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1. Introduction

The theory of n-ary hypergroups, also called n-hypergroups, contains two generaliza-
tions of the notion of a group: n-groups and hypergroups, which are briefly presented in
the next paragraph. The two concepts were introduced around the same time.

n-groups, also called polyadic groups, were introduced in 1928 by W. Dörnte [1], and
they are a generalization of classical groups. An important role in n-group theory is the
paper written by E.L. Post of 143 pages [2]. Such operations are used then in the study of
(m, n)-rings. Among those who made recently important contributions in the theory of
n-groups, we mention W. Dudek and his collaborators; see for instance [3–5]. Let n > 2, and
denote the chain xi, . . . , xj by xj

i (for j < i, the above sequence is the empty symbol). For a
nonempty set G with one n-operation, f : Gn → G is a n-groupoid, which is a n-quasigroup, if,
for all an

1 , b ∈ G, there is exactly one xi ∈ G such that f (ai−1
1 , xi, an

i+1) = b. An n-quasigroup
with an associative operation is called an n-ary group.

Hypergroup theory is a field of algebra that appeared in 1934 and was introduced by
the French mathematician Marty [6]. The theory has known various periods of flourishing:
the 1940s, then 1970s, and especially after the 1990s, the theory has been studied on
all continents, both theoretically and for a multitude of applications in various fields of
knowledge: various chapters of mathematics, computer science, biology, physics, chemistry,
and sociology. Several books have been written in this field, which highlight both the
theoretical aspects and the applications; for instance, see [7]. Figure 1 suggestively shows
the connections between the previously mentioned domains.

This survey is structured as follows: First, basic notions in the field of algebraic
hyperstructures are recalled, followed by results, in particular characterizations in the
field of n-hypergroups. Special attention is given to the connections with binary rela-
tions and fundamental relations. Finally, join n-spaces with connections to lattice theory
are presented.
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Figure 1. The connections between groups, n-groups, hypergroups, and n-hypergroups.

2. Hypergroups

An algebraic hyperstructure is a nonempty set H together with one or some functions
from H× H to the set P∗(H) of nonempty subsets of H. For all (x, y) ∈ H2, one denotes by
x ◦ y the image f (x, y), where f is the function f : H × H → P∗(H). Then, (H, ◦) is called
a hypergroupoid.

If S, T ∈ P∗(H), S ◦ T denotes the set
⋃

s∈S,t∈T s ◦ t.

Definition 1. The pair (H, ◦) is called a semihypergroup if

∀(r, s, t) ∈ H3, (r ◦ s) ◦ t = r ◦ (s ◦ t),

where (r ◦ s) ◦ t denotes the union ⋃
a∈r◦s

a ◦ t.

Analogously,
r ◦ (s ◦ t) =

⋃
b∈s◦t

r ◦ b.

Definition 2. A hypergroup (H, ◦) is a semihypergroup such that

∀(a, b) ∈ H2, ∃(x, y) ∈ H2 such that

a ∈ b ◦ x and a ∈ y ◦ b

Several types of hypergroup homomorphisms are analyzed. We refer to [8]. Fur-
thermore, several classes of subhypergroups are introduced and studied, such as canon-
ical hypergroups, join spaces, and complete hypergroups. Join Spaces were introduced
by Prenowitz.

Definition 3. Let (H, ◦) be a commutative hypergroup. Then, (H, ◦) is a join space if the
following implication is satisfied:

∀(r, s, t, w) ∈ H4,

r/s ∩ t/w 6= ∅⇒ r ◦ w ∩ s ◦ t 6= ∅,

where r/s denotes the set
{a ∈ H | r ∈ a ◦ s}.



Mathematics 2023, 11, 551 3 of 17

Example 1. Suppose that (L,∨,∧) is a lattice. Then, L is a distributive lattice if and only if (L, ?)
is a join space, where a ? b = {x ∈ L|a ∧ b ≤ x ≤ a ∨ b}.

Example 2. Suppose that (L,∨,∧) is a lattice. Then, L is a modular lattice if and only if (L, ◦) is
a join space, where a ◦ b = {x ∈ L|a ∨ b = b ∨ x = a ∨ x}. Clearly, a ∨ b ∈ a ◦ b.

Canonical hypergroups have a structure close to that of a commutative group: they are
commutative, have a scalar identity e (that is, ∀x ∈ H, x ◦ e = e ◦ x = x), every element has
a unique inverse, and they are reversible (that is, if x ∈ y ◦ z, then z ∈ y−1 ◦ x, y ∈ x ◦ z−1).

An important result is the next one:

Theorem 1. Let (H, ◦) be a commutative hypergroup. Then, it is a canonical hypergroup iff it is a
join space with a scalar identity.

One of the most-investigated hypergroups associated with binary relations is that
introduced by Rosenberg [9] in 1998. It represents a theme of research of numerous
papers. Rosenberg associated a partial hypergroupoid Hρ = (H, ◦) with a binary relation
ρ defined on a set H, where, for any x, y ∈ H, we have x ◦ x = {z ∈ H|(x, z) ∈ ρ} and
x ◦ y = x ◦ x ∪ y ◦ y.

Definition 4. An element b in H is an outer element of ρ if there exists a ∈ H such that (a, b) /∈ ρ2.

Theorem 2. (H, ◦) is a hypergroup iff:

(1) ρ has full domain;
(2) ρ has full range;
(3) ρ ⊆ ρ2;
(4) If (a, b) ∈ ρ2, then (a, b) ∈ ρ, where b is an outer element of ρ.

Special attention is paid to the fundamental β relation, which leads to a group quo-
tient structure.

Definition 5. Suppose that (H, ◦) is a semihypergroup and n is a natural number greater than 1.
We can consider the relation βn on H as follows: xβny if there exist a1, a2, . . . , an in H, such that

{x, y} ⊆
n
∏
i=1

ai, and assume that β =
⋃

n≥1
βn, where β1 = {(r, r)|r ∈ H}.

In [10], Freni showed that, in every hypergroup, the relation β is transitive, so the
following result holds:

Theorem 3. If (H, ◦) is a hypergroup, then (H/β, ·) is a group, where x̄ · ȳ = z̄, where z is an
arbitrary element of x ◦ y. Moreover, the canonical projection ϕ : H → H/β is a good homomorphism.

3. n-Hypergroups

Davvaz and Vougiouklis [11] defined the notion of n-hypergroups for the first time.
This concept is a generalization of n-groups, as well as hypergroups in the sense of Marty.
Some properties of such hyperstructures were investigated in [12–18]. Moreover, some
researchers have pointed out the relation between n-hypergroup and fuzzy sets.

