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Abstract: The article considers an implicit finite-difference scheme for the Duffing equation with
a derivative of a fractional variable order of the Riemann–Liouville type. The issues of stability
and convergence of an implicit finite-difference scheme are considered. Test examples are given
to substantiate the theoretical results. Using the Runge rule, the results of the implicit scheme are
compared with the results of the explicit scheme. Phase trajectories and oscillograms for a Duffing
oscillator with a fractional derivative of variable order of the Riemann–Liouville type are constructed,
chaotic modes are detected using the spectrum of maximum Lyapunov exponents and Poincare
sections. Q-factor surfaces, amplitude-frequency and phase-frequency characteristics are constructed
for the study of forced oscillations. The results of the study showed that the implicit finite-difference
scheme shows more accurate results than the explicit one.
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1. Introduction

The Duffing oscillator with a fractional derivative in the dissipative term is of great
importance in solving applied problems of mathematics [1], physics [2–4] and chaos the-
ory [5,6]. Fractional derivatives and their properties are presented in detail in the mono-
graph [7]. The Duffing equation describes nonlinear oscillatory processes characterized
by bistability and the presence of chaotic dynamics. In world practice, the bistability
of nonlinear oscillations is of particular interest in optical technologies [8], power grids,
etc. Identification of chaotic regimes is one of the main tasks, for example, in clinical
medicine [9]. There are many methods for solving the fractional Duffing equation. The
authors of [10] considered the method of homotopy analysis and the method of finite-
difference schemes [5]; article [11] used a modified method of fractional power series. A
qualitative analysis of the fractional Duffing oscillator can be found in articles [12–29].
However, they considered the case when the fractional derivative had a constant order.

The introduction of a fractional derivative of variable order into the Duffing equation
will make it even more flexible to describe nonlinear oscillations with memory effects
and chaotic modes. You can learn about equations of fractional variable order from the
article [30]. The solution of the Duffing equation with a fractional variable order derivative
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can be found using numerical methods [31–34]. In particular, In particular, an explicit finite
difference scheme was proposed in [35], and the Adams-Bashford-Moulton method was
applied in Ref. [36]. There are many methods for studying chaotic and regular modes
of fractional oscillators, for example, the selection of a suitable Lyapunov function [12],
stabilization of the chaotic dynamics of the rational Zeraulia–Sprott mapping and the Ikeda
mapping [13]. In [37], chaotic and regular modes are investigated using the spectrum of
maximum Lyapunov exponents and Poincare sections. The stability of systems containing
fractional derivatives of variable order of the Caputo type was considered in Ref. [38] on
the example of discrete neural networks. Stability was considered according to Ulam–Hiers.
For an explicit scheme, the issues of stability and convergence of [39] are theoretically
justified. In the works [40,41], the properties of forced oscillations of a Duffing oscillator
with a fractional derivative of variable order of the Riemann–Liouville type are investigated
using amplitude-frequency (AFC), phase-frequency characteristics (PFC) and Q-factor.
It turned out that the order of the fractional derivative affects the rate of attenuation
of oscillations.

However, the accuracy of calculations according to the explicit scheme is not high.
To improve the accuracy of calculations and reduce the error, an implicit finite-difference
scheme is used in this work. Moreover, unlike the explicit scheme, the stability and
convergence of the implicit one does not depend on the constraints on the step of the
dishonest grid. In this article, by analogy with the works [35,37,39–41], an implicit finite-
difference scheme for solving the Duffing equation with a fractional derivative of variable
order of the Riemann–Liouville type is investigated, the issues of stability and convergence
of the numerical scheme are substantiated, and chaotic regimes and bistability of oscillations
are investigated.

The outline of the article has the following structure. Section 1 provides some back-
ground information about the subject of research. Section 2 gives the problem statement.
Section 3 presents a numerical algorithm for solving the problem. The issues of convergence
and stability of an implicit finite-difference scheme are investigated. Section 4 gives test
examples of the operation of the numerical algorithm and its comparison with the explicit
finite difference scheme. Using an implicit finite-difference scheme, chaotic and regular
modes of the Duffing oscillator with a fractional derivative of variable order are studied.
In Section 5, the forced oscillations of the fractional Duffing oscillator are studied. The
amplitude-frequency and phase-frequency characteristics are built, as well as the qual-
ity factor of the oscillatory system. In Section 6, a conclusion is given on the results of
the research.

