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Abstract: The purpose of this work is to offer a unique theoretical ternary nanofluid (graphene/tungsten
oxide/zirconium oxide) framework for better heat transfer. This model describes how to create better
heat conduction than a hybrid nanofluid. Three different nanostructures with different chemical
and physical bonds are suspended in water to create the ternary nanofluid (graphene/tungsten
oxide/zirconium oxide). Toxic substances are broken down, the air is purified, and other devices
are cooled thanks to the synergy of these nanoparticles. The properties of ternary nanofluids are
discussed in this article, including their thermal conductivity, specific heat capacitance, viscosity,
and density. In addition, heat transport phenomena are explained by the Cattaneo–Christov (CC)
heat flow theory. In the modeling of the physical phenomena under investigation, the impacts of
thermal nonlinear radiation and velocity slip are considered. By using the right transformations,
flow-generating PDEs are converted into nonlinear ordinary differential equations. The parameters’
impacts on the velocity and temperature fields are analyzed in detail. The modeled problem is
graphically handled in MATLAB using a numerical technique (BVP4c). Graphical representations of
the important factors affecting temperature and velocity fields are illustrated through graphs. The
findings disclose that the performance of ternary nanofluid phase heat transfer is improved compared
to dusty phase performance. Furthermore, the magnetic parameter and the velocity slip parameter
both experience a slowing-down effect of their respective velocities.

Keywords: slip flow; CC heat flux; suspended particles; ternary nanoparticles; nonlinear radiation

MSC: 76-10

1. Introduction

Nanofluids are liquids that include ultrafine particles contained in a dilute solution.
These particles are suspended in the liquid. These fluids have thermophysical qualities
that are far better than those of pure fluids. It has been established that increasing the
amount of carbon, copper, or other nanoparticles with high thermal conductivity that is
added to water, ethylene glycol, or oil may enhance the materials’ ability to transport heat.
The thermal conductivity of the nanofluids is significantly raised, and the particle size
and volume fraction of suspended particles have an impact on this phenomenon. Choi [1]
invented the term “nanofluids”, which defines a liquid suspension of ultrasmall particles
(less than 50 nm in diameter). With the fast development of nanofabrication, various
affordable combinations of fluid/particles are instantly accessible. A complete assessment
by Buongiorno [2] investigated convective transport in nanofluids, who argued that an
appropriate explanation for the phenomenon exists, although unexpected growth in heat
conductivity and viscosity is yet to be found. Recently, Reddy et al. [3] investigated hybrid
dusty fluid flow through a Cattaneo–Christov heat flux model. Waqas et al. [4] discussed the
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heat transfer analysis of hybrid nanofluid flow with thermal radiation through a stretching
sheet. Gurdal et al. [5] studied the turbulent flow and heat transfer characteristics of Ferro-
nanofluid flowing in a dimpled tube under a magnetic field effect. Many researchers [6–9]
have addressed the convective heat transfer during the flow of nanoliquid.

The passage of heat energy through the particles of a liquid may be described as a sort
of heat transfer known as thermal radiation. It is a condition that must be met in a wide
variety of applications, such as the planning of propulsion devices for space spacecraft,
nuclear power plants, and gas turbines. In space applications, where devices are required
to operate at high temperatures to obtain the required thermal efficiency, the impact of
thermal radiation on controlling the heat transfer in certain applications and on estimating
the thermal effects for processes with high temperatures is unavoidable. This is because
thermal radiation has an impact on both controlling the heat transfer in certain applications
and on estimating the thermal effects for processes with high temperatures. Duwairi and
Duwairi [10] studied gray viscous fluid flow with magnetic and radiation parameters
influences. Cortell [11] analyzed radiation and viscous dissipation impacts for the flow
of the thermal boundary layer along a nonlinear stretching surface. Recently, Bakar and
Soid [12] studied the MHD stagnation-point flow and heat transfer over an exponentially
stretching/shrinking vertical sheet in a micropolar fluid with a buoyancy effect. Ali
et al. [13] analyzed the flow and heat transfer over stretching/shrinking and porous surfaces.
Azam et al. [14] discussed the transient bioconvection and activation energy impacts on
Casson nanofluid with gyrotactic microorganisms and nonlinear radiation. Reddy et al. [15]
studied the unsteady absorption flow and dissipation heat transfer over a non-Newtonian
fluid. Gnaneswara et al. [16] investigated the effect of thermal conductivity on Blasius–
Rayleigh–Stokes flow and heat transfer over a moving plate by considering the magnetic
dipole moment. Some recent studies related to the consideration of heat transfer theory
can be found in [17–22].