Suppose that H is a nonempty set. A function f : H × . . .× H︸ ︷︷ ︸
n times

→ P∗(H) is called an

n-hyperoperation. As usual, we may write Hn = H × . . .× H, where H appears n times.
An element of Hn is denoted by (x1, . . . , xn), where xi ∈ H for any i with 1 ≤ i ≤ n. Let
P1, . . . , Pn be nonempty subsets of H. We define

f (P1, . . . , Pn) =
⋃
{ f (p1, . . . , pn) | pi ∈ Pi, i = 1, . . . , n}
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The pair (H, f ) is called an n-hypergroupoid. An n-hypergroupoid (H, f ) is called an n-
semihypergroup iff

f (hi−1
1 , f (hn+i−1

i ), h2n−1
n+i ) = f (hj−1

1 , f (hn+j−1
j ), h2n−1

n+j ),

for all 1 ≤ i, j ≤ n and h1, h2, . . . , h2n−1 ∈ H. An n-semihypergroup (H, f ) in which
the equation:

b ∈ f (hi−1
1 , xi, hn

i+1) (1)

has the solution xi ∈ H for every h1, . . . , hi−1, hi+1, . . . , hn, b ∈ H, and 1 ≤ i ≤ n is called an
n-hypergroup. If the value of f (h1, . . . , hn) is independent of the permutation of elements
h1, . . . , hn, then we have a commutative n-hypergroup.

Example 3. If (H, ?) is a hypergroup, then obtain an n-hypergroup by defining f (h1, . . . , hn) =
h1 ? . . . ? hn, for all h1, . . . , hn ∈ H.

Example 4. Let Z be the set of integer numbers. If we define

f (h1, . . . , hn) = {m1h1 + . . . + mnhn | m1, . . . , mn ∈ Z},

then (Z, f ) is an n-hypergroup.

Example 5. Assume (L,∨,∧) is a modular lattice. For every h1, . . . , hn ∈ L and i ∈ {1, . . . , n},
we define

A(i)
n = h1 ∨ . . . ∨ hi−1 ∨ hi+1 ∨ . . . ∨ hn,

An = h1 ∨ . . . ∨ hn.

If we define:
f (h1, . . . , hn) = {x ∈ L | x ∨ A(i)

n = An, for all 1 ≤ i ≤ n},

then (L, f ) is a commutative n-hypergroup.

Theorem 4. Suppose that (H, f ) is an n-semihypergroup. Then, (H, f ) is an n-hypergroup iff
Equation (1) is solvable at the first place and at the last place or at least one place 1 < i < n.

Proof. If Equation (1) is solvable at the place i = 1 and i = n, then, for every h1, . . . , hn, b ∈
H, there are x0, z0 ∈ H such that

b ∈ f (x0, hn
2 ) and x0 ∈ f (hn−1

1 , z0).

If j ∈ {1, . . . , n} is arbitrary, then we have

b ∈ f ( f (hn−1
1 , z0), hn

2 ) = f (hj−1
1 , f (hn−1

j , z0, hj
2), hn

j+1).

Hence, there is x ∈ f (hn−1
j , z0, hj

2) such that b ∈ f (hj−1
1 , x, hn

j+1).
Now, assume that Equation (1) is solvable at place 1 < i < n. Assume that j < i, then

for every a1, . . . , an, b ∈ H, there is y1 ∈ H such that

b ∈ f (hi−1
1 , y1, f (h1, . . . , h1︸ ︷︷ ︸

n−(i−j+1)

, hi+1
j+1), hn

i+2).

This implies that
b ∈ f (hj−1

1 , f (hi−1
j , y1, h1, . . . , h1︸ ︷︷ ︸

n−(i−j+1)

), hn
j+1).
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Hence, there is x ∈ f (hi−1
j , y1, h1, . . . h1) such that b ∈ f (hj−1

1 , x, hn
j+1). If we consider i < j,

then in a similar, way we can prove that Equation (1) is solvable.

An n-hyperoperation f is called weakly (i, j)-associative if

f (xi−1
1 , f (xn+i−1

i ), x2n−1
n+i ) ∩ f (xj−1

1 , f (xn+j−1
j ), x2n−1

n+j ) 6= ∅,

and (i, j)-associative if

f (xi−1
1 , f (xn+i−1

i ), x2n−1
n+i ) = f (xj−1

1 , f (xn+j−1
j ), x2n−1

n+j ),

holds for fixed 1 ≤ i < j ≤ n and all x1, x2, . . . , x2n−1 ∈ H.
We say that the element a ∈ H is in the center of an n-hypergroupoid (G, f ), if

f (a, xn
2 ) = f (x2, a, xn

3 ) = f (x3
2, a, xn

4 ) = . . . = f (xn
2 , a),

for all x2, . . . , xn ∈ H. An (i, i + k)-associative n-hypergroupoid (G, f ) containing cancelable
elements in the center (cancelable elements belong to the center) is (1, n)-associative [12].

Theorem 5 ([12]). An n-hypergroupoid containing cancellative elements in the center is an n-
semihypergroup iff it is (i, j)-associative for some 1 ≤ i < j ≤ n.

An n-hypergroupoid (H, f ) is called a b-derived from a binary hypergroupoid (G, ?) [12],
and denote this fact by (H, f ) = derb(H, ?) if the hyperoperation f has the form

f (xn
1 ) = (x1 ? x2 ? . . . ? xn) ? b.

Theorem 6 ([12]). An n-semihypergroup has a neutral element iff it is derived from a binary
semihypergroup with the identity.

Theorem 7 ([12]). An n-semihypergroup derived from a binary semihypergroup has a neutral
polyad iff it has a neutral element.

Consequently, if an n-semihypergroup without neutral elements is derived from a
binary semihypergroup, then it does not possess any neutral polyad.

Theorem 8 ([12]). If an n-semihypergroup (H, f ) does not contain any neutral elements, then to
(H, f ), we can adjoint the neutral element if and only if (H, f ) is derived from a binary semihypergroup.

Theorem 9 ([12]). To an n-semihypergroup (H, f ) we can adjoint the neutral element iff (H, f ) is
derived from a binary semihypergroup.

Theorem 10 ([12]). For any n-semihypergroup (H, f ) with a right neutral polyad, there is a
semihypergroup (H, ?) with a right identity and an endomorphism ϕ of (H, ?) such that

f (xn
1 ) = x1 ? ϕ(x2) ? ϕ2(x3) ? . . . ? ϕn−1(xn) ? b,

for some b ∈ H.

