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Abstract: This paper presents a series of important results from the theory of n-hypergroups. Connec-
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relation and to the commutative fundamental relation. In particular, join n-spaces are analyzed.
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1. Introduction

The theory of n-ary hypergroups, also called n-hypergroups, contains two generaliza-
tions of the notion of a group: n-groups and hypergroups, which are briefly presented in
the next paragraph. The two concepts were introduced around the same time.

n-groups, also called polyadic groups, were introduced in 1928 by W. Dérnte [1], and
they are a generalization of classical groups. An important role in n-group theory is the
paper written by E.L. Post of 143 pages [2]. Such operations are used then in the study of
(m, n)-rings. Among those who made recently important contributions in the theory of
n-groups, we mention W. Dudek and his collaborators; see for instance [3-5]. Letn > 2, and

denote the chain x;, ..., x; by x? (for j < i, the above sequence is the empty symbol). For a
nonempty set G with one n-operation, f : G" — G is a n-groupoid, which is a n-quasigroup, if,
for all af,b € G, there is exactly one x; € G such that f(aifl, xj,at,,) = b. An n-quasigroup
with an associative operation is called an n-ary group.

Hypergroup theory is a field of algebra that appeared in 1934 and was introduced by
the French mathematician Marty [6]. The theory has known various periods of flourishing:
the 1940s, then 1970s, and especially after the 1990s, the theory has been studied on
all continents, both theoretically and for a multitude of applications in various fields of
knowledge: various chapters of mathematics, computer science, biology, physics, chemistry,
and sociology. Several books have been written in this field, which highlight both the
theoretical aspects and the applications; for instance, see [7]. Figure 1 suggestively shows
the connections between the previously mentioned domains.

This survey is structured as follows: First, basic notions in the field of algebraic
hyperstructures are recalled, followed by results, in particular characterizations in the
field of n-hypergroups. Special attention is given to the connections with binary rela-
tions and fundamental relations. Finally, join n-spaces with connections to lattice theory
are presented.
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n-Hypergroups

Hypergroups

Figure 1. The connections between groups, n-groups, hypergroups, and n-hypergroups.

2. Hypergroups

An algebraic hyperstructure is a nonempty set H together with one or some functions
from H x H to the set P*(H) of nonempty subsets of H. For all (x,y) € H?, one denotes by
x oy the image f(x,y), where f is the function f : H x H — P*(H). Then, (H, o) is called
a hypergroupoid.

IfS,T € P*(H), S o T denotes the set Uscg e 50 t.

Definition 1. The pair (H, o) is called a semihypergroup if
Y(r,s,t) € H?3, (ros)ot=ro(sot),

where (7 0 s) o t denotes the union

U aot.

acros

Analogously, o= U
ro(sot) = rob.

besot
Definition 2. A hypergroup (H, o) is a semihypergroup such that
Y(a,b) € H?, 3(x,y) € H? such that
acboxandacyob

Several types of hypergroup homomorphisms are analyzed. We refer to [8]. Fur-
thermore, several classes of subhypergroups are introduced and studied, such as canon-
ical hypergroups, join spaces, and complete hypergroups. Join Spaces were introduced
by Prenowitz.

Definition 3. Let (H, o) be a commutative hypergroup. Then, (H, o) is a join space if the
following implication is satisfied:

Y(r,s,t,w) € H*,

r/sNt/w#Q=rowNsot#Q,

where 7 /s denotes the set
{a€H|reaos}.
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Example 1. Suppose that (L,V, \) is a lattice. Then, L is a distributive lattice if and only if (L, *)
is a join space, whereaxb = {x € LjaAb < x < aV b}.

Example 2. Suppose that (L, V, \) is a lattice. Then, L is a modular lattice if and only if (L, o) is
a join space, whereaob = {x € LlaVb=bV x =aV x}.Clearly,aV b € aob.

Canonical hypergroups have a structure close to that of a commutative group: they are
commutative, have a scalar identity e (thatis, Vx € H,x oe = e o x = x), every element has
a unique inverse, and they are reversible (thatis, if x € yoz, thenz € ylox, y € xoz™1).

An important result is the next one:

Theorem 1. Let (H, o) be a commutative hypergroup. Then, it is a canonical hypergroup iff it is a
join space with a scalar identity.

One of the most-investigated hypergroups associated with binary relations is that
introduced by Rosenberg [9] in 1998. It represents a theme of research of numerous
papers. Rosenberg associated a partial hypergroupoid H, = (H, o) with a binary relation
p defined on a set H, where, for any x,y € H, we have xox = {z € H|(x,z) € p} and
xoy=xoxUyouy.

Definition 4. An element b in H is an outer element of p if there exists a € H such that (a,b) & p?.

Theorem 2. (H, o) is a hypergroup iff:
(1) p has full domain;
(2) p has full range;

® o<
(4) If (a,b) € p? then (a,b) € p, where b is an outer element of p.

Special attention is paid to the fundamental § relation, which leads to a group quo-
tient structure.