Fourier’s law of heat conduction describes heat transfer in a given medium due to
temperature differences [23]. It is considered the basis for the investigation of thermal phe-
nomena. Using this law, the temperature field equation is developed into a parabolic-type
equation stating that heat transfer with initial disruption having infinite speed propagates
throughout the medium under certain conditions. This heat conduction paradox requires
modification of Fourier’s law. Cattaneo [24] presented a modified form of Fourier’s law
known as the Maxwell–Cattaneo (MC) model by introducing the thermal relaxation time
parameter. This modification converted the temperature field equation from a parabolic-
to a hyperbolic-type equation, describing that heat transfer has finite speed in the entire
medium. Christov [25] investigated the frame invariance of the MC model and replaced the
time derivative with Oldroyd’s upper-convected time derivative. Recently, Reddy et al. [26]
studied zero-mass flux and Cattaneo–Christov heat flux through a Prandtl non-Newtonian
nanofluid in Darcy–Forchheimer porous space. Machireddy et al. [27] investigated the
impact of Cattaneo–Christov heat flux on the hydromagnetic flow of non-Newtonian fluids
filled with a Darcy–Forchheimer porous medium. Khan et al. [28] discussed Cattaneo–
Christov (CC) heat and mass fluxes in the stagnation-point flow of Jeffrey nanoliquids
by a stretching surface. Tausif et al. [29] investigated the modified homogeneous and
heterogeneous chemical reaction and flow performance of Maxwell nanofluid with the
Cattaneo–Christov heat flux law. Some recent studies related to the consideration of CC
theory can be found in [30–32].

In this study, we investigated dusty fluid flow subjected to a magnetic field over a
stretching sheet. Impacts of thermal radiation, velocity slip, and conditions are considered
in the modeling of the physical phenomena. The use of CC heat flux theory is carried out
in the energy equation for analyzing the heat transfer phenomena. Considering the appro-
priate variables, the governing PDEs are converted to nonlinear ODEs. MATLAB software
is used for investigating the numerical solution. Impacts of fluid velocity and temperature
are analyzed through different pertinent parameters in the considered problem.

Specifically, this work will address the research questions mentioned below:



Mathematics 2023, 11, 554 3 of 17

• What will be the influence of the magnetic parameter on fluid heat transfer rate,
temperature, and velocity?

• What is the significance of the CC theory on the dusty ternary fluid model?
• What will be the impact of thermal radiation on heat transfer rate and temperature?
• What will be the influence of the velocity slip parameter on fluid velocity, temperature,

and heat transfer rate?

We organized this article as follows. In Section 2, we formulate the physical phenom-
ena of the problem and transformations of PDEs. Result analyses are provided in Section 3.
Concluding remarks of the present article are given in Section 4.

2. Mathematical Formulation

Consider a continuous 2D boundary layer flow and the heat transfer of a dusty ternary
nanofluid across a stretching sheet moving at a constant speed Uw = bx. With the slot
serving as the point of origin, the x-axis is drawn along the surface that is being stretched
in the direction that the motion is going, and the y-axis is drawn perpendicular to the sheet
in the direction that is facing away from the fluid. It is presumable that the flow will not
extend beyond the area where y is greater than 0. Convective heat transfer is responsible
for keeping the temperature of the sheet’s surface at a constant value known as Tf .

Some of the assumptions taken into consideration are listed below:

• The dust particles are taken to be small enough and of sufficient number to be treated
as a continuum and allow concepts such as density and velocity to have physical
meaning.

• The dust particles are assumed to be spherical in shape, having the same radius and
mass, and are undeformable.

• The Cartesian coordinate system is located in such a way that the x-axis and y-axis are
taken along (and normal to) the surface, respectively, while the origin of the system is
located at the leading edge.