Theorem 11 ([12]). For any n-semihypergroup (H, f ) with a left neutral polyad, there is a semi-
hypergroup (H, ?) with a left identity and an endomorphism ψ of (H, ?) such that

f (xn
1 ) = b ? ψn−1(x1) ? ψn−2(x2) ? . . . ? φ2(xn−2) ? φ(xn−1) ? xn

for some b ∈ H.
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4. Binary Relations and Fundamental Relations

Suppose that R is a binary relation on a nonempty set H. We define a partial n-
hypergroupoid (H, fR), as follows:

fR
(

w, . . . , w︸ ︷︷ ︸
n

)
= {y | (w, y) ∈ R},

for all w in H and

fR(w1, w2, . . . , wn) = fR
(

w1, . . . , w1︸ ︷︷ ︸
n

)
∪ fR

(
w2, . . . , w2︸ ︷︷ ︸

n

)
∪ . . . ∪ fR

(
wn, . . . , wn︸ ︷︷ ︸

n

)
,

for every w1, w2, . . . , wn ∈ H. It is clear that (H, fR) is commutative. The partial n-
hypergroupoid (H, fR) is a generalization of the Rosenberg partial hypergroupoid. We
denote fR(w1, w2, . . . , wn) by fR(wn

1 ). The relation R is transitive iff, for any w in H, we have

fR
(

fR
(

w, . . . , w︸ ︷︷ ︸
n

)
, w, . . . , w︸ ︷︷ ︸

n−1

)
= fR

(
w, . . . , w︸ ︷︷ ︸

n

)
.

Moreover, (H, fR) is an n-hypergroupoid if the domain of R is H.

Theorem 12 ([17]). Suppose that R is a binary relation on H, with full domain. Then, (H, fR)
is an n-semihypergroup iff R ⊂ R2 and for each outer element y of R, if (x, y) ∈ R2 implies
(x, y) ∈ R.

It follows that:

Corollary 1. Suppose that R is a binary relation with full domain. Then, (H, fR) is an n-
hypergroup iff the following hold:

(1) R has a full range;
(2) R ⊂ R2;
(3) (x, y) ∈ R2 implies (x, y) ∈ R for every outer element y ∈ R.

Note that if R is a subset of R2, then x is an outer element of R iff x /∈ fR( fR(w, . . . , w︸ ︷︷ ︸
n

),

w, . . . , w︸ ︷︷ ︸
n−1

) for some w ∈ H.

If R is a subset of R2, then there are no outer elements of R iff, for each w ∈ H, we have

fR( fR(w, . . . , w︸ ︷︷ ︸
n

), w, . . . , w︸ ︷︷ ︸
n−1

) = H.

Theorem 13 ([17]). Suppose that the relation R is reflexive and symmetric. Then, (H, fR) is an
n-hypergroup iff, for every u, w ∈ H, we have

fR( fR(u, . . . , u︸ ︷︷ ︸
n

), u, . . . , u︸ ︷︷ ︸
n−1

)− fR(u, . . . , u︸ ︷︷ ︸
n

) ⊂ fR( fR(w, . . . , w︸ ︷︷ ︸
n

), w, . . . , w︸ ︷︷ ︸
n−1

).

Corollary 2. Suppose that the relation R is reflexive and symmetric, but not transitive. Then,
(H, fR) is an n-hypergroup iff R2 = H2.

The concept of mutually associative hypergroupoids was introduced by Corsini [19].
We generalize this concept to n-hypergroupoids. Two partial n-hypergroupoids (H, f1) and
(H, f2) are mutually associative if, for every w1, . . . , w2n−1 ∈ H, we have:

(i1) f2( f1(wn
1 ), w2n−1

n+1 ) = f1(wn−1
1 , f2(w2n−1

n ));
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(i2) f2(w1, f1(wn+1
2 ), w2n−1

n+2 ) = f1(wn−2
1 , f2(w2n−2

n−1 ), w2n−1);
(i3) f2(w1, w2, f1(wn+2

3 ), w2n−1
n+3 ) = f1(wn−3

1 , f2(w2n−3
n−2 ), w2n−2, w2n−1);

. . .
(in−1) f2(wn−2

1 , f1(w2n−2
n−1 ), w2n−1) = f1(w1, f2(wn+1

2 ), w2n−1
n+2 );

(in) f2(wn−1
1 , f1(w2n−1

n )) = f1( f2(wn
1 ), w2n−1

n+1 ).

Let f1 and f2 be two ordinary hyperoperations. Then, we obtain two mutually associa-
tive partial hypergroupoids. If R is a binary relation on H and A ⊂ H, we denote

R(A) = {b | (a, b) ∈ R, for some a ∈ A}.

If A = {w1, w2, . . . , wk}, we write R(wk
1) for R(A). If R and S are binary relations on H,

then we denote by SR the relation {(a, c) ∈ H2 | (a, b) ∈ R and (b, c) ∈ S, for some b ∈ H}.

Theorem 14 ([17]). Let R and S be two relations on H with full domains. Then, (H, fR) and
(H, fS) are mutually associative iff, for every w1, w2, . . . , w2n−1 ∈ H, we have

SR(wn
1 ) ∪ S(w2n−1

n+1 ) = RS(w2n−1
n ) ∪ R(wn−1

1 ).

Theorem 15 ([17]). If (H, fR) and (H, fS) are mutually associative n-hypergroups, then (H, fR∪S)
is also an n-hypergroup.

Theorem 16. Let R and S be relations on H, such that R ⊂ SR. If (H, fR) is an n-hypergroup,
(H, fR) and (H, fS) are mutually associative and one of the following two conditions holds:

(1) RS ∩ {(w, w) | w ∈ H} = ∅;
(2) The domain (RS) of RS is different from H.

Then, (H, fSR) is an n-hypergroup, as well.

Now, suppose that (H, f ) is an n-semihypergroup. We denote

f(1) = { f (wn
1 ) | wi ∈ H, 1 ≤ i ≤ n}},

f(2) = { f ( f (un
1 ), wn

2 ) | ui ∈ H, wj ∈ H, 1 ≤ i ≤ n,
∀ 2 ≤ j ≤ n},

f(3) = { f ( f ( f (vn
1 ), un

2 ), wn
2 ) | vi ∈ H, uj ∈ H, wj ∈ H,

∀1 ≤ i ≤ n, ∀2 ≤ j ≤ n},

and so on. Denote U =
⋃

k∈IN∗
f(k). We define β =

⋃
k≥1

βk, where, for all x, y of H,

aβky ⇔ ∃u ∈ f(k), such that {x, y} ⊆ u.

Denote
⋃
a∈u
u∈U

u by C1(a), which means

C1(w) = {a | there exists u ∈ U such that w ∈ u, a ∈ u}.

For every n ∈ IN∗, denote

Cn+1(w) = {a | there exists u ∈ U such that Cn(w) ∩ u 6= ∅, a ∈ u}.

A subsets B is a complete part of (H, f ) if, for every u ∈ U ,

B ∩ u = ∅ =⇒ u ⊂ B.
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Suppose that C(w) is the complete closure of w. We have C(w) =
⋃

i∈IN∗
Ci(w), for all

w ∈ H.