2. Problem Statemant

Consider the following Cauchy problem for a nonlinear oscillation equation by analogy
with the work of [39]:

ẍ(t) + λΘq(t)−1Dq(t)
0t x(t) + ω0x(t) + f (x, t) = 0, x(0) = x0, ẋ(0) = y0, (1)

where x(t) ∈ C2(0, T) is the displacement function, λ is the coefficient of viscous friction,
ω0 is the natural frequency, x0, y0 are set constants that define the initial conditions, and Θ
is the parameter responsible for the time scale. In Equation (1), the fractional derivative
operator is taken in the sense of Riemann–Liouville.

Definition 1. Fractional Riemann–Liouville derivative of variable order 0 < q(t) < 1 of the
function x(t) ∈ C1[0, T], T > 0 has the form:

Dq(t)
0t x(t) =

1
Γ(1− q(t))

d
dt

t∫
0

x(τ)dτ

(t− τ)q(t)
, (2)
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where Γ(y + 1) =
∝∫
0

xye−xdx is Euler’s gamma function.

The nonlinear function f (x, t) satisfies the Lipschitz condition with respect to x:

‖ f (x1(t), t)− f (x2(t), t)‖ < L‖x1(t)− x2(t)‖, (3)

where L > 0 is the Lipschitz constant.

Remark 1. Cauchy problem (1) is a mathematical model describing a wide class of nonlinear
fractional oscillators, the type and type of which is determined by the function f (x, t). The first term
describes inertia force, the second term is friction force (damping) and the third is returning force of
the oscillator.

Remark 2. If in Equation (1) f (x, t) = bx3 − δ cos(ωt), where b is the nonlinearity coefficient, δ
and ω are the amplitude and frequency of the external force, then we obtain the Duffing oscillator
equation with a fractional derivative of variable order [39]. Later in Equation (1), we will assume
Θ = 1.

Remark 3. It should be noted that the existence and uniqueness of systems similar to (1) were
considered in [42].

3. Numerical Algorithm

Since Equation (1) is nonlinear, its solution is sought using finite difference schemes.
We introduce a uniform computational grid. The segment [0, T] will be divided into N
equal parts in increments h = T

N : 0 = t0 < t1 = h < t2 = 2h < . . . < tk = kh < . . . <
tN = T. The functions q(t), x(t), f (x(t), t) will go into the grid qk = q(tk), xk = x(tk), fk =
f (x(tk), tk). Approximation of the second derivative gives:

ẍ(t) =
xk+1 − 2xk + xk−1

h2 + O(h2), (4)

The fractional derivative of variable order is approximated by the Grunwald–Letnikov
operator (5).

Definition 2. The fractional Grunwald-Letnikov derivative of variable order 0 < qk < 1 has
the form:

∆qk+1
0k+1xk+1 = 1

hqk+1

k+1
∑

i=0
cqk+1

i xk−i+1 + O(h),

cqk+1
i =

(
1− 1+qk+1

i

)
cqk+1

i−1 , cqk+1
0 = 1.

(5)

Here, cqk
i are the Grunwald–Letnikov weight coefficients. In [39], the following Lemma

for weight coefficients was proved.

Lemma 1. The weighting coefficients cqk
i have the following properties:

cqk
0 = 1, cqk

1 = −qk, cqk
i < 0(i 6= 1)

∞
∑

i=0
cqk

i = 0, ∀l = 1, 2, . . . ,
l

∑
i=1

cqk
i < 0

. (6)

In [39], to solve the Cauchy problem (1), a non-local explicit finite difference scheme
(EFDS) was constructed for k = 1, 2, . . . , N − 1:

xk+1 = Akxk − xk−1 − Bk

k

∑
i=1

cqk
i xk−i − h2 fk, (7)
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where Ak = 2− λh2−qk − h2ω0, Bk = λh2−qk . The following theorems were also proved in
Ref. [39]

Theorem 1. The explicit scheme (7) is stable if the condition λh2−Q + h2ω2
0 ≤ 1 is met.