• The dust particles are assumed to be uniform in size, and the density number of the
dust particle is taken as constant throughout the flow.

The equations that regulate the flow of dusty ternary nanofluid can be written as
follows, according to the standard boundary layer approximations (Reddy et al. [3]):

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

=
µthn f

ρthn f

∂2u
∂y2 −

σB2
0

ρthn f
u (2)

(
ρcp
)

thn f

(
u ∂T

∂x + v ∂T
∂y

)
+ λ1

 u2 ∂2T
∂x2 + v2 ∂2T

∂y2 + 2uv ∂2T
∂x∂y+(

u ∂u
∂x + v ∂u

∂y

)
∂T
∂x +

(
u ∂v

∂x + v ∂v
∂y

)
∂T
∂y

 = kthn f
∂2T
∂y2 +

Ncp f
τt

(
Tp − T

)
+ N

τv

(
up − u

)2
+ 1

ρcp

∂qr
∂y + µthn f

(
∂u
∂y

)2

(3)

Dust Phase
∂up

∂x
+

∂vp

∂y
= 0 (4)

up
∂up

∂x
+ vp

∂up

∂y
=

K
m
(u− up) (5)(

up
∂Tp

∂x
+ vp

∂Tp

∂y

)
=

cthp f

cthm f τT
(T − TP) (6)
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By using the Rosseland approximation to the radiative heat flow expression found in
Equation (3), one obtains the following:

qr = −
4σ∗

3k∗
∂T4

∂y
= −16σ∗

3k∗
T3 ∂T

∂y
(7)

where x and y, respectively, represent coordinate axes along the continuous surface in
the direction of motion and perpendicular to it. (u, v) and

(
up, vp

)
denote the velocity

components of the nanofluid and dust phases along the x- and y-directions, respectively.
N is the number density of dust particles. λ1 is the thermal relaxation time. m is the mass
concentration of dust particles. K = 6πµn f r is the Stokes drag constant. r is the radius of
dust particles. A is the slip constant. σ∗ is the Stefan–Boltzmann constant. k∗ is the mean
absorption coefficient.

Boundary Conditions:

u = Uw + Aν f
∂u
∂y , v = 0, −k f

∂T
∂y = h f

(
Tf − T

)
at y = 0,

u→ 0, up → 0, vp → v, T → T∞, Tp → T∞ as y→ ∞,
(8)

The expression for viscosity (µthn f ), density (ρthn f ), specific heat ((ρCp)thn f ), and
thermal conductivity (kthn f ) of the ternary nanofluid is as follows (Prakash et al. [9]):

µthn f =
µ f

(1−φ1 )2.5(1−φ2 )2.5(1−φ3 )2.5 , (ρCp)thn f =

 (1− φ2)[(1− φ1)(ρCp) f

+φ1(ρCp)s1] + φ2(ρCp)s2

,

ρthn f = (1− φ1)

(1− φ2)


(1− φ3)ρ f

+φ3ρ3

+ φ2ρ2

+ φ1ρ1,

kthn f
khn f

=
k1+2khn f−2φ1(khn f−k1)
k1+2khn f +φ1(khn f−k1)

,
khn f
kn f

=
k2+2kn f−2φ2(kn f−k2)
k2+2kn f +φ2(khn f−k2)

,
kn f
kn f

=
k3+2k f−2φ3(k f−k3)
k3+2kn f +φ3(k f−k3)

where φ1, φ2, and φ3 are the nanoparticle volume fraction of copper/alumina/zirconium
oxide, respectively. Cp is the specific heat. k f denotes the thermal conductivity of the
regular fluid.