Theorem 17 ([17]). Suppose that (H, f ) is an n-semihypergroup. The relation β is transitive iff
C(w) = C1(w), for all w ∈ H.

Theorem 18 ([17]). If (H, f ) is an n-hypergroup, then β is transitive.

Suppose that (H1, f ) and (H2, g) are n-hypergroups. We define ( f , g) : (H1×H2)
n −→

P∗(H1 × H2) by ( f , g)((u1, v1), . . . , (un, vn)) = {(u, v) | u ∈ f (u1, . . . , un), v ∈ g(v1, . . . ,
vn)}. Clearly, (H1 × H2, ( f , g)) is an n-hypergroup, and it is the direct hyperproduct of H1
and H2.

Theorem 19 ([11]). Let (H1, f ) and (H2, g) be two n-hypergroups, and let β∗1, β∗2, and β∗ be
fundamental equivalence relations on H1, H2, and H1 × H2, respectively. Then,

(H1 × H2)/β∗ ∼= H1/β∗1 × H2/β∗2.

Let (H, f ) be an n-semihypergroup and ρ be an equivalence relation on H; we define

XρY ⇐⇒ xρy for all x ∈ X, y ∈ Y.

The relation ρ is a strongly regular relation if xiρyi for all 1 ≤ i ≤ n, then,

f (x1, . . . , xn)ρ f (y1, . . . , yn).

If ρ is a strongly regular relation on an n-semihypergroup (H, f ), then the quotient
(H/ρ, f /ρ) is an n-semigroup such that

f /ρ(ρ(x1), . . . , ρ(xn)) = ρ(z) for all z ∈ f (x1, . . . , xn)

where x1, . . . , xn ∈ H.
Similar to the relation defined by Freni [20,21] on semihypergroups, Davvaz et al. [13]

introduced the following relation on an n-semihypergroup so that the quotient is a com-
mutative n-semigroup. Let (H, f ) be an n-semihypergroup. Then, γ̂ denotes the transitive
closure of the relation γ =

⋃
k≥1

γk, where γ1 = {(w, w)| w ∈ H}, and for every integer

k > 1, we define
xγky ⇐⇒ x ∈ u(k) and y ∈ uσ

(k).

When m = k(n − 1) + 1, there are am
1 ∈ Hm and σ ∈ Sm such that u(k) = f(k)(am

1 ) and

uσ
(k) = f(k)(aσ(m)

σ(1) ). xγ1y (i.e., x = y), then we write x ∈ u(0) and y ∈ uσ
(0) = u(0). We

define γ∗ as the smallest equivalence relation such that the quotient (H/γ∗, f /γ∗) is a
commutative n-semigroup.

Theorem 20 ([13]). The fundamental relation γ∗ is the transitive closure of the relation γ.

Proof. The n-operation f /γ̂ in H/γ̂ is defined in the usual manner:

f /γ̂(γ̂(x1), . . . , γ̂(xn)) = {γ̂(y)| y ∈ f (γ̂(x1), . . . , γ̂(xn))}

for all x1, . . . , xn ∈ H. Let a1 ∈ γ̂(x1), . . . , an ∈ γ̂(xn). Then, we have:
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a1γ̂x1 iff there exist x11, . . . x1m1+1 with x11 = a1, x1m1+1 = x1 such that

x1i1 ∈ u(k1)
(1 ≤ i1 ≤ m1 − 1),

x1i1+1 ∈ uσ1
(k1)

(2 ≤ i1 ≤ m1).

. . .
anγ̂xn iff there exist xn1, . . . xnmn+1 with xn1 = an, xnmn+1 = xn such that

xnin ∈ u(kn) (1 ≤ in ≤ mn − 1),
xnin+1 ∈ uσn

(kn)
(2 ≤ in ≤ mn).

Therefore, we obtain

f (x1i1 , x21, . . . , xn1) ⊆ u(k1)
1 ≤ i1 ≤ m1 − 1,

f (x1i1+1, x21, . . . , xn1) ⊆ uσ1
(k1)

2 ≤ i1 ≤ m1,
f (x1m1+1, x2i2 , . . . , xn1) ⊆ u(k2)

1 ≤ i2 ≤ m2 − 1,
f (x1m1+1, , x2i2+1, . . . , xn1) ⊆ uσ2

(k2)
2 ≤ i2 ≤ m2,

. . . . . .
f (x1m1+1, x2m2+1, . . . , xnin) ⊆ u(kn) 1 ≤ in ≤ mn − 1,
f (x1m1+1, x2m2+1, . . . , xnin+1) ⊆ uσn

(kn)
2 ≤ in ≤ mn.

This yields that f /γ̂(γ̂(x1), . . . , γ̂(xn)) is singleton. Therefore, we can write

f /γ̂(γ̂(x1), . . . , γ̂(xn)) = γ̂(z) for all z ∈ f (γ̂(x1), . . . , γ̂(xn)).

Moreover, since f is associative, we obtain that f /γ̂ is associative, and consequently, H/γ̂
is an n-semigroup.

(H/γ̂, f /γ̂) is commutative because, if σ ∈ Sn and a ∈ f (xn
1 ) and b ∈ f (xσ(n)

σ(1) ), then
aγb, and so, γ̂(a) = γ̂(b). Therefore, f /γ̂(γ̂(x1), . . . , γ̂(xn)) = f /γ̂(γ̂(xσ(1)), . . . , γ̂(xσ(n)));
thus (H/γ̂, f /γ̂) is commutative.

Now, assume that θ is an equivalence relation on H such that H/θ is a commutative
n-semigroup. Then, for all w1, . . . , wn ∈ H,

f /θ(θ(w1), . . . , θ(wn)) = θ(z) for all z ∈ f (θ(w1), . . . , θ(wn)).

However, for any σ ∈ Sn and w1, . . . , wn ∈ H and Xi ⊆ θ(wi) (i = 1, . . . , n), we have

f /θ(θ(w1), . . . , θ(wn)) = θ( f (wσ(1), . . . , wσ(n))) = θ( f (Xσ(1), . . . , Xσ(n))).

Therefore,
θ(w) = θ(uσ

(k)) for all k ≥ 0 and for all w ∈ u(k).

This gives that, for all y ∈ H,

w ∈ γ(y) implies w ∈ θ(y).

Since θ is transitively closed, it follows that

w ∈ γ̂(y) implies w ∈ θ(y).

Consequently, we obtain γ̂ = γ∗.