Theorem 2. The explicit scheme (7) converges to an exact first-order solution if the condition
λh2−Q + h2ω2

0 ≤ 1 is met.

In Theorems 1 and 2, Q = max
k

(qk).

In this article, taking into account the relations (4) and (5), we construct a non-local
implicit finite difference scheme (IFDS) and consider the issues of its stability and conver-
gence. Let us make an implicit scheme. To do this, we substitute Formulas (4) and (5) into
the Cauchy problem (1); as a result, we obtain the following difference equation:

xk+1−2xk+xk−1
h2 + λ

hqk+1

k+1
∑

j=0
cqk+1

j xk−j+1 + ω2
0xk+1 + fk+1 =

= xk+1 − 2xk + xk−1 +
λh2

hqk+1

k+1
∑

j=0
cqk+1

j xk−j+1 + h2ω2
0xk+1 + h2 fk+1 =

= xk+1 − 2xk + xk−1 + λh2−qk+1
k+1
∑

j=0
cqk+1

j xk−j+1 + h2ω2
0xk+1 + h2 fk+1 =

= xk+1 + h2ω2
0xk+1 − 2xk + xk−1 + λh2−qk+1

k+1
∑

j=0
cqk+1

j xk−j+1 + h2 fk+1 =

= (1 + h2ω2
0)xk+1 − 2xk + xk−1 + λh2−qk+1

k+1
∑

j=0
cqk+1

j xk−j+1 + h2 fk+1 = 0.

As a result, we obtain the following implicit finite-difference scheme:

(1 + h2ω0)xk+1 − 2xk + xk−1 + Bk+1

k+1

∑
i=0

cqk+1
i xk−i+1 − h2 fk+1 = 0, (8)

where Bk+1 = λh2−qk+1 .

Remark 4. EFDS (7) approximates the differential problem (1) in the inner nodes of the grid
with the second order. However, due to the approximation of the second initial condition in (1)
ẋ(0) = x1−a

h + O(h), the global approximation order is reduced to the first.

Remark 5. To construct a finite difference scheme, the displacement function must be considered in
the third class of smooth functions x(t) ∈ C3[0, T].

Stability and convergence of IFDS

Definition 3. The difference approximation (8) is stable if for any error vector between the exact
and numerical solution E0 there is a positive number Qk : lim

k→∞
Qk = 0 and the condition is

met [39]:
‖Ek+1‖ ≤ Qk‖E0‖. (9)

Theorem 3. The implicit finite-difference scheme (8) is certainly stable.

Proof of Theorem 3. Let the error be εk = x̄k − xk, k = 0, . . . , N, where x̄k is the approxi-
mate solution of the Cauchy problem (1). Then, Equation (8) in terms of error will take
the form:

(
1 + h2ω2

0

)
εk+1 = 2εk − εk−1 − Bk+1

k+1

∑
j=0

cqk+1
j εk−j+1−

− h2( f (x̄k+1, tk+1)− f (xk+1, tk+1)), k = 1, . . . , N − 1. (10)
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Let us introduce the norm ‖Ek+1‖∞ = max
k
|εk+1|. Proceeding to (10) for the absolute

value, we obtain:

(
1 + h2ω2

0

)
|εk+1| ≤ 2|εk| − |εk−1| − Bk+1

k+1

∑
j=0

cqk+1
j

∣∣∣εk−j+1

∣∣∣−
−h2(| f (x̄k+1, tk+1)− f (xk+1, tk+1)|) ≤ |εk| − Bk+1

k+1

∑
j=0

cqk+1
j

∣∣∣εk−j+1

∣∣∣− h2L|εk+1|

Let us move on to the norm. By virtue of Lemma 1, Lipschitz conditions (3) and L > 0,
we obtain the estimate

(
1 + h2ω2

0 + h2L
)
‖Ek+1‖∞ ≤ ‖Ek‖∞ − Bk+1

k+1

∑
j=0

cqk+1
j

∥∥∥Ek−j+1

∥∥∥
∞
≤ ‖Ek‖∞

‖Ek+1‖∞ ≤
1(

1 + h2ω2
0 + h2L

)‖Ek‖∞ ≤
1(

1 + h2ω2
0 + h2L

)k ‖E0‖∞.

i.e., with k→ ∞, ‖Ek+1‖∞ → 0. The theorem is proved.