The nonlinear PDEs in the model problem are converted to nonlinear ODEs by way of
a similarity transformation, as shown below.

u = bx f ′(η), v = −
√

bv f f (η), up = bxF′(η), vp = −
√

bv f F(η)η =
√

b
v f

y,θ(η) = T−T∞
Tf−T∞

,

θp(η) =
Tp−T∞
Tf−T∞

(9)

with T = Tf (1 + (θw − 1)θ) and θw =
Tf
T∞

, θw > 1 the temperature ratio parameter.
Equations (1) and (4) are completely satisfied by these transformations, and the other

equations in the model, [2,3,5,6], together with the boundary conditions, are translated as
follows:

Fluid Phase:

µthn f

ρthn f
f ′′′ +

(
f f ′′ − f ′2

)
+ µthn f

[
lβv
(

F′ − f ′
)
−QF′

]
= 0. (10)
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kthn f
k f

(
θ′′ + R

[
(1 + (θw − 1)θ)3θ′′ + 3(θw − 1)θ

′2(1 + (θw − 1)θ)2
])

+

Pr
(ρcp) f

(ρcp)thn f


Γ
(

f f ′θ′ − f 2θ′
)

+ f θ′ + lβT
[
θp − θ

]
+lEcβv[F′ − f ′]2

+ PrEc f ′′
2
= 0.

(11)

Dust Phase
FF′′ − F′2 + βυ

(
f ′ − F′

)
= 0 (12)

θ′pF + αβT
(
θp − θ

)
= 0 (13)

f (0) = 0, f ′(0) = 1 + δ

(1+φ1)
2.5(1+φ2)

2.5(1+φ2)
2.5 f ′′ (0), θ′(0) = −Bi(1− θ(0)),

f ′(∞)→ 0, F′(∞)→ 0, F(∞)→ f (∞), θ(∞)→ 0, θp(∞)→ 0.
(14)

where Q =
σB2

0
ρ f

, Pr =
(µcp) f

k f
, Ec = U2

w
(Tf−T∞)cp f

,R = 4σ∗T3
∞

3kthn f k∗ , βT = 1
τTc , βv = 1

τvc , τv = m
K ,

l = mN
ρ f

, γ =
cp f
cm f

Γ = bλ1, δ = A Uw
ν f

and Bi =
√

ν f
c

h f
k f

.
The physical quantities of C f and Nu are;

C f =
τw

ρ f U2
w

, Nu =
xqw

k f

(
Tf − T∞

) at y = 0,

where τw and qw are given by

τw = µthn f

(
∂u
∂y

)
qw = −kthn f

(
∂T
∂y

)
at y = 0.

In terms of the nondimensional variables, we express them as

C f Re−(
1
2 ) =

(
µthn f

µ f

)
f ′′ (0) and Nu(Re)−(

1
2 ) = −

kthn f

k f

[
1 + Rθ3

w

]
θ′(0).

where Re = U2
w

bv f
is the local Reynolds number.

3. Numerical Method

Solving the nonlinear system of ODEs generated by a numerical technique (BVP4c) in
MATLAB (see Equations (10)–(13)) may be achieved numerically with the aid of boundary
constraints using the approach described in Equation (14). Table 1 shows the physical
properties of the ternary nanofluid. Equations of a higher level of order differential type
are produced. A variety of physical influences on the velocity and temperature profiles
for both dusty and ternary nanofluid cases are analyzed graphically. Calculated values

for C f (Re)
1
2 , and Nu(Re)−

1
2 are tabulated below (Tables 3 and 4). At the outset, we reduce

these ODEs to the first-order form by simplifying the higher-order terms.
Let f = y1, f ′ = y2, f ′′ = y3, f ′′′ = y4, θ = y5, θ′ = y6, θ′′ = y7 F = y8,

F′ = y9, F′′ = y10, θp = y11, θ′p = y12.
Fluid Phase:

y4 = −
ρthn f

µthn f

[(
y1y3 − y2

2

)
+ µthn f [lβv(y9 − y2)−Qy2]

]
, (15)
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y7 = −
k f

kthn f



(
1 + R

[
(1 + (θw − 1)y5)

3+

3(θw − 1)y2
6(1 + (θw − 1)y5)

2

])
+

Pr
(ρcp) f

(ρcp)thn f

 Γ
(
y1y2y6 − y2

1y6
)

+y1y6 + lβT [y11 − y5]

+lEcβ[y9 − y2]
2

+ PrEcy2
3.