Definition 5. Suppose that (H, o) is a semihypergroup and n is a natural number greater than 1.
We can consider the relation B, on H as follows: x B,y if there exist a1, az,. .., a, in H, such that

{x,y} C ﬁ a;, and assume that B = |J Bn, where By = {(r,7)|r € H}.
i=1 n>1

In [10], Freni showed that, in every hypergroup, the relation f is transitive, so the
following result holds:

Theorem 3. If (H, o) is a hypergroup, then (H/ B, -) is a group, where X - j = Z, where z is an
arbitrary element of x o y. Moreover, the canonical projection ¢ : H — H /B is a good homomorphism.

3. n-Hypergroups

Davvaz and Vougiouklis [11] defined the notion of n-hypergroups for the first time.
This concept is a generalization of n-groups, as well as hypergroups in the sense of Marty.
Some properties of such hyperstructures were investigated in [12-18]. Moreover, some
researchers have pointed out the relation between n-hypergroup and fuzzy sets.

Suppose that H is a nonempty set. A function f : H x ... x H — P*(H) is called an

N——

n-hyperoperation. As usual, we may write H" = H x ... ;t}*r.?,ei/vhere H appears n times.
An element of H" is denoted by (x1,...,x,), where x; € H for any i with 1 <i < n. Let
Py, ..., P, be nonempty subsets of H. We define

f(Pl,...,Pn) = U{f(PlrrPn) ‘ pi € P,i= 1,...,1’1}
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The pair (H, f) is called an n-hypergroupoid. An n-hypergroupoid (H, f) is called an n-
semihypergroup iff

i i _ i—1 i—1 -
FOETY FRE0, 12050 = O (), e,

forall1 < i,j < mand hy,hy, ..., hy,—1 € H. An n-semihypergroup (H, f) in which
the equation: ,
be f(i x, 1) M

has the solution x; € H for every hy,...,hj_1,hi11,...,hy, b € Hyand 1 < i < nis called an
n-hypergroup. If the value of f(hy,...,h,) is independent of the permutation of elements
hy,..., hy, then we have a commutative n-hypergroup.

Example 3. If (H, ) is a hypergroup, then obtain an n-hypergroup by defining f(hy, ..., hy) =
hyx...xhy, forallhy,... hy € H.

Example 4. Let Z be the set of integer numbers. If we define
f(hy, ..., hy) = {mihy + ...+ muhy | mq,...,my, € Z},
then (Z, f) is an n-hypergroup.

Example 5. Assume (L,\/, \) is a modular lattice. For every hy, ..., hy, € Landi € {1,...,n},
we define

AD =V N VR VLV By,

Ap=hi V...V
If we define:
f(hy,...,hy) ={x € L| x\/AEZ) = Ay, foralll <i<n},

then (L, f) is a commutative n-hypergroup.

Theorem 4. Suppose that (H, f) is an n-semihypergroup. Then, (H, f) is an n-hypergroup iff
Equation (1) is solvable at the first place and at the last place or at least one place 1 < i < n.

Proof. If Equation (1) is solvable at the place i = 1 and i = n, then, for every hy,..., h,, b €
H, there are x(,zg € H such that

b € f(xg,h5y)and xg € f(h;’*l,zo).

If j € {1,...,n} is arbitrary, then we have
- i—1 , j
be FFORT,z0),5) = F(HL, £, 20, ), ).

Hence, there is x € f(h;?_l,zo,hé) such thatb € f(h]i_l, X, h]V.‘H).
Now, assume that Equation (1) is solvable at place 1 < i < n. Assume that j < 7, then
foreveryay,...,a,,b € H, thereis y; € H such that

be f(hy f(h . by B, ).
n—(i—j+1)

This implies that
i—1 i
be f(H f(B; 1,%,&;,_;@),117“).
n—(i—j+1)
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Hence, there is x € f(h;*l,yl,hl, ...h1) such thatb € f(h]fl,x, h;7+1). If we consider i < j,
then in a similar, way we can prove that Equation (1) is solvable. [

An n-hyperoperation f is called weakly (i, j)-associative if
i i - i—1 +j-1 _
O FH, 2 A T, 20 £ 0,
and (i, j)-associative if
i i - i—1 +j-1 -
FOLFFN, ) = fOq L f () a0,

holds for fixed 1 <i < j<mandall x1,xp,...,x2,-1 € H.
We say that the element a € H is in the center of an n-hypergroupoid (G, f), if

fla,x3) = f(x2,0,25) = f(x3,0,2]) = ... = f(x},a),

forall x,,...,x, € H. An (i,i 4+ k)-associative n-hypergroupoid (G, f) containing cancelable
elements in the center (cancelable elements belong to the center) is (1, 1n)-associative [12].

Theorem 5 ([12]). An n-hypergroupoid containing cancellative elements in the center is an n-
semihypergroup iff it is (i, j)-associative for some 1 < i < j < n.

An n-hypergroupoid (H, f) is called a b-derived from a binary hypergroupoid (G, ) [12],
and denote this fact by (H, f) = der,(H, %) if the hyperoperation f has the form

fx]) = (1 xx2% ... %x,) % b.

