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Abstract: The mathematical model of the spiking neural network (SNN) supplied by astrocytes is
investigated. The astrocytes are a specific type of brain cells which are not electrically excitable but
induce chemical modulations of neuronal firing. We analyze how the astrocytes influence images
encoded in the form of the dynamic spiking pattern of the SNN. Serving at a much slower time
scale, the astrocytic network interacting with the spiking neurons can remarkably enhance the image
representation quality. The spiking dynamics are affected by noise distorting the information image.
We demonstrate that the activation of astrocytes can significantly suppress noise influence, improving
the dynamic image representation by the SNN.

Keywords: spiking neural network; neuron–glial interactions; astrocyte

MSC: 37M05; 92-10

1. Introduction

The construction of biologically relevant models of the brain information processing
still remains one of the key tasks of modern mathematical neuroscience. In neurobiology,
key mechanisms of information processing concern synaptic transmission between the brain
network neurons. Synaptic plasticity, e.g., adaptive changes in the connection strengths, is
believed to be the main instrument of implementation learning and memory in the neural
networks. Following the neurobiological studies, many mathematical models are targeted
at describing experimental results and, hence, imitating brain functions has been proposed.
However, it still remains a challenge as to how at the network level brain circuits can
generate such finely tuned and effective information representation and processing.

In the last two decades, neurobiological experiments have revealed that neurons and
neural networks are not alone in the brain universe. It was found that glial cells, particularly
astrocytes, known before as just “supporting” cells providing mostly metabolic functions,
can also participate in information processing by means of chemical regulations of neuronal
activity and synaptic transmission [1–4]. The inclusion of the third player, e.g., astrocytes,
in the classical “presynapse–postsynapse” signal transmission scheme led to the concept of
a tripartite synapse [2,3,5]. Astrocytes, through calcium-dependent release of neuroactive
chemicals (for example, glutamate), affect the pre- and postsynaptic compartments of
the synapse. When spikes are generated by a presynaptic neuron, a neurotransmitter
(for example, glutamate) is released from the presynaptic terminal. By diffusion, part
of the chemicals leave the synaptic cleft and bind to metabotropic glutamate receptors
(mGluRs) on the astrocyte, which may be located near the presynaptic terminal. Activation
of metabotropic glutamate receptors G-mediated leads to the formation of inositol-1,4,5-
triphosphate (IP3). This process, after a cascade of molecular transformations inside
the astrocyte, leads to the release of Ca2+ into the cytoplasm. It induces the release
of the neuroactive chemicals called gliotransmitters (for example, glutamate, adenosine
triphosphate (ATP), D-serine, GABA) back to the extrasynaptic space. Next, they bind
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to pre- or postsynaptic receptors, resulting finally in the modulation of the efficiency of
synaptic transmission, completing the feedback loop [6].

Many mathematical models were then proposed to explore the functional role of
astrocytes in neuronal dynamics. They include the model of the “dressed neuron,” which
describes the astrocyte-mediated changes in neural excitability [7,8], the model of the
astrocyte serving as a frequency selective “gate keeper” [9], the model of the astrocyte regu-
lating presynaptic functions [10] and many others. In particular, it was demonstrated that
gliotransmitters can effectively control presynaptic facilitation and depression. The model
of the tripartite synapse was recently employed to demonstrate the functions of astrocytes
in the coordination of neural network signaling, in particular, spike-timing-dependent
plasticity and learning [11–13], as a mechanism responsible for the generation of neural
synchrony [14,15]. In models of astrocytic networks, communication between astrocytes
has been described as Ca2+ wave propagation and synchronization of Ca2+ waves [16–21].
However, due to a variety of potential actions that may be specific for brain regions and
neuronal sub types, the functional roles of astrocytes in network dynamics are still a subject
of debate.