, (16)

Dust Phase:
y10 =

1
y8

[
y2

9 − βv(y2 − y9)
]

(17)

y12 =
1
y8

[−αβT(y11 − y5)] (18)

Boundary Conditions:

(0) = 0, y2(0) = 1 + δ

(1+∅)2.5 y3(0), y6(0) = −Bi(1− y5(0)), y2(∞)→ 0, y9(∞)→ 0,

y8(∞)→ y1(∞), y 5(∞)→ 0, y11(∞)→ 0
(19)

Table 1. Thermophysical properties of a ternary nanofluid (graphene + sirconium oxide + tungsten
oxide) (Prakasha et al. [9]) and Muhammad et al. [33]).

Thermophysical
Properties Base Fluid Ternary Nanofluid

H2O Graphene Zirconium Oxide Tungsten OXIDE

ρ
(
kg/m2 ) 997.1 2200 5680 7160

Cp (j/kgK) 4179 5000 502 96.15

k(w/mk) 0.613 790 1.7 1.63

4. Results and Discussion

In this paper, our study is focused on the dusty ternary nanofluid flow with the
Cattaneo–Christov model over a stretching sheet in the presence of a magnetic field,
nonlinear radiation, and convective heat transfer. We analyzed the effects of the physical
parameters on the velocity and thermal fields through figures and tables by using the fixed
parametric values Pr = 6.9, Ec = 0.5, R = 0.6, θw = 1.2, δ = 0.7, Q = 0.5, Bi = 0.8,
φ1 = φ2 = φ3 = 0.005 , and Γ = 0.4. Additionally, the results of the comparison of the
Prandtl number to previously published studies are shown in Table 2. We can conclude
that the current results are in excellent agreement with previous findings in the literature.

Furthermore, C f (Re)
1
2 and Nu(Re)−

1
2 values for the present analysis are computed and

given in Tables 3 and 4.

Table 2. Validation of the results in comparison with those found in the literature.

Pr Ghadikolaei et al. [34] Hosseinzadeh et al. [35] Reddy et al. [3] Present Results

0.7 0.4538 0.4541 0.4539 0.45415

2.0 0.9113 0.9114 0.9113 0.91133

7.0 1.8954 1.8954 1.8954 1.89545
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Table 3. The friction factor values for various pertinent parameters.

Q δ φ1 φ2 φ3
Friction Factor

Dusty Phase Ternary Phase

0.5 0.785239 1.511657

1.0 0.613042 1.447579

1.5 0.508094 1.406297

0.5 0.620207 1.470950

1.0 0.541187 1.464362

1.5 0.446056 1.453310

0.005 0.740501 1.477960

0.001 0.688252 1.475486

0.015 0.640870 1.472762

0.005 0.967495 1.480191

0.001 0.828302 1.475561

0.015 0.549498 1.460959

0.005 0.740501 1.477961

0.001 0.688252 1.475486

0.015 0.549498 1.460959

Table 4. The Nusselt number values for various pertinent parameters.

Pr Ec Bi Γ R θw φ1 φ2 φ3
Nusselt Number

Dust Phase Ternary Phase

0.5 1.44697 1.56233

1.0 1.46193 2.69770

1.5 1.48274 3.51973

0.1 1.50243 1.94796

0.3 1.43731 1.93508

0.5 1.39414 1.92532

0.1 1.51166 2.23259

0.2 1.44758 1.74300

0.3 1.40634 1.44461

0.1 1.57142 1.97687

0.2 1.84996 2.01510

0.3 2.08391 2.01747

0.5 1.45866 1.91198

1.0 1.53613 1.88219

1.5 1.57934 1.86686

0.8 1.28682 1.48919

1.2 1.32862 1.64629

1.4 1.36865 1.79380
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Table 4. Cont.

Pr Ec Bi Γ R θw φ1 φ2 φ3
Nusselt Number

Dust Phase Ternary Phase

0.005 1.06239 1.88550

0.001 1.16455 1.89615

0.015 1.27872 1.91104

0.005 1.39414 1.92532

0.001 1.43731 1.93508

0.015 1.51166 2.23259

0.005 1.17455 1.87615

0.001 1.22872 1.89104

0.015 1.30414 1.92532

Figure 1 shows how Q affects the velocity field ( f ′(η) and F′(η)) for both ternary
nanofluid and dusty fluid cases. A decreasing trend can be observed in f ′(η) and F′(η)
scenarios for boosting values of Q. Physically, the magnetic field depends on Lorentz force,
which is stronger for a larger magnetic field. Therefore, the velocity profile declines with
more magnetic fields. In addition, the influence of the ternary nanofluid is examined more
thoroughly than in the case of dusty fluid. In addition, the appropriate layer thickness is
scaled back in both scenarios when the Q value is increased.
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Figure 1. The f ′(η) and F′(η) illustration against Q.