Theorem 6 ([12]). An n-semihypergroup has a neutral element iff it is derived from a binary
semihypergroup with the identity.

Theorem 7 ([12]). An n-semihypergroup derived from a binary semihypergroup has a neutral
polyad iff it has a neutral element.

Consequently, if an n-semihypergroup without neutral elements is derived from a
binary semihypergroup, then it does not possess any neutral polyad.

Theorem 8 ([12]). If an n-semihypergroup (H, f) does not contain any neutral elements, then to
(H, f), we can adjoint the neutral element if and only if (H, f) is derived from a binary semihypergroup.

Theorem 9 ([12]). To an n-semihypergroup (H, f) we can adjoint the neutral element iff (H, f) is
derived from a binary semihypergroup.

Theorem 10 ([12]). For any n-semihypergroup (H, f) with a right neutral polyad, there is a
semihypergroup (H, ) with a right identity and an endomorphism ¢ of (H, %) such that

f(x]) = x1 % p(x2) *goZ(xg) * ... *@"*1(xn) *b,
forsomeb € H.

Theorem 11 ([12]). For any n-semihypergroup (H, f) with a left neutral polyad, there is a semi-
hypergroup (H, *) with a left identity and an endomorphism ¢ of (H, ) such that

f(x}) =bx q)”_l (x1) % w”_z(xz) S gbz(xn,z) *P(Xp—1) * Xy

for some b € H.
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4. Binary Relations and Fundamental Relations

Suppose that R is a binary relation on a nonempty set H. We define a partial n-
hypergroupoid (H, fr), as follows:

fr(w,...,w)={y| (wy) €R},

n

for all win H and

fr(wy,wy, ..., wy) :fR(wl,...,wl)UfR(wz,...,wg)U...UfR(wn,...,wn),

n n n

for every wq,wy,...,w, € H. Itis clear that (H, fr) is commutative. The partial n-
hypergroupoid (H, fr) is a generalization of the Rosenberg partial hypergroupoid. We
denote fr(wq,wy, ..., wy) by fr(w}). The relation R is transitive iff, for any w in H, we have

frR(fr(w,...,w),w,...,w) :fR(w,...,zg).
n n—1 n

Moreover, (H, fr) is an n-hypergroupoid if the domain of R is H.

Theorem 12 ([17]). Suppose that R is a binary relation on H, with full domain. Then, (H, fr)
is an n-semihypergroup iff R C R? and for each outer element y of R, if (x,y) € R? implies
(x,y) € R.

It follows that:

Corollary 1. Suppose that R is a binary relation with full domain. Then, (H, fr) is an n-
hypergroup iff the following hold:

(1) R has a full range;

(2) R cCR?%

() (x,y) € R*implies (x,y) € R for every outer element y € R.

Note that if R is a subset of R?, then x is an outer element of R iff x ¢ fr(fr(w, ..., w),
—_————

n

w,...,w) for some w € H.
——
n—1

If R is a subset of R, then there are no outer elements of R iff, for each w € H, we have

fr(fr(w,...,w),w,..., w) =H.

n n—1

Theorem 13 ([17]). Suppose that the relation R is reflexive and symmetric. Then, (H, fr) is an
n-hypergroup iff, for every u,w € H, we have

fR(fR(E’_lei)’E’_lei) — frR(u,...,u) C frR(fr(w, ..., w),w,...,w).

n n—1 n n n—1

Corollary 2. Suppose that the relation R is reflexive and symmetric, but not transitive. Then,
(H, fr) is an n-hypergroup iff R> = H>.

The concept of mutually associative hypergroupoids was introduced by Corsini [19].
We generalize this concept to n-hypergroupoids. Two partial n-hypergroupoids (H, f1) and
(H, f2) are mutually associative if, for every wy, ..., wp,—1 € H, we have:

() flfi(w]) wiyh) = filw]™, fo(wi));
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(i2) fa(wy, AA(whth), w5l = fi(w] 2, fo(w? )w2n71)/'

(i3) fa(wy, wo, fi(wh*2), w5l = fl( 3fz( "5%), Wan—2, Wan—1);

(i 1)fz( =2, fl(wP32), wan1) = fi(wy, fo(wih), w?5h);
(in) fo(w] 1fl( 21 1)):f1(f2(w1), rzznﬂl)-

Let f1 and f, be two ordinary hyperoperations. Then, we obtain two mutually associa-
tive partial hypergroupoids. If R is a binary relation on H and A C H, we denote

R(A)={b] (a,b) € R, forsomea € A}.

If A = {wy,wy, ..., w}, we write R(w!) for R(A). If R and S are binary relations on H,
then we denote by SR the relation {(a,c) € H? | (a,b) € Rand (b,c) € S, for some b € H}.

Theorem 14 ([17]). Let R and S be two relations on H with full domains. Then, (H, fr) and
(H, fs) are mutually associative iff, for every wy, wy, ..., wy,—1 € H, we have

SR(wi) US(wy" ") = RS(wy" ') UR(w{ ™).