The role of astrocytes as collaborators of spiking neural networks (SNNs) in implement-
ing learning and memory functions has been intensively discussed in recent computational
models [22–24]. Specifically, it was demonstrated that the astrocytes serving at much slower
time scale can help SNNs to distinguish highly overlapping images. Here, we present
another SNN model accompanied by the astrocytes that can significantly enhance the
recognition of information images encoded in the form of dynamical spiking patterns
stored by the SNN.

2. The Model
2.1. Mathematical Model of a Single Neuron

The individual neuron of the SNN is described by the Hodgkin–Huxley model [25,26]
which determined that the squid axon carries three major currents: voltage-gated persistent
K+ current, IK, with four activation gates (resulting in the term n4 in the equation below,
where n is the activation variable for K+), voltage-gated transient Na+ current, INa, with three
activation gates and one inactivation gate (term m3h below), and Ohmic leak current, IL,
which is carried mostly by Cl− ions. The complete set (Equation (1)) of space-clamped
Hodgkin–Huxley equations is

CV̇ = Iinj −−−

INa︷ ︸︸ ︷
ḡNam3h(V −VNa)−

IK︷ ︸︸ ︷
ḡKn4(V −VK)−−−

IL︷ ︸︸ ︷
ḡL(V −VL)

ṅ = αn(V)(1− n)−−− βn(V)n

ṁ = αm(V)(1−m)−−− βm(V)m

ḣ = αh(V)(1− h)−−− βh(V)h, (1)

where

Iinj = Istim + Inoise + Isyn (2)

αn(V) =
0.01(V + 55)

1− exp[−(V + 55)/10]
βn(V) = 1.125 exp[−(V + 65)/80]

αm(V) =
0.1(V + 40)

1− exp[−(V + 40)/10]
βm(V) = 4 exp[−(V + 65)/18]

αh(V) = 0.07 exp[−(V + 65)/20]

βn(V) =
1

1 + exp[−(V + 35)/10]
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Shifted Nernst equilibrium potentials for INa, IK and IL are VNa = 50 mV, VK = −77 mV
and VL = −54.4 mV, respectively. Typical values of maximal conductances for INa, IK
and IL are ḡNa = 36 mS/cm2, ḡK = 120 mS/cm2 and ḡL = 0.3 mS/cm2, respectively.
The functions α(V) and β(V) describe the transition rates between open and closed states
of the channels. C = 1 ¯F/cm2 is the membrane capacitance, and Iinj (Equation (2)) is the
applied current, which consists of three parts: Istim, Inoise and Isyn.

2.2. Applied Currents

Images applied to the SNN were encoded as matrices M of size n× k and values from
0 to 1 for each pixel, where 0 is the absence of color, and n and k are the corresponding
image sizes (length and width). Next, the matrix M was transformed into an l × 1 vector
S, where l = n × k and corresponds to the neuron index in the neural network. Thus,
the stimulation current, Istim, will be written in the following form:

Istim = S× AS, (3)

where AS is the amplitude of stimulus taken here for illustration with value 5.3 nA.
The synaptic current, Isyn, is modeled using the conductance-based approach as the

following form:

Isyn = gj(Vj −−−V), (4)

where

ġj =
−gj

τj
(5)

In our model, index j is used for excitatory (exc) and inhibitory (inh) synapses. Reversal
potentials for synaptic currents are equal 0 mV and −80 mV for excitatory and inhibitory
synapses, respectively. τj is the time relaxation which equaled 5 ms and 10 ms for excitatory
and inhibitory synapses, respectively. Excitatory (inhibitory) synapses will increase the
excitatory (inhibitory) conductance in the postsynaptic cell whenever a presynaptic action
potential arrives at

gj ← gj + wj, (6)

where wj is the synaptic weight equaling 3 nS and 77 nS for excitatory and inhibitory
synapses, respectively.

Besides the synaptic input, each neuron receives a noisy thalamic input (Inoise). The
noisy thalamic input is applied to each neuron and generated in a random way from a
standard normal distribution (i.e., normally distributed numbers with a mean of 0 and a
standard deviation of 1).