Relation γ is a strongly regular relation.
Now, we present some necessary and sufficient conditions such that the relation γ is

transitive. These conditions are analogous to those determined in [20] for the transitivity of
relation γ in hypergroups. Let M be a nonempty subset of n-semihypergroup (H, f ). We say
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that M is a γ-part if, for any k ∈ N, i = 1, 2, . . . , m = k(n− 1) + 1, ∀(w1, w2, . . . , wm) ∈ Hm,
∀σ ∈ Sm, we have

f(k)(w
m
1 ) ∩M 6= ∅ =⇒ f(k)(w

σ(m)
σ(1) ) ⊆ M.

Theorem 21. Suppose that M is a nonempty subset of an n-semihypergroup H. Then, the following
statements are equivalent:

(1) M is a γ-part of H;
(2) x ∈ M, x γ y implies that y ∈ M;
(3) x ∈ M, x γ∗ y implies that y ∈ M.

Proof. (1 ⇒ 2) : If (x, y) ∈ H2 is a pair such that x ∈ M and x γ y, then ∃k ∈ N for
i = 1, . . . , m = k(n− 1) + 1, ∃σ ∈ Sm and ∃(z1, . . . , zm) ∈ Hm, such that x ∈ f(k)(zm

1 )
⋂

M

and y ∈ f(k)(z
σ(m)
σ(1) ). Since M is a γ-part of H, we have f(k)(z

σ(m)
σ(1) ) ⊆ M and y ∈ M.

(2⇒ 3) : Assume that (x, y) ∈ H2 such that x ∈ M and x γ∗ y. Then, there exist p ∈ N
and (x = w0, w1, . . . , wp−1, wp = y) ∈ Hp+1 such that x = w0 γ w1 γ . . . γ wp−1 γ wp = y.
Since x ∈ M, applying (2) p times, it follows that y ∈ M.

(3⇒ 1) : Suppose that f(k)(zm
1 )
⋂

M 6= ∅, and x ∈ f(k)(zm
1 )
⋂

M. For any σ ∈ Sm and

y ∈ f(k)(z
σ(m)
σ(1) ), we have x γ y. This yields that x ∈ M and x γ∗ y. Finally, by (3), we obtain

y ∈ M. This means that f(k)(z
σ(m)
σ(1) ) ⊆ M.

For every element x of an n-semihypergroup (H, f ), set:

Tk(w) = {(w1, . . . , wm) ∈ Hm|m = k(n− 1) + 1, w ∈ f(k)(xm
1 )}

Pk(w) =
⋃
{ f(k)(w

σ(m)
σ(1) )|σ ∈ Sm, (w1, . . . , wm) ∈ Tk(w), m = k(n− 1) + 1}

Pσ(w) =
⋃
k≥1

Pk(w).

From the preceding notations and definitions, it follows that

Corollary 3 ([13]). For every x ∈ H, Pσ(x) = {y ∈ H|x γ y}.

Theorem 22 ([13]). Let (H, f ) be an n-semihypergroup. The following statements are equivalent:

(1) γ is transitive;
(2) For any w ∈ H, γ∗(w) = Pσ(w);
(3) For any w ∈ H, Pσ(w) is a γ-part of H.

Let (H, f ) be an n-hypergroup; we consider the canonical projection ϕ : H → H/γ∗

with ϕ(x) = γ∗(x).

Corollary 4 ([13]). Let (H, f ) be an n-hypergroup and δ ∈ H/γ∗, then ϕ−1(δ) is a γ-part of H.

Corollary 5 ([13]). If (H, f ) is a commutative n-semihypergroup, then γ = β.

Theorem 23 ([13]). For every nonempty subset M of an n-hypergroup (H, f ), we have:

(1) If H/γ∗ has a neutral element ε and D = ϕ−1(ε), then for every i = 1, . . . , n,

f (Di−1, M, Dn−i) ⊆ ϕ−1(ϕ(M));

(2) Moreover if H/γ∗ is one-cancellative, then f (Di−1, M, Dn) = ϕ−1(ϕ(M));
(3) If M is a γ-part of H, then ϕ−1(ϕ(M)) = M.
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Proof. (1) For any x ∈ f (Di−1, M, Dn−i), there exist d2, . . . , dn ∈ D and b ∈ M such that
x ∈ f (di−1

2 , b, dn
i+1), so ϕ(x) = f /γ∗(εi−1, ϕ(b), εn−i) = ϕ(b); therefore, x ∈ ϕ−1(ϕ(x)) ⊆

ϕ−1(ϕ(M)).
(2) For any x ∈ ϕ−1(ϕ(M)), an element b ∈ M exists such that ϕ(x) = ϕ(b). Let

d ∈ D. Then, there exists a ∈ H such that x ∈ f (a, b, dn−2). Therefore,

ϕ(b) = ϕ(x) = f /γ∗(ϕ(a), ϕ(d)i−2, ϕ(b), ϕ(d)n−i) = f /γ∗(ϕ(a), εi−2, ϕ(b), εn−2).

However, f (εi−1, ϕ(b), εn−i) = ϕ(b), and since (H, f ) is one-cancellative, thus ϕ(a) = ε
and a ∈ ϕ−1(ε) = D. Therefore, x ∈ f (a, b, dn−2) = f (Di−1, M, Dn−i). This and (1) prove
that ϕ−1(ϕ(M)) = f (Di−1, M, Dn−i).

(3) Clearly, we have M ⊆ ϕ−1(ϕ(M)). Furthermore, if x ∈ ϕ−1(ϕ(M)), then there
exists b ∈ M such that ϕ(x) = ϕ(b). This yields that x ∈ γ∗(x) = γ∗(b) ⊆ M and
ϕ−1(ϕ(M)) ⊆ M.

Theorem 24 ([13]). If (H, f ) is an n-hypergroup with neutral (identity) e, such that H/γ∗ is
j-cancellative, then we have:

(1) If x ∈ Pσ(e) and x γ y, then y ∈ Pσ(e);
(2) γ is transitive.

Proof. (1) If x ∈ Pσ(e) and x γ y, then ∃(k, k′) ∈ N×N, m = k(n− 1)+ 1, m′ = k′(n− 1)+ 1,
∃ (x1, . . . , xm) ∈ Hm , ∃ (y1, . . . , ym′) ∈ Hm′ , ∃ σ ∈ Sm and ∃ σ′ ∈ Sm′ , such that e ∈
f(k)(xm

1 ), x ∈ f(k)(xσ(m)
σ(1) ), x ∈ f(k′)(ym′

1 ), y ∈ f(k′)(y
σ′(m′)
σ′(1) ). Therefore, if x′ is an element of

H such that

e ∈ f (en−2, x, x′) ⊆ f (en−2, f (en−2, x, e), x′)
⊆ f (en−2, f (en−2, f(k′)(ym′

1 ), f(k)(xm
1 )), x′).

