011)2 =2−(m−1) +
2−m = 3 · 2−m, and so on. All these numbers are equidistant, placed on mutual distance 2−m.
Hence, we can conclude that the R-bit fixed-point representation can represent uniformly
placed numbers from the range [−2n, 2n] with the step-size ∆ = 2−m, whereby all other real
numbers are rounded to the nearest one of these numbers. Therefore, the R-bit fixed-point
representation can be considered as a uniform quantizer with parameters xmax = 2n and
∆ = 2−m. This uniform quantizer that corresponds to the R-bit fixed-point representation
will be called the R-bit fixed-point quantizer. This analogy between the fixed-point binary
representation and the uniform quantization is very important, allowing us to use SQNR
of the R-bit fixed-point uniform quantizer as an objective measure to assess the quality of
the R-bit fixed-point representation [25].

The distortion of the fixed-point quantizer can be calculated using (6) as:

Dfxp(σ) =
22n

3N2 + σ2 exp

(
−
√

2 · 2n

σ

)
=

1
3

22(n−R) + σ2 exp

(
−2n+1/2

σ

)
. (19)

For the unit variance, the expression (19) becomes:

Dfxp(σ = 1) =
22n

3N2 + exp
(
−
√

2 · 2n
)
=

1
3

22(n−R) + exp
(
−2n+1/2

)
. (20)

Our goal is to examine the influence of the parameter n on the performance of the
fixed-point quantizer. The optimal value of n can be found by minimizing the distortion
Dfxp(σ = 1), from the condition

dDfxp(σ = 1)
dn

= 2n ln 2 ·
(

1
3

2n−2R+1 −
√

2 exp
(
−2n+1/2

))
= 0. (21)

Mathematics 2023, 11, 568 7 of 14

From (21), we obtain the condition 2n−2R+1 = 3
√

2 exp
(
−2n+1/2

)
that leads to

the equation:

n =
ln(3
√

2)
ln 2

+ 2R− 1−
√

2
ln 2

2n. (22)

For R = 24, Equation (22) becomes

n = 49.085− 2.04028 · 2n. (23)

By numerical solution of Equation (23), we obtain that the optimal value of n is 4.45.
However, n must be an integer, so the optimal value of n can be 4 or 5. To determine the
optimal value of n, but also to better understand how the value of n affects performance, we
calculate SQNR for different values of n, using (9) and (20). The results are shown in Table 1,
where we can see that n = 5 gives the highest value of SQNR, being the optimal value of n.
To summarize: for the 24-bit fixed-point representation, the optimal values of parameters
are n = 5, m = 18,xmax = 2n= 32, and ∆ = 2−m = 2−18, achieving the maximal SQNR of
119.163 dB. Another important conclusion from Table 1 is that the wrong choice of the value
of n drastically reduces the SQNR (i.e., the accuracy of the fixed-point representation).

Table 1. SQNR (dB) of the 24-bit fixed-point quantizer for different values of the parameter n.

n SQNR (dB) n SQNR (dB) n SQNR (dB)

0 6.142 8 101.101 16 52.936
1 12.284 9 95.080 17 46.915
2 24.567 10 89.060 18 40.895
3 49.135 11 83.039 19 34.874
4 98.261 12 77.018 20 28.854
5 119.163 13 70.998 21 22.833
6 113.142 14 64.977 22 16.812
7 107.121 15 58.957 23 10.792

4. Adaptive 24-Bit Fixed-Point Quantizer

Adaptation procedures for further improvement of the performance of the 24-bit
fixed-point format is presented below.

4.1. Adaptation for Data with the Unit Variance σ2 = 1

In this subsection, we will consider data with the unit variance. To recall: for data
modeled by the unit-variance Laplacian PDF, the 24-bit fixed-point quantizer with param-
eters n = 5 and xmax = 32 achieves SQNR of 119.163 dB while the 24-bit optimal uniform
quantizer with the maximal amplitude xopt

max = 21.876 achieves SQNRmax = 122.194 dB. Thus,
the 24-bit fixed-point quantizer achieves for 3.031 dB lower SQNR compared to the 24-bit
optimal uniform quantizer, due to the mismatch of xmax. To enable the 24-bit fixed-point
quantizer to achieve the maximal SQNR of 122.194 dB, we need to adapt the input data
as follows.

Adaptation_1. Input data, modeled by the unit-variance Laplacian PDF, should be
firstly multiplied by ρ = 2n/xopt

max = 32/21.876 = 1.463 before the conversion to the 24-bit
fixed point format, as it is shown in Figure 2, where ri (i = 1, . . . , M) denotes an element
of the input data, ri

′ = ρ · ri denotes the adapted element, (ri
′)2 denotes a 24-bit binary

code-word of the adapted element ri
′, (ri

′)∗ denotes a reconstructed value of the adapted
element ri

′ and r∗i = (ri
′)∗/ρ denotes a reconstructed value of the input element ri.