Each spike in the neuron model induces the release of a neurotransmitter. To describe
the neuron to astrocyte cross-talk, here, we only focus on the excitatory neurons releasing
glutamate. Following earlier experimental and modeling studies, we assume that the
glutamate–mediate exchange was the key mechanism to induce coherent neuronal excita-
tions [27,28]. The role of GABAergic neurons in our network is to support the excitation
and inhibition balance, avoiding hyperexcitation states.

For simplicity, we take a phenomenological model of released glutamate dynam-
ics. In the mean field approximation, the average concentration of synaptic glutamate
concentration for each excitatory synapse, Xe, was described by the following equations:

Xe(t) =
{

Xe(ts) exp(−t/τX), if ts < t < ts+1,
Xe(ts − 0) + 1, if t = ts,

(7)
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where e = 1, 2, 3, . . . is the index of excitatory presynaptic neurons, s = 1, 2, 3, . . . is the
index of the presynaptic spikes, and τX is the time relaxation equal to 80 ms. After the spike
is generated on the presynaptic neuron, the neurotransmitter is released.

2.3. Tripartite Synapses

To describe the dynamics of a tripartite synapse, we used the mean-field approach
to describe changes in the concentration of neuroactive substances (neurotransmitter and
gliotransmitter), proposed in the work [29]. In the proposed model, the filtering of the
external noise signal applied to neurons is carried out due to synaptic depression, which
consists of a decrease in the probability of neurotransmitter release, which in turn leads to a
decrease in the strength of the connection between neurons (work [30]). Part of the synaptic
glutamate can bind to metabotropic glutamate receptors of the astrocyte processes. Next,
after a cascade of molecular transformations mediated by the elevation of intracellular
calcium, the astrocyte releases gliotransmitter back to the extracellular space. For our
purpose, in the mathematical model, we dropped the detailed description of these transfor-
mations, defining only input–output functional relation between the neurotransmitter and
gliotransmitter concentrations in the following form [29,31]:

˙dYe = −−−Ye/τYe +
βY

1 + exp(−Xe + Xthr)
(8)

where e = 1, 2, 3, . . . is the index of the excitatory neuron, Ye is the gliotransmitter con-
centration in the neighborhood of the corresponding excitatory synapse, and τYe is the
clearance rate equal 120 ms. The second term in Equation (8) describes the gliotransmitter
production (βY = 1) when the mean field concentration of the gliotransmitter exceeds some
threshold, Xthr, equal to 1. Figure 1 illustrates the network construction and neuron to
astrocyte crosstalk for excitatory glutamatergic synapses.

It follows from experimental facts that astrocytes can influence the probability of
neurotransmitter release [32–34]. In turn, it results in modulation synaptic currents. We
accounted astrocytic synaptic depression in the following form for glutamatergic synapses:

wext ← wext(1−
γY

(1 + exp(−Y + Ythr))
) (9)

where wext is the weight for glutamatergic synapses between neurons, and γY is the
coefficient of astrocyte influence (in our case, synaptic depression) on synaptic connection.

2.4. Neural Network

A schematic representation of network with astrocytic modulation of probability
release of neurotransmitter is presented in Figure 1a. After the generation of an action
potential on the presynaptic neuron, the neurotransmitter is released from the presynaptic
terminal. Its part can diffuse out of the cleft where it can bind to specific astrocyte recep-
tors [35]. The activation of the astrocyte results in the generation of calcium transients
in the form of short-term increase in the intra-cellular concentration of calcium. In turn,
the calcium elevations lead to gliotransmitter (particularly glutamate) release. The released
gliotransmitter, reaching the presynaptic terminal, leads to a change in the probability of
neurotransmitter release, depressing the synaptic current.