Figures 2–4 depict the instances of dusty fluid and ternary nanofluid and the influence
of φ1, φ2, and φ3 on the F′(η) and f ′(η) profiles, respectively. A decrease in the velocity
curve that occurs as a consequence of the incorporation of solid nanoparticles (φ1, φ2, and
φ3) into the nanomaterial was seen in both dusty and ternary nanofluid cases. This outcome
is due to collisions between nanoparticles that have been extensively dispersed across the
environment.
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In order to explore the impact of the δ parameter on the velocity distributions of the
F′(η) and f ′(η) profiles, Figure 5 is displayed. It is clear from these results that changing
the value of the parameter results has a significant reduction of the velocity distribution
for both the F′(η) and f ′(η) situations. This is due to the fact that the fluid’s near-surface
velocity does not sustain correctly for the extended surface velocity when taking slip effect
into consideration. Therefore, if the value of the slip velocity parameter is increased, the
slide speed will be increased accordingly. Following this, there is a decrease in the liquid
velocity as a result of the stretching surface deformation, which can only be communicated
to the fluid under slip conditions.
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Figure 5. The f ′(η) and F′(η) illustration against δ.

In Figure 6, we can see how R affects the temperature field for both ternary nanofluid
phase and dusty phase (θ(η) and θp(η)) profiles. It seems to be enhanced when R improves.
In accordance with the physical principle, as the radiation parameter increases, heat is
radiated at the fluid at a much higher rate than when the mean absorption coefficient
decreases. Physically, the effect of thermal radiation is to boost the transfer, as by increasing
thermal radiation, the thermal boundary layer increases. Therefore, it has been reported
that the process of thermal radiation reduction should proceed at a faster rate. The use of
radiation can regulate the distribution of temperature and flow, and such applications can
be used in pseudoscience to monitor blood pressure via the magnetotherapy process.
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Figure 6. The θ(η) and θp(η) illustration against R.

Figure 7 depicts the analysis of the characteristics of the function θ(η) and θp(η) in
relation to rising values of θw for a ternary nanofluid and dusty fluid condition, respectively.
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It is witnessed that the thermal field and thermal layer thickness of the ternary nanofluid
and dusty fluid condition both increase at an exponential rate when the θw parameter
is increased. In addition, for high values of θw, a rise in fluid temperature enriches the
whole fluid case. This is the situation when the temperature of the fluid is increased.
In addition, the enhancement of fluid temperature is optimal in the case of the ternary
nanofluid, followed by the case of dusty fluid.
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Figure 7. The θ(η) and θp(η) illustration against θw.

Figure 8 displays the changes in the thermal field for the ternary nanofluid and dusty
fluid instances as a function of the Ec parameter. To improve the Ec parameter, it is evident
that the thermal field rises in both ternary nanofluid and dusty fluid phases. Physically,
the Eckert number is the ratio of kinetic energy to the specific enthalpy difference between
wall and fluid. Therefore, an increase in the Eckert number causes the transformation of
kinetic energy into internal energy by work that is done against the viscous fluid stresses.
Due to this, increasing Ec enhances dramatically the temperature of the fluid.
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Figure 8. The θ(η) and θp(η) illustration against Ec.

In Figure 9, we see how varying the Γ parameter affects the thermal distribution for
both θ(η) and θp(η) cases. It is inferred that when the Γ parameter increases, the fluid
temperature decreases. An increase in the Γ parameter decreases the temperature field as it
decelerates the relaxation of heat flow.
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Figure 9. The θ(η) and θp(η) illustration against Γ.

The thermal field for the θ(η) and θp(η) instances is shown to be affected by the φ1,
φ2, and φ3 parameters in Figures 10–12. The fact that the nanoparticle is so tiny may be
deduced from the amount of heat that it generates when it releases the accumulated energy.
It is possible that in both cases (θ(η) and θp(η)), extra energy will be needed for the mixing
of additional nanoparticles. In turn, this will cause an increment in the temperature and
the thickness of the associated layer.
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Figure 12. The θ(η) and θp(η) illustration against φ3.