Mathematics 2023, 11, 568 8 of 14

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 15

4.1. Adaptation for Data with the Unit Variance 12 =

In this subsection, we will consider data with the unit variance. To recall: for data

modeled by the unit-variance Laplacian PDF, the 24-bit fixed-point quantizer with

parameters n = 5 and maxx = 32 achieves SQNR of 119.163 dB while the 24-bit optimal

uniform quantizer with the maximal amplitude optxmax = 21.876 achieves maxSQNR =

122.194 dB. Thus, the 24-bit fixed-point quantizer achieves for 3.031 dB lower SQNR

compared to the 24-bit optimal uniform quantizer, due to the mismatch of maxx . To enable

the 24-bit fixed-point quantizer to achieve the maximal SQNR of 122.194 dB, we need to

adapt the input data as follows.

Adaptation_1. Input data, modeled by the unit-variance Laplacian PDF, should be

firstly multiplied by 463.121.876/32/2 max === optn x before the conversion to the 24-bit

fixed point format, as it is shown in Figure 2, where ir (Mi ,...,1=) denotes an element of

the input data, ii rr = ' denotes the adapted element, 2)'(ir denotes a 24-bit binary

code-word of the adapted element 'ir , *)'(ir denotes a reconstructed value of the

adapted element 'ir and /)'(**

ii rr = denotes a reconstructed value of the input

element ir .

(r
i
')*(r

i
')

2

((')

 =

2
)

r
i
' r

i
*

(

 = 1)

r
i

24-bit

conversion

(r
i
')

2

memory decoder
24 24

n = 5, x
max

 = 32

X

fixed-point
X

Figure 2. Conversion to the 24-bit fixed-point format with the Adaptation_1.

Lemma 2. If the variance of the input data ir (Mi ,...,1=) is 12 = , then the variance of the

adapted data ii rr = ' (Mi ,...,1=) is 22)'(= .

Proof of Lemma 2. It is given that the variance of the input data is equal to 1, i.e.,

.1)(
1

1

22
 =

==
M

i ir
M

 Then, we have that:

2222

1

22

1 1

222 1)(
1

)(
1

)'(
1

)'(====== == =

M

i i

M

i

M

i ii r
M

r
M

r
M

, (24)

proving the Lemma 2. □

Theorem 1. For the input data with the unit variance, the SQNR of the adapted 24-bit fixed-point

quantizer (according to the Adaptation_1), marked as adapt_1SQNR , is equal to the maximal SQNR

of the optimal uniform quantizer maxSQNR defined with (12), i.e., adapt_1SQNR = maxSQNR .

Proof of Theorem 1. According to Figure 2, the distortion of the adapted 24-bit fixed-point

quantizer is calculated as:

()
===

−=

−=−=

M

i
ii

M

i

ii
M

i
ii rr

M

rr

M
rr

M
D

1

2*

2
1

2
*

1

2*

adapt_1)'('
11)'('1

)(
1

. (25)

The input of the 24-bit fixed-point quantizer consists of the adapted data elements

'ir , whose reconstructed values are *)'(ir , Mi ,...,1= ; hence, according to (3), the

distortion of the 24-bit fixed-point quantizer is calculated as:

Figure 2. Conversion to the 24-bit fixed-point format with the Adaptation_1.

Lemma 2. If the variance of the input data ri (i = 1, . . . , M) is σ2 = 1, then the variance of the
adapted data ri

′ = ρ · ri (i = 1, . . . , M) is (σ′)2 = ρ2.

Proof of Lemma 2. It is given that the variance of the input data is equal to 1, i.e.,
σ2 = 1

M ∑M
i=1 (ri)

2 =1. Then, we have that:

(σ′)
2
=

1
M∑M

i=1 (ri
′)

2
=

1
M∑M

i=1 (ρ · ri)
2 =ρ2 1

M∑M
i=1 (ri)

2 =ρ2 · σ2 = ρ2 · 1 = ρ2, (24)

proving the Lemma 2. �

Theorem 1. For the input data with the unit variance, the SQNR of the adapted 24-bit fixed-point
quantizer (according to the Adaptation_1), marked as SQNRadapt_1, is equal to the maximal SQNR
of the optimal uniform quantizer SQNRmax defined with (12), i.e., SQNRadapt_1 = SQNRmax.