The size N of the spiking neural network was chosen based on the size of the presented
image, i.e., N = n × k in real time (resolution 1 ms). Motivated by the anatomy of a
mammalian cortex, we chose the ratio of excitatory to inhibitory neurons to be 4 to 1.
The probability of connection of excitatory neurons is 5%, and the probability of the
connection of inhibitory neurons is 10%. Since the model uses a mean-field approach to
describe changes in the main neuroactive substances (neurotransmitter and gliotransmitter),
we do not separate the effect of a single astrocyte on a group of neurons or a group of
neurons on a single astrocyte, but we introduce into the description of each synaptic contact
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its own dynamics for the neuro- and gliotransmitters. In the case of our model, there is no
need to balance the speed difference between neurons and astrocytes. Different time scales
here serve as the mechanisms of image representation enhancement because the activation
of astrocytes occurs as a cascade of biochemical reactions in response to integral neuronal
activity [2,5]. For our purpose, we do not consider in the model inter-astrocyte connections
formed in living networks by gap junctions. Such connections are of a diffusive type,
resulting in a slow diffusion (relative to neuronal processes) of information in the network
space that does not greatly affect the evaluated images. Thus, our model represents a
compromise between the biophysically relevant description of the spiking neural networks
and mean-field approximation of the astrocyte modulation dynamics.

(a)

(b)

(c)

Figure 1. (a) Scheme of neuron–astrocyte network. (b) Scheme of encoded and decoded image input
in spiking neural network with astrocyte regulation. (c) Schematic view of an input image load into
the spiking neural network. Neurons (the blue dots) are arranged as two-dimensional lattice directly
corresponding to image’s pixels.
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2.5. Numerical Simulation Method

Numerical integration was performed using the Euler method (for additive stochastic
differential equations using the Euler–Maruyama method) with a step of 0.01 ms. Numerical
methods and data analysis were implemented in Python programming language [36] using
the Numpy library for arrays, Pandas library for data processing and analysis, Brian2 [37]
for model simulation and Matplotlib [38] and Seaborn libraries for data visualization
and analysis.

3. Results

Figure 1b illustrates the functional scheme of the model dynamics and the information
flow. The model network was not initially structured somehow. It represented a fully
connected graph with different connection probability (excitatory neurons 5%, inhibitory
neurons 10%). When applying a stimulation patterns, we considered images of 30 by
30 pixels fed to a neural network of 900 neurons (the diagram is shown in Figure 1c).
For illustration purposes, we artificially arranged our network in a two-dimensional lattice
and associated each pixel of the image with a particular neuron location in this lattice.
The input was formed by stimulation currents whose amplitudes and durations encoded the
information image. The output was processed from values of neuron membrane potentials
decoding time moments of spiking events. To demonstrate the effect of an astrocyte on
the neural activity of a spiking neural network, the problem of representing an image by a
neural network in the presence of noise was considered. For this purpose, an image in the
form of a horse (in Figure 2, middle panel, was fed to the spiking neural network including
tripartite synapses for 100 ms (Figures 3 and 4).

Figure 2. The middle picture is the supplied pattern (image of the horse), on the left, encoded by the
spiking neural network without astrocyte modulation and noise amplitude Anoise = 6, and on the
right, with astrocyte modulation and noise amplitude Anoise = 6.
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Figure 3. Time series of neural activity (upper left figure in the form of a raster diagram), the corre-
sponding LFP signal with rolling window 3 ms (lower left figure) and time series of concentrations
gliotransmitters (upper right figure) and concentration neurotransmitters (lower right figure) in the
case of an external noise signal with Anoise = 6 without astrocytic modulation.

Figure 4. Time series of neural activity (upper left figure in the form of a raster diagram), the corre-
sponding LFP signal with rolling window 3 ms (lower left figure) and time series of concentration
gliotransmitters (upper right figure) and concentration neurotransmitters (lower right figure) in the
case of an external noise signal with Anoise = 6 with astrocytic modulation.