Theorem 15 ([17]). If (H, fr) and (H, fs) are mutually associative n-hypergroups, then (H, frus)
is also an n-hypergroup.

Theorem 16. Let R and S be relations on H, such that R C SR. If (H, fr) is an n-hypergroup,
(H, fr) and (H, fs) are mutually associative and one of the following two conditions holds:

1) RSN{(w,w)|weH}=0Q;
(2) The domain (RS) of RS is different from H.

Then, (H, fsg) is an n-hypergroup, as well.
Now, suppose that (H, f) is an n-semihypergroup. We denote

fay={f(@]) |w; € H, 1 <i<n}},

foy ={f(f(u}),ws) |u; € H, wje H, 1<i<n,
V2 <j<n},

fy = (f(f(o]),uy),wy) | vi € H, uj € H, wj € H,
Vi<i<n, V2<j<n},

and so on. Denote i = | | f(x)- We define p = |J Bx, where, for all x, y of H,
keN* k>1

apry < Ju € f), such that {x,y} C u.

Denote | J u by C;(a), which means

acu
ueld

C1(w) = {a | thereexists u € U such thatw € u, a € u}.
For every n € IN*, denote
Cni1(w) = {a| there exists u € U such that C,(w) Nu # D, a € u}.
A subsets B is a complete part of (H, f) if, for every u € U,

BNu=®— u CB.
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Suppose that C(w) is the complete closure of w. We have C(w) = | J Ci(w), for all
icIN*
w € H.

Theorem 17 ([17]). Suppose that (H, f) is an n-semihypergroup. The relation B is transitive iff
C(w) = Cq(w), forallw € H.

Theorem 18 ([17]). If (H, f) is an n-hypergroup, then B is transitive.

Suppose that (Hj, f) and (Hy, ) are n-hypergroups. We define (f,g) : (Hy x Hy)" —

P*(Hy x Hy) by (f,8)((u1,v1),..., (un,vn)) = {(u,0) | u € f(uy,...,un),v € g(vy,...,
vn)}. Clearly, (Hy X Hp, (f,g)) is an n-hypergroup, and it is the direct hyperproduct of Hy
and H.

Theorem 19 ([11]). Let (Hy, f) and (Hp, g) be two n-hypergroups, and let By, B3, and B* be
fundamental equivalence relations on Hy, Hy, and Hy x Hp, respectively. Then,

(Hy x Hy)/B* = Hi/By x Hz/p.
Let (H, f) be an n-semihypergroup and p be an equivalence relation on H; we define
XpY < xpy forallx € X,y € Y.

The relation p is a strongly regular relation if x;py; for all 1 < i < n, then,

Flxr, o x)of (Y1, - Yn)-

If p is a strongly regular relation on an n-semihypergroup (H, f), then the quotient
(H/p, f/p) is an n-semigroup such that

f/p(p(x1),...,p(xn)) = p(z) forallz € f(x1,...,x4)

where x1,...,x, € H.

Similar to the relation defined by Freni [20,21] on semihypergroups, Davvaz et al. [13]
introduced the following relation on an n-semihypergroup so that the quotient is a com-
mutative n-semigroup. Let (H, f) be an n-semihypergroup. Then, 4 denotes the transitive
closure of the relation ¢ = U Yk, where 71 = {(w,w)| w € H}, and for every integer

k>1
k > 1, we define -
XYY = X € Uy and y € ufy,.

When m = k(n —1) + 1, there are a' € H" and ¢ € S;, such that u;) = f((af') and
Uy = fu (agg;)). x71y (ie, x = y), then we write x € u() and y € ufy = ug). We

define v* as the smallest equivalence relation such that the quotient (H/v*, f/7*) is a
commutative n-semigroup.

Theorem 20 ([13]). The fundamental relation «* is the transitive closure of the relation .

Proof. The n-operation f/% in H/% is defined in the usual manner:

fIvy(a),. ., 7)) ={7Wly € fF((x1),-.., 7(xn)) }

forall xq,...,x, € H. Leta; € 4(x1),...,a, € ¥(xy). Then, we have:
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ay7yxy iff there exist xq1, ... X1y, +1 With x11 = a1, X1,,,41 = x1 such that

X1j; € Uy (1< ip <my—1),
g .
X 4+1 € “(111) (2 <ip <my).

an7y Xy iff there exist x,1, . .. Xy, +1 With X1 = au, Xpm,+1 = X, such that

Xniy € U(k,) 1<iy<my—1),

Xpi 41 € ”‘(71:,1) (2 <iy < my).

Therefore, we obtain

f(xai, %1, x01) C ) 1<ip <my—1,
[ .
f(x111+1,x21, e Xm) C ”(111) 2<ip <m,
F Xty +1, %20y -+, Xm1) C Uy 1<i <mp—1,
o .
f(xlm1+l//x212+1r---/xnl) c ”(liz) 2 <ip <my,
f(x1m1+1/x2m2+lr oo Xy, ) © Uk o 1<ip<my—1,

F(Xtmy+1, X2my 415 - - - s Xniy41) S U ( ) 2 <iy < my.