Proof of Theorem 1. According to Figure 2, the distortion of the adapted 24-bit fixed-point
quantizer is calculated as:

Dadapt_1 =
1
M

M

∑
i=1

(ri − r∗i)
2 =

1
M

M

∑
i=1

(
ri
′

ρ
− (ri

′)∗

ρ

)2

=
1
ρ2

1
M

M

∑
i=1

(
ri
′ − (ri

′)
∗
)2

. (25)

The input of the 24-bit fixed-point quantizer consists of the adapted data elements ri
′,

whose reconstructed values are (ri
′)∗, i = 1, . . . , M; hence, according to (3), the distortion

of the 24-bit fixed-point quantizer is calculated as:

Dfxp =
1
M

M

∑
i=1

(
ri
′ − (ri

′)
∗
)2

. (26)

On the other hand, the distortion of the 24-bit fixed-point quantizer can be calculated
by (19) where we should use σ′ instead of σ, since the variance of the adapted data ri

′ is
denoted as (σ′)2. Since from Lemma 2 it follows that σ′ = ρ, the distortion of the 24-bit
fixed-point quantizer can be expressed, based on (19), as:

Dfxp ≡ Dfxp(ρ) =
22n

3N2 + ρ2 exp

(
−
√

2 · 2n

ρ

)
. (27)

Due to the equivalence of formulas (3) and (4), as well as knowing that expression (26)
comes from the formula (3) while expression (27) is derived from formula (4), it follows that
expressions (26) and (27) for the distortion of the 24-bit fixed-point quantizer are equivalent.
Based on this equivalence we have that:

1
M

M

∑
i=1

(
ri
′ − (ri

′)
∗
)2

=
22n

3N2 + ρ2 exp

(
−
√

2 · 2n

ρ

)
. (28)

Putting (28) into (25), it is obtained that:

Mathematics 2023, 11, 568 9 of 14

Dadapt_1 =
1
ρ2

(
22n

3N2 + ρ2 exp

(
−
√

2 · 2n

ρ

))
=

22n

3N2ρ2 + exp

(
−
√

2 · 2n

ρ

)
=

(2n/ρ)2

3N2 + exp
(
−
√

2 · 2n

ρ

)
. (29)

Since xopt
max = 2n/ρ, the expression (29) becomes:

Dadapt_1 =
(xopt

max)
2

3N2 + exp
(
−
√

2 · xopt
max

)
. (30)

Since the variance of the input data ri (i = 1, . . . , M) is equal to 1, SQNR of the adaptive
24-bit fixed-point quantizer can be calculated based on (9) and (30), as:

SQNRadapt_1 = −10 · log10 Dadapt_1 = −10 · log10

 (xopt
max)

2

3N2 + exp
(
−
√

2xopt
max

). (31)

Comparing (30) and (12), it follows that SQNRadapt_1 = SQNRmax, thus completing the
proof of Theorem 1. �

Theorem 1 shows that by Adaptation_1 SQNR of the 24-bit fixed-point representation
increases for 3.031 dB for the unit-variance Laplacian PDF, achieving the maximal possible
value SQNRmax = 122.194 dB.

4.2. Double Adaptation for Data with the Variance σ2 6= 1

In this subsection, we consider the case that the variance of the input data differs
from 1. Let us define the following adaptation procedure.

Adaptation_2. Calculate the variance of the input data σ2 according to (2) and if it
differs from 1, divide all input elements ri (i = 1, . . . , M) by σ.

Lemma 3. The variance (σ′′)2 of data ri
′′ = ri/σ (i = 1, . . . , M), obtained by applying of the

Adaptation_2 procedure, is (σ′′)2 = 1.

Proof of Lemma 3. The variance of the input data is σ2 =
(

∑M
i=1 r2

i

)
/M. Then, the

variance of data ri
′′ obtained by the Adaptation_2 procedure is:

(σ′′)2 =
1
M

M

∑
i=1

(ri
′′)2 =

1
M

M

∑
i=1

(ri/σ)2 =
1
σ2

1
M

M

∑
i=1

ri
2 =

σ2

σ2 = 1, (32)

proving Lemma 3. �

Lemma 3 shows that by the Adaptation_2, we obtain data with the unit variance.
Our aim is to provide the same quality of the 24-bit fixed-point representation for data

whose variance differs from 1 as for data whose variance is equal to 1. To achieve this, we
need to perform a double adaptation, as follows.

Double adaptation. If the variance of the input data differs from 1, apply the Adap-
tation_2 followed by the Adaptation_1 before conversion to the 24-bit fixed-point format.
This is shown in Figure 3, where ri (i = 1, . . . , M) denotes an element of the input data,
ri
′′ = ri/σ denotes the value of the element after Adaptation_2, ri

′ = ρ · ri
′′ denotes the

value of the element after the Adaptation_1, (ri
′)2 denotes a 24-bit binary code-word for

ri
′ that is stored in memory, (ri

′)∗ denotes a reconstructed value of ri
′, (ri

′′)∗ = (ri
′)∗/ρ

denotes a reconstructed value of ri
′′ , and r∗i = σ · (ri

′′)∗ denotes a reconstructed value of
the input element ri.