A noise signal, Inoise, is applied to each neuron of the spiking neural network through-
out the simulation. As can be replaced, as the amplitude, Anoise, of the noise signal increases
without astrocytic modulation (Figure 5), blurring of the supplied image occurs. Activation
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of the astrocyte (Figure 6) through the regulation of the neurotransmitter release probability
leads to a balancing of excitation and inhibition in the network and thus stabilization
of the image representation as the amplitude of the noise signal increases. Needless to
say, the astrocytes depress the synaptic weights but do not significantly affect the overall
performance of the spiking neural network. Note that noise current, stimulation current,
and synaptic current contributed simultaneously to each spiking neuron activation. Be-
ing separated from the neuronal layer by construction, the astrocytes, in fact, serving as
low-pass filters, reduced the noise component of total input current, thereby correcting the
synaptic connections in a stimulus-dependent manner, hence improving the representation
of the stimulus. In other words, the astrocyte action was stimulus-specific, which preserved
the SNN performance in the presence of overall synaptic depression.

0 10 20

0

5

10

15

20

25

horse

0 10 20

0

5

10

15

20

25

Anoise= 0.0

0 10 20

0

5

10

15

20

25

Anoise= 1.0

0 10 20

0

5

10

15

20

25

Anoise= 2.0

0 10 20

0

5

10

15

20

25

Anoise= 3.0

0 10 20

0

5

10

15

20

25

Anoise= 4.0

0 10 20

0

5

10

15

20

25

Anoise= 5.0

0 10 20

0

5

10

15

20

25

Anoise= 6.0

Figure 5. Changes in the spatial sweep of the spiking neural network during the representation of
the supplied image from the Figure 2 when the amplitude, Anoise, of the noise current, Inoise, changes
from 0 to 6 without modulation of neuronal activity by astrocytes.
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Figure 6. Changes in the spatial sweep of the spiking neural network during the representation of
the supplied image from Figure 2 when the amplitude, Anoise, of the noise current, Inoise, changes
from 0 to 6 with modulation of neuronal activity by astrocytes.
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Next, we tested the model for different datasets. Additional results obtained using
other input images (numbers from the database MNIST [39], categories from databases
Fashion-MNIST [40] and SVHN [41]) are illustrated in Appendix A and in the Supplemen-
tary Materials. One can note that the model worked quite well for sufficiently contrasting
images without color gradations (numbers from the database MNIST), but poorly with
images that have color gradation (for example, grayscale) or fuzzy images (categories
from databases Fashion-MNIST and SVHN). It is explained by the fact that the neural
network itself is a coarse filter, where the neuron encodes a signal through a binary state:
activated/inactivated. In addition, astrocytic dynamics form a second-level filter since the
concentration of the gliotransmitter represents a slow variable in relation to the change in
the membrane potential of the neuron, which is a fast variable.

This effect can be most clearly demonstrated by comparing rasters of neural activity
(Figures 3 and 4) and the corresponding LFP signals (Figure 7) in the case of a high noise
signal amplitude, Anoise = 6, in the presence and absence of astrocytic modulation. As can
be seen, the astrocyte lowers the average activity of the neural network (gray area in
Figure 7).

Figure 7. Comparison of the regulation of neuronal activity in the absence and presence of astrocytic
modulation for a LFP signal with a noise current amplitude, Anoise = 6. The red line indicates the
time of feeding the image to the neural network.

Figure 8 shows a comparison of raster diagrams of neural activity with the image
supplied to the neural network over the entire considered range of change in the amplitude,
Anoise, of the noise signal using the following quality metrics: MSE, RMSE, UQI, PSNR,
SSIM, SCC, VIFP, PSNRB. It happened that the most appropriate metric for comparing our
images was UQI because the UQI metric revealed differences from the point of view of
“visual” comparison [42]. UQI is an image quality technique largely used to evaluate and
assess the quality of images and is described in [43]. This metric was used for modeling any
image distortion as a combination of three factors: correlation loss, brightness distortion,
and contrast distortion. The value of the metric was in the range from 0 to 1, where
1 indicates that the images were completely identical and 0 that they were completely
different. The higher value of the metric corresponded to the best similarities of the
compared images. It demonstrated better results than the widely used distortion metric
mean squared error. For the purpose of comparing images in the field of computer vision
and machine learning, there are other metrics (in particular, MSE, RMSE, PSNR, SSIM, SCC,
VIFP, and PSNRB) [42], which were also calculated for our compared images. The paper
does not consider the metric of recognition accuracy, because here, we focus only on the
problem of the input image representation of a spiking neural network. One can note that
the different metrics considered demonstrated significant differences between cases with
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and without astrocytic regulation. For example, for the UQI metrics, one can see that in
the absence of astrocyte modulation (blue dots and curve in Figure 8), there was a linear
decrease in the image similarity. When astrocytes were activated (red dots and curve in
Figure 8), quite a significant drop in the similarity was observed in the range of noise signal
amplitude values from 0 to 3.