Let x(tk) be the exact solution of the Cauchy problem (1) at the point tk. Define
ηk = x(tk) − xk and accordingly the vector Yk = (η1, . . . , etak)

T . Note that Y0 is a null
vector. Substituting xk = x(tk)− ηk into Equation (8), we obtain:

(
1 + h2ω2

0

)
ηk+1 = 2ηk − ηk−1 − Bk+1

k+1

∑
j=0

cqk+1
j ηk−j+1−

− h2( f (x(tk+1), tk+1)− f (xk+1, tk+1)) + h2Rk+1. (11)

Here,
|Rk+1| ≤ Ch,

where C is a constant independent of the step h of the calculated grid. The following
theorem is valid.

Theorem 4. The implicit finite-difference scheme (8) certainly converges to the exact solution with
the first order.

Proof of Theorem 4. Let us go to (11) for the absolute value, where we obtain:

(
1 + h2ω2

0

)
|ηk+1| ≤ 2|ηk| − |ηk−1| − Bk+1

k+!

∑
j=0

cqk+1
j

∣∣∣ηk−j+1

∣∣∣−
−h2(| f (x(tk+1), tk+1)− f (xk+1, tk+1)|)+

+h2Ch ≤ 2|ηk| − |ηk−1| − Bk+1

k+1

∑
j=0

cqk+1
j

∣∣∣ηk−j+1

∣∣∣− h2L|ηk+1|+ Ch3.

(
1 + h2ω2

0

)
‖Yk+1‖∞ ≤ ‖Yk‖∞ − Bk+1

k+1

∑
j=0

cqk+1
j

∥∥∥Yk−j+1

∥∥∥
∞
− h2L‖Yk+1‖∞ + Ch3.

Let us move on to the norm. By virtue of Lemma 1, Lipschitz conditions (3) and L > 0,
we obtain the estimate

‖Yk+1‖∞ ≤
1(

1 + h2ω2
0 + h2L

)‖Yk‖∞ + Ch ≤ 1(
1 + h2ω2

0 + h2L
)k ‖Y0‖∞+



Mathematics 2023, 11, 558 6 of 17

+

(
1(

1 + h2ω2
0 + h2L

)k +
1(

1 + h2ω2
0 + h2L

)k−1 + . . . + 1

)
Ch,

i.e., with k→ ∞, ‖Yk+1‖∞ → Ch. The theorem is proved.

4. Numerical Examples

To confirm the theoretical results, let us consider some test examples. Let the nonlinear
function in the model Equation (1) have the form f (x, t) = bx3(t) − bt9 − ω0t3 − 6t −

λ
d
dt

(
Γ(4)t4−q(t)

Γ(5− q(t))

)
. Then the exact solution of the new Cauchy problem is in the form:

x(t) = t3. (12)

The error of the NCRS (8) is found with the formula:

ε = max(|xex
M[j]− xM[j]|), j = 0, . . . , N, (13)

where xex
M[j] is the exact solution (12), xM[j] is the numerical solution obtained by the

scheme (8). If the exact solution is unknown, then we use the Runge rule:

ε = max
(
|x2j − xj|

)
, j = 0, . . . , N, (14)

where x2j is the numerical solution at step h, xj is the numerical solution at step h/2.
The computational accuracy (8) is determined by the formula:

α =
ln
(
|εi |
|εi+1|

)
ln(2)

, (15)

where εi is an error at step h/2i, εi+1 is an error at step h/2i+1, i = 0, 1, . . . , M− 1.
Let us compare the results obtained with the help of the EFDS (7) and the IFDS (8).