Moreover, we have

y ∈ f (en−2, y, e) ⊆ f (en−2, y, f (en−2, x, x′))
⊆ f (en−2, f(k′)(y

σ′(m′)
σ′(1) ), f (en−2, f(k)(xσ(m)

σ(1) ), x′)).

Thus, y ∈ Pσ(e).
(2) By (1), we have Pσ(e) = γ∗(e) = D. Moreover, if x γ∗ y, then x ∈ γ∗(y), so

x ∈ ϕ−1(ϕ(y)) = f (Di−1, y, Dn−i). Therefore, there exist (an
2 ) ∈ Dn such that x ∈

f (ai−1
2 , y, an

i+1). Thus, there exist ki ∈ N, and there are (xi1, . . . , ximi ) ∈ Hmi , where mi =

ki(n− 1) + 1, and σi ∈ Smi such that e ∈ f(ki)
(ximi

i1 ) = Ai and ai ∈ f(k)(xiσi(mi)
iσi(1)

) = Aσ(i),
where i = 2, . . . , n. If j ∈ {1, . . . , n}, it follows that

x ∈ f (aj−1
2 , y, an

j+1) ⊆ f (Aσ(j−1)
σ(2) , y, Aσ(n)

σ(j+1)) and y ∈ f (ej−1, y, ej−n)) ⊆ f (Aj−1
2 , y, An

j+1).

Whence x γ y and γ∗ = γ.

5. Join n-Spaces

Let (L,≤,∨) be a join semi-lattice and an
1 be elements of L. We denote

An = a1 ∨ a2 ∨ . . . ∨ an, A(1)
n = a2 ∨ . . . ∨ an,

A(n)
n = a1 ∨ . . . ∨ an−1, A(i)

n = a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ an,

for any 2 ≤ i ≤ n− 1. For any an
1 of L, we define the following n-hyperoperation:

f (an
1 ) = {x | x ∨ A(i)

n = An, for any i ∈ {1, 2, . . . , n}}.
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Notice that An ∈ f (an
1 ). Notice also that the n-hyperoperation f is commutative.

If (L,≤,∨) is a join semi-lattice, then the following statements hold:

(1) For any b, an−1
1 of L, there is x = b ∨ An−1 such that b ∈ f (x, an−1

1 ).
(2) If L has a 0, then 0 is a scalar identity for (L, f ).
(3) If n ≥ 3, then any x ∈ L is an identity for (L, f ).
(4) For any a, x, bn−1

1 of L, we have the equivalence:

a ∈ f (x, bn−1
1 ) iff x ∈ f (a, bn−1

1 ).

(5) For any a, bn−1
1 of L, we have a/bn−1

1 = f (a, bn−1
1 ).

Theorem 25 ([18]). If (L, f ) is an n-semihypergroup, then for any a, c, bn−1
1 , dn−1

1 of L, we have

f (a, bn−1
1 ) ∩ f (c, dn−1

1 ) 6= ∅ =⇒ f (a, dn−1
1 ) ∩ f (c, bn−1

1 ) 6= ∅.

Theorem 26 ([18]). For any a2n−1
1 of L, if we denote

S = {y | A2n−1 = A(i)
2n−1 ∨ y, for any i ∈ {1, 2, . . . , 2n− 1}},

then f (an−1
1 , f (a2n−1

n )) ⊂ S.

Theorem 27 ([18]). If (L,∨,∧) is a modular lattice, then S ⊂ f (an−1
1 , f (a2n−1

n )).

Proof. Let y ∈ S. Set z ∈ (y ∨ An−1)∧(an ∨ . . . ∨ a2n−1). We check z ∈ f (a2n−1
n ) and

y ∈ f (an−1
1 , z). Indeed, for any i ∈ {1, 2, . . . , n− 2}, we have

an ∨ . . . ∨ an+i−1 ∨ z ∨ an+i+1 ∨ . . . ∨ a2n−1 =

=(an ∨ . . . ∨ an+i−1 ∨ an+i−1 ∨ . . . ∨ a2n−1) ∨ [(y ∨ An−1)∧(an ∨ . . . ∨ a2n−1)]=

=(A(n+i)
2n−1 ∨ y)∧(an ∨ . . . ∨ a2n−1)=A2n−1∧(an ∨ . . . ∨ a2n−1)=an ∨ . . . ∨ a2n−1.

Similarly, we have

z ∨ an+1 ∨ . . . ∨ a2n−1 = an ∨ . . . ∨ a2n−2 ∨ z = an ∨ . . . ∨ a2n−1.

Hence, z ∈ f (a2n−1
n ). On the other hand,

An−1 ∨ z = An−1 ∨ [(y ∨ An−1)∧(an ∨ . . . ∨ a2n−1)] =

= (y ∨ An−1)∧A2n−1 = (y ∨ An−1)∧(A2n−2 ∨ y) = y ∨ An−1

and for any i ∈ {1, 2, . . . , n− 1}, we have

A(i)
n ∨ y ∨ z = (A(i)

n−1 ∨ y) ∨ [(y ∨ An−1)∧(an ∨ . . . ∨ a2n−1) =

= (y ∨ An−1)∧(A(i)
n−1 ∨ y ∨ an ∨ . . . ∨ a2n−1) =

= (y ∨ An−1)∧(A(i)
2n−1 ∨ y) =

= (y ∨ An−1)∧(A2n−2 ∨ y) = y ∨ An−1.

Therefore, y ∈ f (an−1
1 , z) ⊂ f (an−1

1 , f (a2n−1
n )).

Corollary 6 ([18]). If (L,∨,∧) is a modular lattice, then (L, f ) is an n-semihypergroup.

Theorem 28 ([18]). If (L,∨,∧) is a lattice and (L, f ) is an n-semihypergroup, then the lattice
(L,∨,∧) is modular.
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Proof. Assume that L is not modular. Hence, L contains a five-element sublattice, iso-
morphic to this one: {m, a, b, c, M}, where m < b < a < M, m < c < M, a, c, and b, c,
respectively, are not comparable. We have c ∈ f (a, b, . . . , b︸ ︷︷ ︸

n−2

, M) and M ∈ f (b, c, . . . , c︸ ︷︷ ︸
n−1

), since

a ∨ c = b ∨ c = M. Hence,

c ∈ f (a, b, . . . , b︸ ︷︷ ︸
n−2

, f (b, c, . . . , c︸ ︷︷ ︸
n−1

)) = f ( f (a, b, . . . , b︸ ︷︷ ︸
n−1

), c, . . . , c︸ ︷︷ ︸
n−1

).