No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation
No astrocyte modulation
Astrocyte modulation

Figure 8. The case of using quality metrics—MSE, RMSE, UQI, PSNR, SSIM, SCC, VIFP, PSNRB—for
comparing raster diagrams of neural activity from Figures 5 and 6 with an image (middle panel of
Figure 2) fed to a spiking neural network with an increase in the amplitude, Anoise, of the noise signal
from 0 to 6 supplied to the neurons of the neural network without astrocytic modulation (blue dots
and curve) and with astrocytic modulation (red dots and curve).

4. Conclusions

We developed a SNN model accompanied by astrocytes capable of implementing
effective information encoding and its robust representation in the network with respect to
noise perturbations. For illustration, we imposed an arbitrary binary image to the SNN
that was kept therein in the form of dynamic spiking pattern encoded in the rate of spikes
between different neurons. Obviously, in the purely deterministic case, it was recognized
quite clearly. In practical situations, noise may significantly affect the quality of image
representation. Activation of astrocytes made the network quite resistant to perturbations
and significantly suppressed the effect of noise, preserving the shape of the original image.
To evaluate such an astrocyte-mediated protection effect, we calculated changes of image
quality characteristics following the quality metrics MSE, RMSE, UQI, PSNR, SSIM, SCC,
VIFP, and PSNRB. It was demonstrated that the astrocytes were quite effective in improving
the image quality recognition.

Thus, a key novel point of our model is the involvement of astrocytes in spiking
neural network dynamic representation of information images. One of the advantages
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of the model is that the astrocytes, being composed as separate layer, were able provide
an additional way of controlling the synaptic connections in the spiking neural network
independently on synaptic weight changes. However, the model faced problems when
processing certain sets of images (numbers from the database MNIST, and categories from
databases Fashion-MNIST and SVHN) with color gradation (for example, grayscale) or
fuzzy images (categories from databases Fashion-MNIST and SVHN). This was primarily
due to the fact that the neural network itself is a coarse filter, where the neuron encodes a
signal through a binary state: activated/inactivated.

5. Discussion

As a point for discussion, we feel that astrocytes, besides their obvious functional role
of low-pass filtering due to the slower time scale of the intrinsic process, also serve as an
information processing buffer capable of storing dynamically basic features of the informa-
tion pattern. Note that our results are consistent with recent studies of working memory
proposed in the recent modeling paper [22]. We also note that the gate keeping function
of astrocytes leads to the temporal depression of synaptic transmission in neighboring
synapses as well as a noise reduction factor when local and relatively fast perturbations are
filtered by the gliotransmitter dynamics.

Needless to say, the neuron–astrocyte–neuron connection values were not specifically
trained. Nevertheless, the dynamic spiking pattern demonstrated effective representation
of different desired images for a wide range of noise perturbations, including rather large
noise amplitudes. In such a context, the astrocytes served as non-specific information protectors
for neuronal signaling, employing spike-firing patterns. Needless to say, our model has
no limits for processing larger and asymmetric pictures because the network (originally
unstructured) can be structured artificially in any “stimulus-specific” manner. The only
point is that the number of neurons should be equal to the number of pixels.