Example 1. Let us consider the case when the conditions of Theorems 1 and 2 are met for the EFDS.
In the model Equation (1), we select the following parameters: t ∈ [0, 2], x(0) = ẋ(0) = 0, λ = 1,
ω0 = b = δ = 1, ω = 2, q(t) = 0.8 cos(0.5t), λh2−Q + h2ω2

0 = 0.908 and Q = max
k

(q(tk)).

According to Figures 1 and 2, it can be seen that the EFDS and IFDS approximate the
exact solution quite well (12). However, the error shown in Figure 2a for the IFDS is less
than the error for the EFDS. This means that the IFDS (8) shows more accurate results than
the EFDS (7). The computational accuracy (Figure 2b) for the EFDS and IFDS takes values
close to 1 with increasing grid nodes, which indicates the first order of convergence of the
EFDS (7) and IFDS (8) to the exact solution (12).

Example 2. Let us consider the case when the conditions of Theorems 1 and 2 are violated for
the EFDS. In the model Equation (1), we select the following parameters: t ∈ [0, 2], x(0) =
ẋ(0) = 0, λ = 3, ω0 = 10, b = δ = 1, ω = 2, q(t) = 0.8 cos(0.5t), λh2−Q + h2ω2

0 = 1.2 and
Q = max

k
(q(tk)).

If conditions of Theorems 1 and 2 are violated, the anchor (7) diverges (Figure 3).
At the same time, the IFDS (8) approximates the exact solution with a sufficiently high
accuracy. According to Figure 4 and it can be seen that, in the interval of violation of the
conditions of Theorems 1 and 2, the error and computational accuracy of EFDS change
abruptly. For IFDS, the computational accuracy takes values close to 1. All these suggest
that the stability and convergence of the IFDS (8) do not depend on step constraints and
this confirms the validity of Theorems 3 and 4 on unconditional stability and convergence.
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Figure 1. Solutions of the Cauchy problem (1) obtained from schemes (7) and (8), as well as the exact
solution (12).

Figure 2. (a) Error ε, (b) computational accuracy α.

Figure 3. Solutions of the Cauchy problem (1) obtained from schemes (7) and (8), as well as the exact
solution (12). For the EFDS (7), the conditions of Theorems 1 and 2 are violated.
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Figure 4. (a) Error ε, (b) computational accuracy α.

Let us compare the results of the EFDS (7) and the IFDS (8) for the fractional Duffing
oscillator. The nonlinear function f (x, t) is taken in the form presented in Remark 1. Since
the Duffing oscillator does not have an exact solution, the error is calculated according to
the Runge rule (14)

Example 3. In the model Equation (1), we select the following parameters: t ∈ [0, 50], x(0) =
ẋ(0) = 0, λ = 1, ω0 = b = δ = 1, ω = 2, q(t) = 0.8 cos(0.5t), λh2−Q + h2ω2

0 = 0.9796 and
Q = max

k
(q(tk)).

The Duffing oscillator has various oscillatory regular and chaotic modes. Regular
modes can be periodic. Figure 5 presents an example of two periodic modes. The waveform
in Figure 5b shows that, over time, the oscillations reach a steady two-period regime, and
the phase trajectory of Figure 5a has the form of two closed loops, which characterizes
several periods of oscillation.

Figure 5. Phase trajectory (a) and waveform (b) for the Cauchy problem (1) obtained by explicit (7)
and implicit (8) schemes.

From Figure 6a,b we see that increasing the nodes of the computational grid by factor
of 2 leads to a reduction in error by factor of 2, while the computational accuracy of the
method tends to 1.

Example 4. Let us consider the case when the conditions of Theorems 1 and 2 are violated for
the NCR. In the model Equation (1), we select the following parameters: t ∈ [0, 50], x(0) =
ẋ(0) = 0, λ = 5, ω0 = 8, b = δ = 1, ω = 2, q(t) = 0.8 cos(0.5t), λh2−Q + h2ω2

0 = 1.15 and
Q = max

k
(q(tk)).