Mathematics 2023, 11, 568 10 of 14

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 15

Proof of Lemma 3. The variance of the input data is () Mr
M

i i /
1

22
 =

= . Then, the variance

of data "ir obtained by the Adaptation_2 procedure is:

1
11

)/(
1

)"(
1

)"(
2

2

1

2

2
1

2

1

22 =====
===

M

i
i

M

i
i

M

i
i r

M
r

M
r

M
, (32)

proving Lemma 3. □

Lemma 3 shows that by the Adaptation_2, we obtain data with the unit variance.

Our aim is to provide the same quality of the 24-bit fixed-point representation for

data whose variance differs from 1 as for data whose variance is equal to 1. To achieve

this, we need to perform a double adaptation, as follows.

Double adaptation. If the variance of the input data differs from 1, apply the

Adaptation_2 followed by the Adaptation_1 before conversion to the 24-bit fixed-point

format. This is shown in Figure 3, where ir (Mi ,...,1=) denotes an element of the input

data, /" ii rr = denotes the value of the element after Adaptation_2, "' ii rr = denotes

the value of the element after the Adaptation_1, 2)'(ir denotes a 24-bit binary code-word

for 'ir that is stored in memory, *)'(ir denotes a reconstructed value of ,'ir =*)"(ir

/)'(*

ir denotes a reconstructed value of "ir , and **)"(ii rr = denotes a reconstructed

value of the input element ir .

(')

(r
i
')*(r

i
')

2r
i
' r

i
*

('')

r
i
''

24-bit

conversion

(r
i
')

2

memory decoder
24 24

n = 5, x
max

 = 32

X

fixed-point
X

(

 = 1)

r
i

X

(r
i
'')*

X

variance

calculation

Figure 3. Conversion to the 24-bit fixed-point format with the double adaptation.

Theorem 2. For an arbitrary variance 2 of the input data, the SQNR of the 24-bit fixed-point

quantizer with the double adaptation, marked as ptdouble_adaSQNR , is equal to the maximal SQNR

of the optimal uniform quantizer maxSQNR defined with (8), i.e., =ptdouble_adaSQNR maxSQNR .

Proof of Theorem 2. The distortion of the double adaptation system shown in Figure 3 is

calculated as:

() ()
===

−=−=−=
M

i
ii

M

i
ii

M

i
ii rr

M
rr

M
rr

M
D

1

2*2

1

2*

1

2*

ptdouble_ada)"("
1

)"("
1

)(
1

 . (33)

The data "ir (Mi ,...,1=), whose variance is equal to 1 according to Lemma 3,

represents the input of the Adaptation_1 procedure, hence the distortion of the

Adaptation_1 is defined as ()
=

−=
M

i
ii rr

M
D

1

2*

adapt_1)"("
1

. Thus, the expression (33)

becomes:

adapt_1

2

ptdouble_ada DD = . (34)

Since the variance of the input data is 2 , SQNR of the double adaptation system

(marked as ptdouble_adaSQNR) can be defined using the expression (7). Starting from (7) and

using (34) and (30), the following expression for ptdouble_adaSQNR is obtained:

Figure 3. Conversion to the 24-bit fixed-point format with the double adaptation.

Theorem 2. For an arbitrary variance σ2 of the input data, the SQNR of the 24-bit fixed-point
quantizer with the double adaptation, marked as SQNRdouble_adapt, is equal to the maximal SQNR
of the optimal uniform quantizer SQNRmax defined with (8), i.e., SQNRdouble_adapt = SQNRmax.

Proof of Theorem 2. The distortion of the double adaptation system shown in Figure 3 is
calculated as:

Ddouble_adapt =
1
M

M

∑
i=1

(ri − r∗i)
2 =

1
M

M

∑
i=1

(
σ · ri

′′ − σ · (ri
′′)∗
)2

= σ2 1
M

M

∑
i=1

(
ri
′′ − (ri

′′)∗
)2. (33)

The data ri
′′ (i = 1, . . . , M), whose variance is equal to 1 according to Lemma 3, repre-

sents the input of the Adaptation_1 procedure, hence the distortion of the Adaptation_1 is

defined as Dadapt_1 = 1
M

M
∑

i=1

(
ri
′′ − (ri

′′)∗
)2. Thus, the expression (33) becomes:

Ddouble_adapt = σ2Dadapt_1. (34)

Since the variance of the input data is σ2, SQNR of the double adaptation system
(marked as SQNRdouble_adapt) can be defined using the expression (7). Starting from (7) and
using (34) and (30), the following expression for SQNRdouble_adapt is obtained:

SQNRdouble_adapt = 10 · log10
σ2

Ddouble_adapt
= 10 · log10

σ2

σ2·Dadapt_1

= −10 · log10 Dadapt_1 = −10 · log10

[
(xopt

max)
2

3N2 + exp
(
−
√

2xopt
max

)] . (35)

Comparing (35) and (12), it follows that SQNRdouble_adapt = SQNRmax, completing
the proof of Theorem 2. �

Thus, for data with σ2 6= 1, we have the double adaptation: firstly, the Adaptation 2 is
applied, converting the variance of the input data to 1, and after that the Adaptation 1 is
performed adjusting data to the maximal amplitude of the fixed-point quantizer. In this
way, as an important result of the double-adaptation, we obtain the maximal SQNR value
of 122.194 dB of the 24-bit fixed-point quantizer, i.e., the highest possible accuracy of the
24-bit fixed-point representation, for any value of variance σ2 of the input data.

5. Comparison of 24-Bit Fixed-Point and Floating-Point Quantizer

In this section, we compare performance of the proposed 24-bit fixed-point format
with the double adaptation and performance of the FP24 (24-bit floating-point) format. To
do that, we will briefly recall some basics about the floating-point representation, defined
by the IEEE 754 standard [1]. A real number x, represented in the 24-bit floating-point
format as x = (se1e2 . . . e8m1m2 . . . m15)2 is calculated as:

x = (−1)s2E−bias · (1. m1m2 . . . m15)2. (36)

Mathematics 2023, 11, 568 11 of 14

The biased exponent E∗ = E− 127 (where E = ∑8
i=1 ei · 28−i) takes values from −126

to 127, since values −127 and 128 are reserved for other purposes [1]. The mantissa
M = (m1m2 . . . m15)2 = ∑15

i=1 mi · 215−i takes values from 0 to 215 − 1.
The FP24 format is symmetrical with respect to zero. The largest positive FP24 number

obtained for E∗= 127 and M = 215 − 1 is 2127(1 + (215 − 1)/215) ≈ 2128. For each of 254
different values of E∗, there are 215 different positive real numbers represented in FP24
format, each of which corresponds to a different value of M. The difference of any two
consecutive numbers that have the same value of E∗ is constant:

∆E∗ = 2E∗ ·
(

1 +
M + 1

215

)
− 2E∗ ·

(
1 +

M
215

)
= 2E∗−15, (37)

meaning that the numbers with the same value of E∗ are equidistant. Thus, if we look
at positive numbers displayed in FP24 format, there are 254 groups of 215 uniformly
distributed (i.e., equidistant) numbers, where each group corresponds to one value of E∗.
Due to the symmetry, the same structure exists for negative numbers. We can see that the
structure of the numbers represented in the FP24 format corresponds to the structure of a
symmetrical 24-bit piecewise uniform quantizer with the maximal amplitude xmax = 2128,
which has 254 linear segments in the positive part, where the uniform quantization with 215

levels and quantization step ∆E∗ = 2E∗−15 is performed within each linear segment. This
24-bit piecewise uniform quantizer whose structure is equivalent to the 24-bit floating-point
format (FP24), will be called the 24-bit floating-point quantizer. This analogy between the
FP24 format and the 24-bit floating-point quantizer will allow us to express performance of
the FP24 format using objective performance (distortion and SQNR) of the 24-bit floating-
point quantizer [28].

The distortion of the 24-bit floating-point quantizer, for input data modeled with the
unit-variance Laplacian PDF can be calculated as [28]:

D(σ) = 2
127

∑
E∗=−126

∆2
E∗

12
PE∗(σ) + σ2 exp

(
−
√

2xmax

σ

)
, (38)

where PE∗(σ) =
∫ 2E∗+1

2E∗ p(x)dx represents the probability of the linear segment that corre-
sponds to some specific value of E∗. The first term in (38) represents the granular distortion
(where each member of the sum represents the granular distortion in one linear segment),
while the second term represents the overload distortion. For the Laplacian PDF p(x)
defined with (1), the expression (38) becomes:

D(σ) =
127

∑
E∗=−126

∆2
E∗

12

(
exp

(
−2E∗+1/2

σ

)
− exp

(
−2E∗+3/2

σ

))
+ σ2 exp

(
−
√

2xmax

σ

)
. (39)

Using (7) and (39), we can obtain that the 24-bit floating-point quantizer achieves
constant SQNR of 103.769 dB for the very wide range of variance of input data.

Based on the achieved results, it follows that the proposed 24-bit fixed-point quantizer
with the double adaptation achieves for 18.425 dB higher SQNR (i.e., higher quality of
binary representation) in a wide range of data variance compared to the FP24 format, as
a result of the optimization of n as well as of the proposed double adaptation procedure.
Having much smaller complexity in the same time, the proposed 24-bit fixed-point quan-
tizer with the double adaptation can be considered as a much better solution for binary
representation of data, compared to the FP24 format.