On the other hand, of course, the model represents a rather mathematical simplifica-
tion of real brain circuits. However, at the level of local synaptic contacts, it employs basic
principles of astrocytic modulation verified in many experimental works [2,5,6,35,44–47].
In recent experimental works, similar effects of local modulations by astrocytes on in-
formation processing and brain cognitive functions, such as memory and learning, were
intensively discussed [48–51].

Note also that in the current model construction, we played mostly with the stimulus-
specific excitation of SNN neurons that encoded information images. That is why, from a
biological standpoint, we took the astrocyte-dependent modulation of excitatory synapses
only. The inhibitory neurons served here a supporting role preserving excitation/inhibition
balance. The use of the modulation of inhibitory connections by astrocytes (mediated in
biology by different mechanisms) could be an interesting point for discussion and a future
study if one tries to encode images by stimulus specific inhibition.

Finally, the use of astrocytic modulation of neuronal activity extends the standard
capabilities of spiking neural networks due to the slow modulation of synaptic connections,
which in turn can be considered a kind of “fine tuning” action “slowly” optimizing the
weights along with the major algorithms’ change of synaptic connections. This potential
can be used in the design of new learning techniques in spiking-neural-network-based
information processing.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11030561/s1. References [39–41] are cited in Supplemen-
tary Materials.
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Appendix A

Appendix A.1. Cases with Numbers from Database MNIST

Figure A1. The middle picture is the supplied pattern (3 from handwritten database MNIST (MNIST
dataset is made available under the terms of the Creative Commons Attribution-Share Alike 3.0
license)) [39], on the left, encoded by the spiking neural network without astrocyte modulation
and noise amplitude Anoise = 6, and on the right, with astrocyte modulation and noise amplitude
Anoise = 6.
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Figure A2. Changes in the spatial sweep of the spiking neural network during the representation
of the supplied image from the Figure A1 when the amplitude, Anoise, of the noise current, Inoise,
changes from 0 to 6 without modulation of neuronal activity by astrocytes.
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Figure A3. Changes in the spatial sweep of the spiking neural network during the representation
of the supplied image from the Figure A1 when the amplitude, Anoise, of the noise current, Inoise,
changes from 0 to 6 with modulation of neuronal activity by astrocytes.
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Figure A4. The case of using quality metrics—MSE, RMSE, UQI, PSNR, SSIM, SCC, VIFP, and
PSNRB—for comparing raster diagrams of neural activity from Figures A2 and A3 with an image
(middle panel of Figure A1) fed to a spiking neural network with an increase in the amplitude, Anoise,
of the noise signal from 0 to 6 supplied to the neurons of the neural network without astrocytic
modulation (blue dots and curve) and with astrocytic modulation (red dots and curve).
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Appendix A.2

Figure A5. The middle picture is the supplied pattern (5 from handwritten database MNIST (MNIST
dataset is made available under the terms of the Creative Commons Attribution-Share Alike 3.0
license)) [39], on the left, encoded by the spiking neural network without astrocyte modulation
and noise amplitude Anoise = 6, and on the right, with astrocyte modulation and noise amplitude
Anoise = 6.
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Figure A6. Changes in the spatial sweep of the spiking neural network during the representation
of the supplied image from the Figure A5 when the amplitude, Anoise, of the noise current, Inoise,
changes from 0 to 6 without modulation of neuronal activity by astrocytes.
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Figure A7. Changes in the spatial sweep of the spiking neural network during the representation
of the supplied image from the Figure A5 when the amplitude, Anoise, of the noise current, Inoise,
changes from 0 to 6 with modulation of neuronal activity by astrocytes.
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Figure A8. The case of using quality metrics—MSE, RMSE, UQI, PSNR, SSIM, SCC, VIFP, and
PSNRB—for comparing raster diagrams of neural activity from Figures A6 and A7 with an image
(middle panel of Figure A5) fed to a spiking neural network with an increase in the amplitude, Anoise,
of the noise signal from 0 to 6 supplied to the neurons of the neural network without astrocytic
modulation (blue dots and curve) and with astrocytic modulation (red dots and curve).
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