Figure 13 shows the effect of the Bi parameter on thermal field for both θ(η) and θp(η)
instances. It is noted that the thermal field for both θ(η) and θp(η) instances increases with
an increase in the Bi parameter. Furthermore, the interrelated thickness of the thermal layer
also enhances by rising the values of the Bi parameter.
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In Tables 3 and 4, the impact of various substantial factors over skin friction and the
Nusselt number for the fluid flow system has been portrayed in numerical manners. The
fluid motion decreases with expansion in magnetic effects and slip factor. The friction factor
decreases with augmenting values of the nanoparticle volume friction parameter (φ1, φ2,
and φ3), as shown in Table 3. The Nusselt number is maximized for higher values of the
nanoparticle volume friction parameter (φ1, φ2, and φ3), as shown in Table 4. An increment
of the values of the Eckert number, Prandtl number, and Biot number enhances the Nusselt
number. Additionally, the Nusselt number rises with the rising values of thermal relaxation.
One can conclude that the Nusselt number is enhanced for higher values of radiation and
temperature parameters.

5. Conclusions

By using a CC heat flux model, we investigated the movement of a dusty ternary
nanofluid over a stretching sheet. The shown partial differential equations are converted to
ordinary differential equations and numerically solved via the BVP4c technique. Graphs
depict the concentration, the velocity, and the temperature. Overall, we are able to draw
the following conclusions:

• The magnetic field depends essentially on Lorentz force, which is predominant for a
larger magnetic field. Due to this, the velocity profiles decrease by further increasing
the values of the magnetic parameter.

• The velocity profiles are decreasing by increasing the values of the slip parameter.
However, once the slip velocity parameter is increased, the slide speed will also be
decreased accordingly.

• The Eckert number is defined as the ratio between kinetic energy and the specific
enthalpy difference between the wall and the fluid. Thus, increasing the Eckert number
causes an increment in the temperature profile for both dusty and ternary phases.

• The thermal radiation role is to boost heat transfer by enlarging the thermal radiation
and thermal boundary layers for both dusty and ternary phases.

• The tiny nanoparticle effect may be deduced from the amount of heat generated by
the accumulated energy. Due to this, temperature profiles are enhanced by increasing
values of the nanoparticle volume friction parameter.

• An increment in the value of thermal relaxation generates a decrement in the tempera-
ture distribution.
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• Temperature profiles increase by increasing the values of the temperature ratio param-
eter.

• The performance of the dusty phase heat transfer has significantly enhanced compared
to the performance of the ternary nanofluid phase.
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Nomenclature

B2
0 Magnetic field

cp f Specific heat of fluid particle
cm f Specific heat of dust particle
C f Friction factor
Ec Eckert number
K Stokes drag coefficient
kthn f Thermal conductivity of the nano fluid
k f Thermal conductivity of the fluid
k∗ Mean absorption coefficient
l Mass concentration of particles
m Mass concentration of dust particles
Q Magnetic parameter
N Number density of dust particle
Nu Nusselt number
Pr Prandtl number
qr Radiative heat flux
R Radiation parameter
u, up Velocity along x axis

(
m.s−1)

v, vp Velocity along y axis
(
m.s−1)

Bi Biot number
δ Slip parameter
T∞ Ambient fluid temperature
Tw Wall temperature
T, Tp Temperature of fluid and dust particle
Greek letters
α Ratio of specific heat
βv Fluid particle interaction parameter for velocity
βt Fluid particle interaction parameter for temperature
γ Thermal relaxation parameter
τt Relaxation time of dust particle for temperature
τv Relaxation time of dust particle for velocity
λ1 Relaxation time for heat flux
σ Electrical conductivity
φ1, φ2, φ3 Volume fraction of nano particle
σ∗ Stefan Boltzmann constant(
ρcp
)

Heat capacity of the fluid(
ρCp

)
thn f Heat capacity of the nanofluid

kthn f Thermal conductivity of ternary hybrid fluid
k f Thermal conductivity of fluid
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