6. Simulation Results

Simulations of the considered 24-bit digital formats were performed in the MATLAB
software, by generating random numbers from the Laplacian PDF with variance σ2 in the
manner described in [30]. Each simulation was performed using 1,000,000 generated ran-

Mathematics 2023, 11, 568 12 of 14

dom numbers with the appropriate value of the variance σ2. The results of the simulations
are shown below.

- By simulating the optimized 24-bit fixed-point format with n = 5 for the unit variance
(σ2= 1), described in Section 3, SQNR of 119.160 dB was achieved. Recall that the
theoretically obtained value of SQNR was 119.163 dB.

- By simulating the adaptive 24-bit fixed-point format with n = 5 for the unit variance
(σ2= 1) based on Adaptation_1 described in Section 4.1, SQNR of 122.453 dB was
achieved. Recall that the theoretically obtained SQNR value was 122.194 dB.

- By simulating the adaptive 24-bit fixed-point format with n = 5 based on the double
adaptation procedure described in Section 4.2 for different values of variance, values
of SQNR presented in Table 2 are obtained. Recall that the theoretically obtained
SQNR value was 122.194 dB for all considered variances. We can see that the SQNR
values obtained by simulations are almost completely constant in a wide range of
variance, which is fully in line with the theoretical results.

Table 2. Values of SQNR (dB) obtained by simulation of the adaptive 24-bit fixed-point format with
n = 5 based on the double adaptation described in Section 4.2, for different values of variance σ2.

σ2 SQNR (dB)

10−8 122.459
10−4 122.468
10−2 122.460
102 122.457
104 122.457
108 122.451

- By simulating the 24-bit floating-point format FP24 for different values of variance,
values of SQNR presented in Table 3 are obtained. Recall that the theoretically obtained
SQNR value was 103.769 dB for all considered variances. We can see that the SQNR
values obtained by simulations are almost completely constant in a wide range of
variance, which is fully in line with the theoretical results.

Table 3. Values of SQNR (dB) obtained by simulation of the 24-bit floating-point format FP24 for
different values of variance σ2.

σ2 SQNR (dB)

10−8 103.780
10−4 103.788
10−2 103.768

1 103.774
102 103.750
104 103.776
108 103.753

We can see that all simulation results are very close to the corresponding theoretical
results, confirming the correctness of the developed theory.

Based on [28], the FP32 format achieves the constant SQNR value of 151.93 dB in a
very wide range of the variance, which is an unnecessarily large value for most applications.
By using the proposed adaptive 24-bit fixed-point format, an SQNR value of 122.194 dB is
achieved, which is quite sufficient for the vast majority of applications, with a significant
reduction in the implementation complexity compared to the FP32 format.

7. Conclusions

The main goal of the paper was to optimize the 24-bit fixed-point format, as well as to
examine and improve its performance, for data modeled by the Laplacian PDF. In achieving

Mathematics 2023, 11, 568 13 of 14

this goal, the following contributions were achieved. Two new closed-form expressions
for highly accurate calculation of the maximal amplitude of the uniform quantizer were
derived for the Laplace PDF. Based on the analogy between fixed-point representation
and uniform quantization, expressions for the performance of the 24-bit fixed-point binary
format were derived. The parameter n (the number of bits used to represent the integer
part of data) was optimized, showing that n = 5 is the optimal value for data with the unit
variance. It was also shown that the wrong choice of the value of n drastically reduces the
performance of the fixed-point representation. It was observed that even with the optimal
value of n = 5, the 24-bit fixed-point format achieves weaker performance in relation to the
maximum possible (determined for the optimal uniform quantizer) for the unit variance,
due to the mismatch of the maximal amplitude. In order to solve this problem, an adaptive
procedure (Adaptation_1) was proposed, improving the quality of the 24-bit fixed-point
representation by 3.031 dB. An additional adaptation procedure (Adaptation_2) was also
proposed, which should be applied together with Adaptation_1 when the variance of
the input data differs from 1. This double adaptation allows for the 24-bit fixed-point
representation to achieve the maximum quality for any value of the variance of the input
data. For the purpose of comparison, the FP24 (24-bit floating-point) format was also
analyzed and expressions for its performance were derived, using the analogy between
floating-point representation and piecewise uniform quantization. It was shown that the
proposed 24-bit fixed-point quantizer with the double adaptation represents a much better
solution than the FP24 format, for two reasons: it achieves a significantly higher SQNR (for
18.425 dB) and has significantly less implementation complexity.