This yields that f/9(¥(x1),...,7(xn)) is singleton. Therefore, we can write
fIyr(x), ., 7)) = 7(2) forallz € f(¥(x1),..., 7(xn)).

Moreover, since f is associative, we obtain that f /7 is associative, and consequently, H/%
is an n-semigroup.
(H/7%,f/7) is commutative because, if o € Sy and a € f(x]) and b € f(xgg))) then

ayb, and so, r/f(a) = r/);(b) Therefore, f/’?(;f(xl)/ s /r/f(xﬂ)) f/’)/( ( Xo(1) ) /r/);(xa( )))/
thus (H/%, f/7) is commutative.

Now, assume that 0 is an equivalence relation on H such that H/0 is a commutative
n-semigroup. Then, for all wy,..., w, € H,

FI0(8(wr),...,0(ws)) = 0(z) forallz € F(B(w1),...,0(wn)).

However, forany o € S, and wy,...,w, € Hand X; C 6(w;) (i =1,...,n), we have

fr0(0(w1), ..., 0(wn)) = 0(f(Wo(1), - -, Wo(n))) = O(f (Xo(1)r-- s Xo(n)))-

Therefore,
O(w) = 6(u U )) forallk > 0 and for all w € u .

This gives that, forally € H,

w € y(y) implies w € 6(y).
Since 6 is transitively closed, it follows that

w € ¥(y) implies w € 6(y).
Consequently, we obtain 4 = y*. 0O

Relation 7 is a strongly regular relation.

Now, we present some necessary and sufficient conditions such that the relation v is
transitive. These conditions are analogous to those determined in [20] for the transitivity of
relation 7y in hypergroups. Let M be a nonempty subset of n-semihypergroup (H, f). We say



Mathematics 2023, 11, 551

10 of 17

that Misa y-part if, foranyk € N, i =1,2,... . m =k(n — 1) + 1, V(wy, wo, ..., wy) € H™,
Yo € S,;, we have

fuo (@) "M # D = fu(w (1))) M.

Theorem 21. Suppose that M is a nonempty subset of an n-semihypergroup H. Then, the following
statements are equivalent:

(1) Misa y-part of H;
(2) x € M,xyyimplies thaty € M;
(B) x € M, x*yimplies that y € M.

Proof. (1 = 2) : If (x,y) € H? is a pair such that x € M and x  y, then Jk € N for
i=1,...,m= k(n —1)+1, 3o € Spyand 3(z1,...,2m) € H”‘,suchthatx € fio (2" NM

andyef ( )) Since M is a 7y-part of H, we have f ( ))CMandyeM

2= 3) Assume that (x,y) € H? such that x € M and x 7* y. Then, there exist p € N
and (x = wo, W1, - .., Wp—1,Wp = y) € HP*1 such that x = wy 7y wy YooY Wp—1 Y Wp =Y.
Since x € M, applying (2) p times, it follows that y € M.

3= 1) Suppose that f() (z]') 1M # @, and x € f(;)(z{') N M. For any ¢ € Sy, and

Y€ fi ( ) we have x v y. This yields that x € M and x ¢* y. Finally, by (3), we obtain

y € M. Thls means that f (z ‘T(WS)) CM O

For every element x of an n-semihypergroup (H, f), set:
Ti(w) = {(w1, ..., wm) € H"m=k(n —1) + L, w € fy(x]")}
U{fk) )|U€Sm,(w1, o, W) € Te(w),m=k(n—1)+1}

w) = |J Pe(w)

k>1

From the preceding notations and definitions, it follows that
Corollary 3 ([13]). Forevery x € H, Py(x) = {y € H|x y y}.

Theorem 22 ([13]). Let (H, f) be an n-semihypergroup. The following statements are equivalent:
(1) vy is transitive;

(2) Foranyw € H,y*(w) = Py(w);

(3) Foranyw € H, Py(w) is a y-part of H.

Let (H, f) be an n-hypergroup; we consider the canonical projection ¢ : H — H/*
with ¢(x) = 7v*(x).

Corollary 4 ([13]). Let (H, f) be an n-hypergroup and 6 € H/~*, then ¢~ (3) is a y-part of H.
Corollary 5 ([13]). If (H, f) is a commutative n-semihypergroup, then y = B.

Theorem 23 ([13]). For every nonempty subset M of an n-hypergroup (H, f), we have:
(1) If H/v* has a neutral element ¢ and D = ¢~ (&), then for everyi=1,...,n,

F(D™™, M, D") C ¢~ (p(M));

(2) Moreover if H/~* is one-cancellative, then f(D'~1, M, D") = ¢~ (p(M));
(3) If Misa y-part of H, then ¢~ ' (p(M)) = M.
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Proof. (1) For any x € f(Di’l,M, D""i), there exist dy,...,d, € Dand b € M such that
x € f(d b, dl 1), 50 ¢(x) = f/9* (g1, (b),e" ) = @(b); therefore, x € ¢~ (¢(x)) C

¢~ (@(M)).
(2) For any x € ¢~ !(¢(M)), an element b € M exists such that ¢(x) = ¢(b). Let
d € D. Then, there exists a € H such that x € f(a,b, d”fz). Therefore,

p(b) = p(x) = f/7"(@(a), p(d) 2, @(b), p(d)" ") = f/7"(@(a),e 2 p(b),e"2).