In violation of the conditions of Theorems 1 and 2 for the EFDS, the error (Figure 7a)
and computational accuracy (Figure 7b) of the method has a pronounced non-monotonic
character in changing its values, which confirms the violation of the stability and conver-
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gence of scheme (7). The stability of the IFDS (8), in turn, does not depend on the conditions
of Theorems 1 and 2.

Figure 6. (a) Error ε, (b) computational accuracy α.

Figure 7. (a) Error ε, (b) computational accuracy α. The conditions of Theorems 1 and 2 are violated.

Further in the article, the application of IFDS to the study of chaotic regimes, as well
as forced oscillations of the fractional Duffing oscillator, are presented.

5. The Duffing Oscillator: Chaotic Mods and Forced Fluctuations

In the study of nonlinear systems, one of the important tasks is to determine the
type of oscillations—periodic, quasi-periodic, random or chaotic [5]. A feature of chaotic
oscillations is their high sensitivity to small changes in initial conditions. Therefore, one
of the most reliable ways to detect chaos is to determine the rate of run-up of trajectories,
which is estimated using the spectrum of Lyapunov exponents. The spectrum of maximum
Lyapunov exponents was constructed using a modified Wolf–Bennetin algorithm [43],
taking into account the Gram–Schmidt orthogonalization procedure, which was discussed
in detail in [37], as well as with the use of an implicit scheme.

Remark 6. The presence of at least one positive Lyapunov exponent in the spectrum means the
presence of a chaotic regime (asymptotic instability) of the considered phase trajectory [37]. A
negative indicator indicates a regular regime.

Remark 7. Chaotic modes can be determined using Poincare sections. If the Poincare sections are a
cloud, then a chaotic mode [5] is observed.

Example 5. In the problem (1), we select the following parameters: q(t) = 0.8 cos2(0.5t), t ∈
[0, 50], x(0) = ẋ(0) = 0, ω0 = δ = b = 1 and ω = 2.

Example 6. Let us choose the following parameters: h = 0.025, t ∈ [0, 50], x(0) = ẋ(0) = 0, λ =
ω0 = b = 1, ω = 2 and δ = 1.

Figures 8b and 9b show the spectra of maximum Lyapunov exponents depending
on λ and q, respectively. With positive values of Lyapunov exponents, the phase trajec-
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tories enter a chaotic mode (Figures 8a and 9a), and with negative values—a regular one
(Figures 8c and 9c).

Figure 8. (a) Phase trajectories at λ = 0.18, (b) the spectrum of Lyapunov exponents from λ and (c)
phase trajectories at λ = 0.6. The dots represent the Poincare sections.

Figure 9. (a) Phase trajectories at q = 0.15, (b) the spectrum of Lyapunov exponents from q and (c)
phase trajectories at q = 0.6. The dots represent the Poincare sections.

Consider an example with other types of function q(t).

Example 7. In the model Equation (1), we select the following parameters: t ∈ [0, T], T = 50,
x(0) = ẋ(0) = 0, λ = 1, ω0 = b = δ = 1, ω = 2, q(t) = 0.1 + 1

1.2T t and Q = max
k

(q(tk)).

Example 7 shows that if the function q(t) monotonically increases, then the oscillations
decay (Figure 10b).

Figure 10. Phase trajectory (a) and waveform (b) for the Cauchy problem (1) obtained by explicit (7)
and implicit (8) schemes.

Figure 11 for Example 7 shows the bifurcation diagram and phase trajectories that
correspond to different lambda values. It can be seen that the spectrum of maximum
Lyapunov exponents contains positive values and, therefore, there is a chaotic regime.



Mathematics 2023, 11, 558 11 of 17

Figure 11. (a) Phase trajectories at λ = 0.1, (b) the spectrum of Lyapunov exponents from λ and (c)
phase trajectories at λ = 0.4.

Example 8. In the model Equation (1), we select the following parameters: t ∈ [0, T], T = 50,
x(0) = ẋ(0) = 0, λ = 1, ω0 = b = δ = 1, ω = 2, q(t) = 0.96− 1

1.2T t and Q = max
k

(q(tk)).