Therefore, there exists x ∈ f (a, b, . . . , b︸ ︷︷ ︸
n−1

), such that c ∈ f (x, c, . . . , c︸ ︷︷ ︸
n−1

). We have a = a ∨ b =

b ∨ x = a ∨ x ∨ b = a ∨ x and c ∨ x = c, whence x ≤ a and x ≤ c, that is x ≤ a∧c = m.
Hence, x < b, which contradicts a = b ∨ x. Therefore, (L,∨,∧) is modular.

Corollary 7 ([18]). A lattice (L,∨,∧) is modular iff (L, f ) is an n-semihypergroup.

Corollary 8 ([18]). The lattice (L,∨,∧) is modular iff the n-hypergroupoid (L, f ) is a join n-space.

Now, we can consider the following dual-n-hyperoperation f ◦ on a meet semilattice
(L,≤,∧), defined by: for any an

1 of L, we have:

f ◦(an
1 ) = {x ∈ L | x∧B(i)

n = Bn, for any i ∈ {1, 2, . . . , n}},

where Bn = a1∧a2∧ . . .∧an, B(1)
n = a2∧ . . .∧an, B(n)

n = a1∧ . . .∧an−1 and for any i ∈
{2, . . . , n− 1}, B(i)

n = a1∧ . . .∧ai−1∧ai+1∧ . . .∧an. By duality, the following result holds:

Theorem 29 ([18]). A lattice (L,∨,∧) is modular iff the n-hypergroupoid (L, f ◦) is a join n-space:

• If L has the greatest element 1, then 1 is a scalar identity for (L, f ◦).
• If n ≥ 3, then any x ∈ L is an identity for (L, f ◦).

Theorem 30 ([18]). Let (L,∨,∧) be a modular lattice:

(1) A subset I of L is an n-subhypergroup of (L, f ) iff I is an ideal of L.
(2) A subset I of L is an n-subhypergroup of (L, f ◦) iff I is a filter of L.

Proof. (1) Let (I, f ) be an n-subhypergroupoid of (L, f ). Then, for any a1, a2 ∈ I, we have

a1 ∨ a2 ∈ f (a1, a2, . . . , a2︸ ︷︷ ︸
n−1

) ⊂ I.

If a ∈ I and x ≤ a, then x ∈ f ( a, . . . , a︸ ︷︷ ︸
n

) ⊂ I. “⇐=” Let an
1 be elements of I. If z ∈ f (an

1 ),

then An = z ∨ A(i)
n , for any i ∈ {1, 2, . . . , n}, whence z ≤ An. Since An ∈ I, it follows that

z ∈ I. On the other hand, for any a, ai−1
1 , an

i+1 of I and 1 ≤ i ≤ n, there is xi = a ∨ A(i)
n such

that a ∈ f (ai−1
1 , xi, an

i+1). Hence, I is an n-subhypergroup of (L, f ).
(2) It follows by duality.

Theorem 31 ([18]). Let (L,∨,∧) be a lattice and ϕ : L → L a bijective map. The following
conditions are equivalent:

(1) For any an
1 of L, we have ϕ(An) = ϕ(a1)∧ . . .∧ϕ(an).

(2) ϕ is a morphism from (L, f ) to (L, f ◦).
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Proof. (1=⇒2): For any an
1 of L, we have ϕ( f (an

1 )) = {ϕ(z) | z ∈ f (an
1 )} = {ϕ(z) | An =

z ∨ A(i)
n , for any i ∈ {1, 2, . . . , n}}, whence ϕ(a1)∧ . . .∧ϕ(an) = ϕ(An) = ϕ(z ∨ A(i)

n ) =
ϕ(z)∧ϕ(a1)∧ . . .∧ϕ(ai−1)∧ϕ(ai+1)∧ . . .∧ϕ(an), that is

ϕ(z) ∈ f ◦(ϕ(a1), . . . , ϕ(an)).

Now, let t ∈ f ◦(ϕ(a1), . . . , ϕ(an)). Since there is x such that t = ϕ(x), it follows that

ϕ(x)∧[ϕ(a1)∧ . . .∧ϕ(ai−1)∧ϕ(ai+1)∧ . . .∧ϕ(an)] = ϕ(a1)∧ . . .∧ϕ(an),

for any i ∈ {1, 2, . . . , n}, and according to (1), we obtain ϕ(x ∨ A(i)
n ) = ϕ(An), for any

i ∈ {1, 2, . . . , n}. Since ϕ is bijective, it follows that x ∨ A(i)
n = An, for any i ∈ {1, 2, . . . , n},

that is x ∈ f (an
1 ). Hence,

t = ϕ(x) ∈ ϕ( f (an
1 )).

(2=⇒1): Let an
1 be elements of L. If z ∈ f (an

1 ), then

ϕ(z) ∈ f ◦(ϕ(a1), . . . , ϕ(an))

that is

ϕ(z)∧ϕ(a1)∧ . . .∧ϕ(ai−1)∧ϕ(ai+1)∧ . . . ∧ϕ(an) = ϕ(a1)∧ . . .∧ϕ(an),

for any i ∈ {1, 2, . . . , n}. Hence,

ϕ(a1)∧ . . .∧ϕ(an) ≤ ϕ(z).

For z = An ∈ f (an
1 ), we obtain ϕ(a1)∧ . . .∧ϕ(an) ≤ ϕ(An). On the other hand, for any

i ∈ {1, 2, . . . , n}, An ∈ f (ai, An, . . . , An︸ ︷︷ ︸
n−1

), so

ϕ(An) ∈ ϕ( f (ai, An, . . . , An︸ ︷︷ ︸
n−1

)) = f ◦(ϕ(ai), ϕ(An), . . . , ϕ(An)︸ ︷︷ ︸
n−1

)

whence ϕ(An) = ϕ(ai)∧ϕ(An), that is ϕ(An) ≤ ϕ(ai). It follows that

ϕ(An) ≤ ϕ(a1)∧ . . .∧ϕ(an).

Therefore, the condition (1) holds.

By duality, we obtain the following.

Theorem 32 ([18]). Let (L,∨,∧) be a lattice and ϕ : L → L a bijective map. The following
conditions are equivalent:

(1) For any an
1 of L, we have

ϕ(Bn) = ϕ(a1) ∨ . . . ∨ ϕ(an).

(2) ϕ is a morphism from (L, f ◦) to (L, f ).

Let (L,∨,∧) be an arbitrary lattice. We define on L the following n-hyperoperation:
for any an

1 of L, we have

g(an
1 ) = {x ∈ L | Bn ≤ x ≤ An}, where

Bn = a1∧a2∧ . . .∧an and An = a1 ∨ a2 ∨ . . . ∨ an.