However, f(¢/=1, (b), ") = @(b), and since (H, f) is one-cancellative, thus ¢(a) = ¢
and a € ¢~ 1(¢) = D. Therefore, x € f(a,b,d"~2) = f(D'"!,M, D"~"). This and (1) prove
that 9~ ((M)) = F(D'1, M, D).

(3) Clearly, we have M C ¢~ !(¢(M)). Furthermore, if x € ¢~ (p(M)), then there
exists b € M such that ¢(x) = ¢@(b). This yields that x € v*(x) = 7*(b) € M and
¢ (p(M)) S M. O

Theorem 24 ([13]). If (H, f) is an n-hypergroup with neutral (identity) e, such that H/yx is
j-cancellative, then we have:

(1) Ifx € Py(e) and x vy, then y € Py(e);

(2) v is transitive.

Proof. (1)Ifx € Py(e) andx’yy,thenﬂ(k,k’) ENxNm=k(n—-1)+1,m' =k(n—1)+1,
I (x1,...,xm) € H’” 3 (y1, .. ,yml) € H",30 € Syand 3¢ € S,, such that e €
fuy (), x € fi ( ) x € fuoy (T Nye f(k/)(yg:%/)).Therefore, if x’ is an element of
Hsuch that

ec f(e"‘z,x,x’) C f(e”‘z,f(e”‘z,x,e),x’)
C F(e"2 £("2, funy (Vi) i (611), ).
Moreover, we have
yefle"ye) Cf(e 2y fle? ,x’))
C F€"2, fuoy (W) F (€2, fy (<000), 1)),

Thus, y € Py(e).

(2) By (1), we have Py(e) = 7*(e) = D. Moreover, if x " y, then x € v*(y), so
x € ¢ Yo(y)) = f(D'71,y,D"'). Therefore, there exist (ag) € D" such that x €
f(aéﬁl,y, a} ;). Thus, there exist k; € N, and there are (Xj1,...,Xjy,) € H™, where m; =

ki(n—1) +1,and 0; € Sy, such that e € fi;)(x;7") = A; and a; € fj(x zg’(;’;)) = As(iy
wherei=2,...,n.1fj € {1,...,n}, it follows that

1 1
xe fla) Ly aly) © f(Ag Yy AT Y andy € fle Ty, e ) € f(aL Ty, AL,
Whence x yyand y* =v. O

5. Join n-Spaces
Let (L, <, V) be a join semi-lattice and af be elements of L. We denote

Ay, =mVayV...Vay, A,(ql):az\/...\/an,

A,(f) =mV...Va,_q, Ag) =mV...Va_1Va1V...Vay,

forany 2 <i < n — 1. For any a? of L, we define the following n-hyperoperation:

fa) = {x|xV A = Ay, foranyie {1,2,...,n}}.
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Notice that A, € f(a}). Notice also that the n-hyperoperation f is commutative.
If (L, <, V) is a join semi-lattice, then the following statements hold:

(1) Foranyb, aﬁ“l of L, thereisx = bV A,_q such thatb € f(x,a}" b,
(2) If Lhasa0, then 0is a scalar identity for (L, f).

(3) Ifn > 3,thenany x € Lis an identity for (L, f).

(4) Foranya,x, b{‘_l of L, we have the equivalence:

a e f(x, bl 1) iffx € f(a,bi71).
(5) Foranya,b! ' of L, wehavea/b! ! = f(a,b] ).
Theorem 25 ([18]). If (L, f) is an n-semihypergroup, then for any a,c, b?il, d?*l of L, we have
@570 fle,di™) # @ — fla, i) N flc, b)) # @,
Theorem 26 ([18]). For any a2” Lof L, if we denote
S=1{y| Apr =AY vy, foranyie {1,2,...,2n—1}},
then f(a~1, f(a2"~1)) C S.
Theorem 27 ([18]). If (L, V, A) is a modular lattice, then S C f(a?~", f(a2"~1)).

Proof. Lety € S. Setz € (yV A, 1)A(an V... Vay, 1). We check z € f(a?"!) and
y € f(al™!,z). Indeed, forany i € {1,2,...,n — 2}, we have

tln\/...\/ﬂn+1;1 \/Z\/Iln+i+1 V...Vay,_1=

=@ V... Va1 Vagia V... Vay 1) V[y VA )@ V... Vay )=

(AgllJrll) \/y) ( V...V a2n_1):A2n_1/\(an V...V aZn_l):an V... Vday_1q.