For Example 8, with a monotonically decreasing function q(t), the oscillation ampli-
tude begins to increase (Figure 12b). This is explained by the fact that the order of the
fractional derivative is given in the dissipative term in the Cauchy problem (1) that defines
viscous friction. With a decrease in the order of q(t), the friction decreases, and the energy
of the system increases, and with a decrease in the order, the energy costs of the system
increase, respectively, the oscillations fade.

Figure 12. Phase trajectory (a) and waveform (b) for the Cauchy problem (1) obtained by explicit (7)
and implicit (8) schemes.

Figure 13 for Example 8 shows the bifurcation diagram and phase trajectories con-
structed for different values of the lambda parameters. Here we also see the presence of
chaotic regimes.

Figure 13. (a) Phase trajectories at λ = 0.1, (b) the spectrum of Lyapunov exponents from λ and (c)
phase trajectories at λ = 0.4.
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Of great interest is the study of systems under the influence of various kinds of variable
disturbing loads on them. Fluctuations in such systems caused by periodic external forces
are called forced [40]. Different disturbing forces correspond to different scenarios of the
behavior of the oscillatory system, which, thus, are no longer completely determined by
the system’s own characteristics, but reflect its reaction to the disturbing force [44].

For practice, the most important cases are those when f (x, t) contains a periodic
function depending only on time t, which has its own frequency and amplitude, different
from the system under consideration. In this case, there is a superposition of oscillations
of the external periodic force and natural oscillations of the system. The oscillations
described by Equation (1) will reach a certain steady state over time. In such systems, it
is often possible to observe such phenomena as resonance and bistability [8,41]. To study
these phenomena, one of the important tasks is the construction of amplitude-frequency
(frequency response), phase-frequency characteristics (frequency response) and Q-factor.

Definition 4. AFC is the dependence of the amplitude of steady-state oscillations of the output
signal of a certain system on the frequency of its input harmonic signal.

Definition 5. PFC is the dependence of the phase difference between the output and input signals
on the frequency of the signal.

Definition 6. Q-factor is a quantitative characteristic of the resonant properties of oscillatory
systems, showing how many times the total energy of the system is greater than the consumed.

In [40,41], the following theorem was proved using the harmonic balance method.

Theorem 5. The Cauchy problem (1) is equivalent to the linear Cauchy problem with integer
derivative:

ẍ(t) + p(ω, t)ẋ(t) + s2(ω, t)x(t) = δ cos(ωt), x(0) = x0, ẋ(0) = y0, (16)

In Equation (16), the coefficients p(ω, t) and s2(ω, t) are searched as:

p(ω, t) = −2λωq(t)−1 sin
(

q(t)π
2

)
+

2λ
dq
dt

ωq(t)−2

(ln(ω)−Ψ(1− q(t))) cos
(

q(t)π
2

)
+

π sin
(

q(t)π
2

)
2

, (17)

s2(ω, t) = ω2
0 − 2λωq(t) cos

(
q(t)π

2

)
+

3A2b
4
− (18)

2λ
dq
dt

ωq(t)−1

(ln(ω)−Ψ(1− q(t))) sin
(

q(t)π
2

)
+

π cos
(

q(t)π
2

)
2

.

Ψ(1− q(t)) = −γ +
∞
∑

n=1

(
1
n
− 1

n + 1− q(t)

)
is a digamma function, where γ = 1

2 (
3
√

10− 1)

is Euler’s constant.

For the linear Cauchy problem, formulas for calculating the frequency response,
frequency response and Q-factor are known [41]:

A(ω) =
δ√

(s2(ω, t)−ω2)2 + p2(ω, t)ω2
, (19)
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φ(ω) = arctan
(

p(ω, t)ω
(s2(ω, t)−ω2)

)
, (20)

Q =
s(ω, t)
p(ω, t)

. (21)

We construct the frequency response and Q-factor surfaces for the nonmonotonic
function q(t) = 0.8 cos(0.5t) using Formulas (19)–(21).

Example 9. In the model Equation (1), we choose the following parameters: q(t) = 0.8 cos(0.5t),
t ∈ [0, 100], h = 0.05, x(0) = ẋ(0) = 0, λ = 1, ω0 = b = δ = 1, ω ∈ [0, 3] and hω = 0.6.