Author Contributions: Conceptualization, Z.H.P. and M.R.D.; methodology, Z.H.P. and M.R.D.;
software, M.R.D.; validation, Z.H.P.; formal analysis, M.R.D.; investigation, Z.H.P. and M.R.D.;
resources, Z.H.P.; data curation, M.R.D.; writing—original draft preparation, M.R.D.; writing—review
and editing, Z.H.P. and M.R.D.; visualization, M.R.D.; supervision, Z.H.P.; project administration,
Z.H.P.; funding acquisition, Z.H.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Science Fund of the Republic of Serbia, grant num-
ber 6527104, AI- Com-in-AI, as well as by the Ministry of Education, Science and Technological
Development of the Republic of Serbia.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Standard for Floating-Point Arithmetic IEEE 754-2019. Available online: https://standards.ieee.org/ieee/754/6210/ (accessed

on 7 September 2022).
2. Tagliavini, G.; Mach, S.; Rossi, D.; Marongiu, A.; Benini, L. A Transprecision Floating-Point Platform for Ultra-Low Power

Computing. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 19–23 March 2018.

3. Cattaneo, D.; Di Bello, A.; Cherubin, S.; Terraneo, F.; Agosta, G. Embedded Operating System Optimization through Floating to
Fixed Point Compiler Transformation. In Proceedings of the 2018 21st Euromicro Conference on Digital System Design (DSD),
Prague, Czech Republic, 29–31 August 2018.

4. Zhang, A.; Lipton, Z.-C.; Li, M.; Smola, A.-J. Dive into Deep Learning; Amazon Science: Bellevue, WA, USA, 2020.
5. Verucchi, M.; Brilli, G.; Sapienza, D.; Verasani, M.; Arena, M.; Gatti, F.; Capotondi, A.; Cavicchioli, R.; Bertogna, M.; Solieri, M.

A Systematic Assessment of Embedded Neural Networks for Object Detection. In Proceedings of the 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020.

6. Chen, L.; Lin, S.; Lu, X.; Cao, D.; Wu, H.; Guo, C.; Liu, C.; Wang, F.-Y. Deep Neural Network Based Vehicle and Pedestrian
Detection for Autonomous Driving: A Survey. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3234–3246. [CrossRef]

7. Alshemali, B.; Kalita, J. Improving the Reliability of Deep Neural Networks in NLP: A Review. Knowl.-Based Syst. 2020, 191, 105210.
[CrossRef]

8. Buhrmester, V.; Münch, D.; Arens, M. Analysis of Explainers of Black Box Deep Neural Networks for Computer Vision: A Survey.
Mach. Learn. Knowl. Extr. 2021, 3, 966–989. [CrossRef]

9. Ye, F.; Yang, J. A Deep Neural Network Model for Speaker Identification. Appl. Sci. 2021, 11, 3603. [CrossRef]

https://standards.ieee.org/ieee/754/6210/
http://doi.org/10.1109/TITS.2020.2993926
http://doi.org/10.1016/j.knosys.2019.105210
http://doi.org/10.3390/make3040048
http://doi.org/10.3390/app11083603

Mathematics 2023, 11, 568 14 of 14

10. Baller, S.P.; Jindal, A.; Chadha, M.; Gerndt, M. DeepEdgeBench: Benchmarking Deep Neural Networks on Edge Devices. In
Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E), San Francisco, CA, USA, 4–8 October 2021.

11. Syed, R.T.; Ulbricht, M.; Piotrowski, K.; Krstic, M. Fault Resilience Analysis of Quantized Deep Neural Networks. In Proceedings
of the IEEE 32nd International Conference on Microelectronics (MIEL), Niš, Serbia, 12–14 September 2021.

12. Zoni, D.; Galimberti, A.; Fornaciari, W. An FPU design template to optimize the accuracy-efficiency-area trade-off. Sustain.
Comput. Inform. Syst. 2021, 29, 100450. [CrossRef]

13. MathWorks. Benefits of Fixed-Point Hardware. Available online: https://www.mathworks.com/help/fixedpoint/gs/benefits-
of-fixed-point-hardware.html (accessed on 7 September 2022).

14. Advantages of Fixed-Point Numbers on Hardware. Available online: https://www.ni.com/docs/en-US/bundle/labview-nxg-
data-types-api-overview/page/advantages-fixed-point-numbers.html# (accessed on 7 September 2022).

15. Sanchez, A.; Castro, A.D.; Garrido, J. Parametrizable Fixed-Point Arithmetic for HIL With Small Simulation Steps. IEEE J. Emerg.
Sel. Top. Power Electron. 2019, 7, 2467–2475. [CrossRef]

16. Lin, D.; Talathi, S.; Annapureddy, V.S. Fixed Point Quantization of Deep Convolutional Networks. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning (ICML’16), New York, NY, USA, 19–24 June 2016;
pp. 2849–2858.

17. Moussa, M.; Areibi, S.; Nichols, K. On the Arithmetic Precision for Implementing Back-Propagation Networks on FPGA: A Case Study;
Springer: New York, NY, USA, 2006.