Similarly, we have
zVay 1 V...Vay,_1=a,V...Vay_2Vz=a,V...Vday_1.
Hence, z € f(a2"~1). On the other hand,

Ap1Vz=A, 1 VI[(yVA,_1)ANayV...Vay 1) =
=y VA 1)ANA2 1= (yV A 1)A (A2 VYy) =y V Ay

and foranyi € {1,2,...,n — 1}, we have
AV vyvz= (A(i) 1 VY VIV Ap )N (@n V..V azy_1) =
=(yVA,_1)A A L VyVay V... Vay, 1) =

(
= (yV Ay )NAY) vy) =
=y VA D)NAm2Vy)=yV A1

Therefore, y € f(af1,z) C f(a]™!, f(a2"1)). O
Corollary 6 ([18]). If (L, V, A) is a modular lattice, then (L, f) is an n-semihypergroup.

Theorem 28 ([18]). If (L,V, A) is a lattice and (L, f) is an n-semihypergroup, then the lattice
(L,V, A) is modular.
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Proof. Assume that L is not modular. Hence, L contains a five-element sublattice, iso-

morphic to this one: {m,a,b,c, M}, wherem < b <a < M, m < c¢ < M, a,c,and b,c,

respectively, are not comparable. We have c € f(a,b,...,b,M)and M € f(b,c,...,c), since
—— ~——

n—2 n—1
aVc=>bVc= M. Hence,

ce f(a,b,...,b,f(b,c,...,c)) = ab,...,b),c...,c).
F@ b b g ) = f(f @b b)e )
n—2 n—1 n—1 n—1
Therefore, there exists x € f(a,b,...,b),such thatc € f(x,c,...,c). Wehavea=a Vb=
~—— ~——

n—1 n—1
bVvx=aVxVb=aVxandcVx =c whence x < agand x < ¢, thatis x < aAc = m.
Hence, x < b, which contradicts a = b V x. Therefore, (L, V, A) is modular. O

Corollary 7 ([18]). A lattice (L,V, A) is modular iff (L, f) is an n-semihypergroup.
Corollary 8 ([18]). The lattice (L, V, N) is modular iff the n-hypergroupoid (L, f) is a join n-space.

Now, we can consider the following dual-n-hyperoperation f° on a meet semilattice
(L, <, A), defined by: for any a4/ of L, we have:

fo(al) = {x e L| xAB{) = B, foranyi€ {1,2,...,n}},

where B, = a1AaxA ... Aay, Br(,l) = mA...Nay, B,(ln) = ajA...Nay_1 and for any i €
{2,...,n—1}, B,(ll) =a1/A ... Aaj_1Aa; 1A ... Aay. By duality, the following result holds:

Theorem 29 ([18]). A lattice (L, V, N\) is modular iff the n-hypergroupoid (L, f©) is a join n-space:

e If L has the greatest element 1, then 1 is a scalar identity for (L, f°).
e Ifn >3, thenany x € Lis an identity for (L, f°).

Theorem 30 ([18]). Let (L, V, A) be a modular lattice:

(1) A subset I of L is an n-subhypergroup of (L, f) iff I is an ideal of L.
(2) A subset I of L is an n-subhypergroup of (L, f°) iff I is a filter of L.

Proof. (1) Let (I, f) be an n-subhypergroupoid of (L, f). Then, for any a1, 4, € I, we have

ayVay € f(ay,ap,...,ap) C L.

n—1

Ifaclandx <a,thenx € f(a,...,a) C I.“<=" Let a} be elements of I. If z € f(a}),

n

then A, =z V A,(f), foranyi € {1,2,...,n}, whence z < A,. Since A, € I, it follows that
z € I. On the other hand, for any 4, ai_l,a?ﬂ of[and 1 <i < mn,thereisx; =aV ASIi) such
thata € f(ai™!, x;, at, ;). Hence, I is an n-subhypergroup of (L, f).

(2) It follows by duality. O

Theorem 31 ([18]). Let (L,V, A) be a lattice and ¢ : L — L a bijective map. The following
conditions are equivalent:

(1) Forany af of L, we have p(A;) = @(ar1)A ... Ag(ay).

(2) ¢ isa morphism from (L, f) to (L, f°).
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Proof. (1=2): For any a} of L, we have ¢(f(a})) = {¢(z) | z € f(a})} = {¢(2) |
zV Aﬁl’), forany i € {1,2,...,n}}, whence ¢(a;)A... Ap(an) = ¢(An) = @(zV A
e(z)Np(a)A ... Ap(a;i_1)A@(aj1)A ... Ap(ay), that is

¢(z) € f2(@(a1), ..., ¢(an)).

Now, let t € f°(¢(ay),..., ¢(ay)). Since there is x such that t = ¢(x), it follows that

A, =
ni)) =

()N [@(a)A ... Ap(ai_1)Ap(ai1)A ... Ap(an)] = @(a1)A ... Ap(an),

forany i € {1,2,...,n}, and according to (1), we obtain ¢(x V Ag,i)) = ¢(Ap), for any
i€ {1,2,...,n}.Since ¢ is bijective, it follows that x \V A,(f) = Ay, foranyi€ {1,2,...,n},
thatis x € f(a]). Hence,
t=¢(x) € ¢(f(a1))-
(2==1): Let af be elements of L. If z € f(a}), then
¢(z) € f*(p(ar),-., p(an))

that is
@) Ap(a)A ... Ap(ai_1)A@(air1)A ... Ag(an) = @(a))A ... Ap(an),
foranyi € {1,2,...,n}. Hence,

p(a)A ... Ag(an) < @(z).