In Figure 14, the surfaces of AFC (Figure 14a) and PFC (Figure 14b) are given for
the nonmonotonic function q(t). In Figure 15, the Q-factor surface is given, taking into
account the change in the exponent of the fractional derivative according to the law
q(t) = 0.8 cos(0.5t). Figure 15b shows the Q-factor surface when the parameter q ∈ [0, 1] is
an independent variable. According to Figure 15b, it can be seen that when the parameter
q decreases, the quality factor increases. The maximum amplitude corresponds to the
maximum Q-factor, and when the frequency decreases, the Q-factor decreases. However,
most of the quality factors depend on the parameter q.

Figure 14. (a) AFC and (b) PFC for operator (2) with order q(t) = 0.8 cos(0.5t).

Figure 15. Q factor: (a) q(t) = 0.8 cos(0.5t), (b) for q ∈ [0, 1].

Let us build AFC on the plane. To do this, we carry out the calculation according
to schemes (7) and (8) with a sufficiently long simulation time, at which the forced os-
cillations reach a steady state. Next, the amplitude values are fixed at different values
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of the frequency of external influence, we obtain the dependence A(ω), which is plotted
by points. Analytical frequency response will be constructed at a fixed time value corre-
sponding to the maximum value of the amplitude of steady-state oscillations according to
Formulas (19)–(21), i.e., for a constant value of the fractional derivative.

Example 10. In the model Equation (1), we select the following parameters: t ∈ [0, 100], h = 0.05,
x(0) = ẋ(0) = 0, λ = 1, ω0 = b = δ = 1, ω ∈ [0, 3] and hω = 0.6.

The results shown in Figure 16a–c confirm that the IFDS (8) gives more accurate
results than the EFDS (7). As the frequency of the external force approaches the resonant
ωR = 1.2, the difference between the amplitude of the oscillations obtained by the IFDS
and the amplitude obtained by the IFDS increases. This is clearly seen in Figure 17a–c. This
behavior is related to the bistability of the Duffing oscillator.

Figure 16. Numerical and analytical AFC of the fractional Duffing oscillator for various types of
function q(t).

Figure 17. Waveforms for q(t) = 0.8 cos(0.5t) at (a) ω = 1.2, (b) ω = 1.5 and (c) ω = 1.9.

Figures 16 and 18 clearly demonstrate the bistable behavior of a Duffing oscillator
with a fractional derivative of variable order. When the frequency of the external force
tends to the resonant ωR (section AB), the amplitude of the oscillations begins to increase.
Reaching the threshold value (point B), the oscillations enter an unstable mode (section
BD), as a result of which the amplitude of the oscillations jumps from one stable mode to
another (section BC), and then the amplitude decreases. When the frequency decreases, the
amplitude increases first (CD section), then when the frequency reaches a lower resonant
(point C) ω < ωR, there is a jump from one mode to another (AD section). Then the
amplitude decreases. The ABCD polygon is called a hysteresis loop.
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Figure 18. Hysteresis loop. The resonance curve is marked in blue. The part of the resonance curve
where the frequency jump occurs is highlighted in red.

The calculations in the article were carried out using the VOFDDE 1.0 software package
developed in the Maple environment.

6. Conclusions

The article considered an implicit finite difference scheme (8) for the Duffing equation
with a derivative of a fractional variable order of the Riemann–Liouville type. The issues
of stability and convergence of the implicit finite-difference scheme were substantiated.
Test cases were conducted to substantiate the theoretical results. Using the Runge rule, the
results of the implicit scheme (8) were compared with the results of the explicit scheme (7).
Phase trajectories and oscillograms for a Duffing oscillator with a fractional derivative of
variable order of the Riemann–Liouville type were constructed, and chaotic and regular
modes were studied using the spectrum of maximum Lyapunov exponents and Poincare
sections. Q-factor surfaces, amplitude-frequency and phase-frequency characteristics were
constructed for the study of forced oscillations. The results of the study showed that the
implicit finite-difference scheme shows more accurate results than the explicit one.
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