The n-hypergroupoid (L, g) has the following properties:

(1) g is commutative;
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(2) For any a ∈ L, we have g( a, . . . , a︸ ︷︷ ︸
n

) = a;

(3) for any an
1 of L, we have {an

i } ⊂ g(an
i );

(4) For any an−1
1 of L, we have b ∈ b/an−1

1 ;
(5) For any a ∈ L, we have a/{ a, . . . , a︸ ︷︷ ︸

n−1

} = L;

(6) For any a, b ∈ L, we have x ∈ a/{ b, . . . , b︸ ︷︷ ︸
n−1

} ∩ b/{a, . . . , a︸ ︷︷ ︸
n−1

} iff a∧x = b∧x and a ∨ x =

b ∨ x.

Theorem 33 ([18]). If the lattice (L,∨,∧) is distributive, then for any a2n−1
1 of L, we have

g(g(an
1 ), a2n−1

n+1 ) = [B2n−1, A2n−1].

Proof. Indeed, for any a2n−1
1 of L, we have

g(g(an
1 ), a2n−1

n+1 ) ⊂ [B2n−1, A2n−1].

Conversely, let z ∈ [B2n−1, A2n−1]. If x = (z∧An)∨ Bn, then Bn ≤ x ≤ An, that is x ∈ g(an
1 ).

On the other hand,
z ∈ g(x, a2n−1

n+1 ).

Indeed, by distributivity, we have

an+1∧ . . .∧a2n−1∧x = an+1∧ . . .∧a2n−1∧[(z∧An) ∨ Bn] =

= (z∧An∧an+1∧ . . .∧a2n−1) ∨ B2n−1 ≤ z

and
an+1 ∨ . . . ∨ a2n−1 ∨ x = an+1 ∨ . . . ∨ a2n−1 ∨ (z∧An) ∨ Bn =

= (an+1 ∨ . . . ∨ a2n−1 ∨ Bn ∨ z)∧(an+1 ∨ . . . ∨ a2n−1 ∨ Bn ∨ An) =

= A2n−1∧(an+1 ∨ . . . ∨ a2n−1 ∨ Bn ∨ z) ≥ z.

Hence z ∈ g(x, a2n−1
n+1 ), whence z ∈ g(g(an

1 ), a2n−1
n+1 ). We obtain

g(g(an
1 ), a2n−1

n+1 ) = [B2n−1, A2n−1].

Corollary 9 ([18]). If (L,∨,∧) is a distributive lattice, then (L, g) is an n-hypergroup.

Proof. Since the subset [B2n−1, A2n−1] is invariant to any permutation (ai1 , . . . , ai2n−1) of
(a1, . . . , a2n−1), it follows that

[B2n−1, A2n−1] = g(g(ai1 , . . . , ain), ain+1 , . . . , ai2n−1).

Moreover, g is commutative, so it follows that g is associative. Therefore, we obtain that
(L, g) is an n-hypergroup.

Theorem 34 ([18]). If (L,∨,∧) is a distributive lattice, then (L, g) is a join n-space.

Proof. We still have to check the join n-space condition. Let x ∈ a/bn−1
1 ∩ c/dn−1

1 , that is

x∧b1∧ . . .∧bn−1 ≤ a ≤ x ∨ b1 ∨ . . . ∨ bn−1 and

x∧d1∧ . . .∧dn−1 ≤ c ≤ x ∨ d1 ∨ . . . ∨ dn−1.
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We have to prove that there is z ∈ g(a, dn−1
1 ) ∩ g(c, bn−1

1 ), that is

(a∧d1∧ . . .∧dn−1) ∨ (c∧b1∧ . . .∧bn−1) ≤ z ≤
≤ (a ∨ d1 ∨ . . . ∨ dn−1)∧(c ∨ b1 ∨ . . . ∨ bn−1).

We have a∧d1∧ . . .∧dn−1 ≤ (x ∨ b1 ∨ . . . ∨ bn−1)∧(d1∧ . . .∧dn−1) = (x∧d1∧ . . .∧dn−1) ∨
[(b1 ∨ . . .∨ bn−1)∧d1∧ . . .∧dn−1] ≤ c∨ b1 ∨ . . .∨ bn−1. Hence, (a∧d1∧ . . .∧dn−1)∨ (c∧b1∧
. . .∧bn−1) ≤ c∨ b1∨ . . .∨ bn−1. Similarly, we have (a∧d1∧ . . .∧dn−1)∨ (c∧b1∧ . . .∧bn−1) ≤
a ∨ d1 ∨ . . . ∨ dn−1. Therefore,

(a∧d1∧ . . .∧dn−1) ∨ (c∧b1∧ . . .∧bn−1) ≤ (a ∨ d1 ∨ . . . ∨ dn−1)∧(c ∨ b1 ∨ . . . ∨ bn−1),

that is
g(a, dn−1

1 ) ∩ g(c, bn−1
1 ) 6= ∅.

Theorem 35 ([18]). If (L,∨,∧) is a join n-space, then the lattice (L,∨,∧) is distributive.

Proof. Suppose that L is not distributive. Then, L contains a five-element sublattice
{m, a, b, c, M}, where a ∨ c = b ∨ c = M, a∧c = b∧c = m, and either a > b or a, b, c
are mutually non-comparable. We have c ∈ a/{ b, . . . , b︸ ︷︷ ︸

n−1

} ∩ b/{ a, . . . , a︸ ︷︷ ︸
n−1

}, and since (L, g)

is a join n-space, we obtain

g( a, . . . a︸ ︷︷ ︸
n

) ∩ g( b, . . . , b︸ ︷︷ ︸
n

) 6= ∅,

that is a = b, which is a contradiction.
Therefore, (L,∨,∧) is distributive.

Corollary 10 ([18]). The n-hypergroupoid (L, g) is a join n-space iff the lattice (L,∨,∧) is distributive.

Theorem 36 ([18]). Let (L,∨,∧) be a distributive lattice. If I is an ideal and F is a filter of L, then
(I, g) and (F, g) are n-subhypergroups of (L, g).

Proof. Let I be an ideal of L. For any an
1 of I, we have g(an

1 ) = {z | Bn ≤ z ≤ An}. Since
An = a1 ∨ . . . ∨ an ∈ I and z ≤ An, it follows z ∈ I. Hence, g(an

1 ) ⊂ I. On the other hand,
we have a ∈ g(a, an−1

1 ) for any a, an−1
1 of I. Therefore, (I, g) is an n-subhypergroup of (L, g).

Similarly, it follows that (F, g) is an n-subhypergroup of (L, g).

The converse fails, as can be seen from the following example:

Example 6. Let us consider the distributive lattice (P(M),∪,∩), where M is a set with at least
three elements. Let a, b ∈ M, a 6= b and S = {M − {a}, M − {a, b}}. Then, (S, g) is an
n-subhypergroup of (P(M), g), but S is neither an ideal, nor a filter of P(M), since ∅ /∈ S and
M /∈ S, respectively.
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