18. Patrinos, P.; Guiggiani, A.; Bemporad, A. A dual gradient-projection algorithm for model predictive control in fixed-point
arithmetic. Automatica 2015, 55, 226–235. [CrossRef]

19. Simić, S.; Bemporad, A.; Inverso, O.; Tribastone, M. Tight Error Analysis in Fixed-Point Arithmetic. In Integrated Formal Methods;
Dongol, B., Troubitsyna, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12546.

20. Büscher, N.; Gis, D.; Kühn, V.; Haubelt, C. On the Functional and Extra-Functional Properties of IMU Fusion Algorithms for
Body-Worn Smart Sensors. Sensors 2021, 21, 2747. [CrossRef] [PubMed]

21. Sanchez, A.; Villar, I.; de Castro, A.; López Colino, F.; Garrido, J. Hardware-in-the-Loop Using Parametrizable Fixed Point
Notation. In Proceedings of the IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim,
Norway, 27–30 June 2016.

22. Zoni, D.; Galimberti, A. Cost-effective fixed-point hardware support for RISC-V embedded systems. J. Syst. Archit. 2022, 126, 102476.
[CrossRef]

23. Rapuano, E.; Pacini, T.; Fanucci, L. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC
Hardware Accelerators for LSTM/GRU Algorithms. Comput. Intell. Neurosci. 2022, 2022, 9485933. [CrossRef] [PubMed]

24. Saha, S.; Sandha, S.; Srivastava, M. Machine Learning for Microcontroller-Class Hardware—A Review. IEEE Sens. J. 2022, 22,
21362–21390. [CrossRef] [PubMed]

25. Perić, Z.; Jovanović, A.; Dinčić, M.; Savić, M.; Vučić, N.; Nikolić, A. Analysis of 32-bit Fixed Point Quantizer in the Wide Variance
Range for the Laplacian Source. In Proceedings of the 15th International Conference on Advanced Technologies, Systems and
Services in Telecommunications (TELSIKS), Niš, Serbia, 20–22 October 2021.

26. Jayant, N.C.; Noll, P. Digital Coding of Waveforms: Principles and Applications to Speech and Video; Prentice Hall: Hoboken, NJ, USA, 1984.
27. Nikolić, J.; Aleksić, D.; Perić, Z.; Dinčić, M. Iterative Algorithm for Parameterization of Two-Region Piecewise Uniform Quantizer

for the Laplacian Source. Mathematics 2021, 9, 3091. [CrossRef]
28. Perić, Z.; Savić, M.; Dinčić, M.; Vučić, N.; Djošić, D.; Milosavljević, S. Floating Point and Fixed Point 32-bits Quantizers for

Quantization of Weights of Neural Networks. In Proceedings of the 12th International Symposium on Advanced Topics in
Electrical Engineering (ATEE), Bucharest, Romania, 25–27 March 2021.

29. Hui, D.; Neuhoff, D.L. Asymptotic analysis of optimal fixed-rate uniform scalar quantization. IEEE Trans. Inf. Theory 2001, 47,
957–977. [CrossRef]

30. Kay, S. Intuitive Probability and Random Processes Using MATLAB; Springer: Berlin/Heidelberg, Germany, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.suscom.2020.100450
https://www.mathworks.com/help/fixedpoint/gs/benefits-of-fixed-point-hardware.html
https://www.mathworks.com/help/fixedpoint/gs/benefits-of-fixed-point-hardware.html
https://www.ni.com/docs/en-US/bundle/labview-nxg-data-types-api-overview/page/advantages-fixed-point-numbers.html#
https://www.ni.com/docs/en-US/bundle/labview-nxg-data-types-api-overview/page/advantages-fixed-point-numbers.html#
http://doi.org/10.1109/JESTPE.2018.2886908
http://doi.org/10.1016/j.automatica.2015.03.002
http://doi.org/10.3390/s21082747
http://www.ncbi.nlm.nih.gov/pubmed/33924650
http://doi.org/10.1016/j.sysarc.2022.102476
http://doi.org/10.1155/2022/9485933
http://www.ncbi.nlm.nih.gov/pubmed/35602644
http://doi.org/10.1109/JSEN.2022.3210773
http://www.ncbi.nlm.nih.gov/pubmed/36439060
http://doi.org/10.3390/math9233091
http://doi.org/10.1109/18.915652

	Introduction
	Design of the Optimal Uniform Quantizer
	24-Bit Fixed-Point Quantizer
	Adaptive 24-Bit Fixed-Point Quantizer
	Adaptation for Data with the Unit Variance 2 = 1
	Double Adaptation for Data with the Variance 2 =1

	Comparison of 24-Bit Fixed-Point and Floating-Point Quantizer
	Simulation Results
	Conclusions
	References