Forz = A, € f(a), we obtain ¢(ay)A ... A¢(an) < ¢(Ay). On the other hand, for any
ie{l,2,...,n},An € f(a;, An, ..., Ay ), s0O
—_——————

n—1

¢(An) € o(f(ai, An,..., A

whence ¢(A;) = ¢(a;)\@(A,), thatis ¢(A,) < ¢(a;). It follows that

¢(An) < @(a))A ... Ag(an).
Therefore, the condition (1) holds. [

By duality, we obtain the following.

Theorem 32 ([18]). Let (L,V, A) be a lattice and ¢ : L — L a bijective map. The following
conditions are equivalent:

(1)  For any aj of L, we have
¢(Bn) = @(a1) V...V @(ay).

(2) ¢ isa morphism from (L, f°) to (L, f).

Let (L, V, A) be an arbitrary lattice. We define on L the following n-hyperoperation:
for any af of L, we have

g(a}) = {xeL|B,<x< A}, where
B, = aAmAN...Nazand A, =a1Va,V...Vay,.
The n-hypergroupoid (L, g) has the following properties:

(1) gis commutative;
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a,...,a) =a;
N———
n
(3) forany af of L, we have {al'} C g(al');
(4) Forany anl of L, we have b € b/a’ffl;
(5) Foranya e L,wehavea/{a,...,a}=1L;
——

(2) Foranya € L, we have g(

n—1

(6) Foranya,be L wehavex €a/{b,...,b}Nb/{a,...,a}iffanx =bAxandaV x =
S~—— S~——
n—1 n—1
bVx.
Theorem 33 ([18]). If the lattice (L, V, \) is distributive, then for any a2"~1 of L, we have
g(g(“ﬁl)r“iﬁl) = [Bon—1, Azn—1]-

Proof. Indeed, for any a%”_l of L, we have

g(g(ay),a"3") C [Bau—1, Agu-1)-

Conversely, let z € [By,,_1, Apy—1]. If x = (zAA;) V By, then B, < x < Ay, thatis x € g(af).

On the other hand,
z € g(x,afl’_fll).

Indeed, by distributivity, we have

Ay . Aoy AAX = ay A ... Nagy 1 A[(zANAy) V By =
= (ZANAyNdy AN ... Ndoy 1)V By 1 <z
and
yy1V...Vay, 1Vx=a,1V...Vay,_ 1V (zAA,) VB, =
= (ap1V...Vay_1 VB VZ)A(ay1 V... Vay,_1 VB VA, =
= Ay 1N(aps1 V... Vay,_ 1 VB, Vz) >z

2n—1

Hence z € g(x, 4,

), whence z € g(g(a’f),ai’f[ll). We obtain

g(g(at), ayi1") = [Bau-1, Azu-1].
O
Corollary 9 ([18]). If (L, V, A\) is a distributive lattice, then (L, ) is an n-hypergroup.

Proof. Since the subset [By,_1, Ay,_1] is invariant to any permutation (a;,...,a;, ,) of
(a1,...,a2,_1), it follows that

[BZW—lr AZn—l] = 8(g(ai1/ cee ,611‘”), ainJrl/ v ’aiZn—l)'

Moreover, g is commutative, so it follows that g is associative. Therefore, we obtain that
(L, g) is an n-hypergroup. [

Theorem 34 ([18]). If (L, V, A\) is a distributive lattice, then (L, g) is a join n-space.
Proof. We still have to check the join n-space condition. Let x € a/ b’ffl Nc/ d’ffl, that is

XADIN ... Aby_ 1 <a<xVDbiV...Vb,_1 and
x/\dl/\.../\dn_l SCSX\/dl\/...\/dn_l.
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We have to prove that there is z € g(a,d7 ') N g(c, b 1), that is

(and A ... Ay 1)V (AN ... Aby 1) <z <
<(avdiV...Vd, )N(cVbh V...V, 1).
We have andiA.. . Ady 1 < (x VDV ...Vb, )DA(dIA .. Ady1) = (XAdIA .. Ady 1) V
[(b1V...Vby )AdIA ... Ady_1] <cVb1V...Vb,_q1.Hence, (aAd1A ... Ndyy_1) V (cAbIA

.. Aby—1) <cVbyV...Vb,_q.Similarly, we have (aAdiA ... Ady—1) V (cAbIA ... Aby—1) <
aVdyV...Vd,_1. Therefore,

(and N ... ANdy_ 1)V (AN ... Aby 1) < (aVdiV...Vd, 1)AN(cVDbV...Vb, 1),

thatis
g(a,di~1) Ngle, i) # @,
O

Theorem 35 ([18]). If (L, V, A\) is a join n-space, then the lattice (L, V, \) is distributive.

Proof. Suppose that L is not distributive. Then, L contains a five-element sublattice

{m,a,b,c, M}, where aVc = bVc = M, aAc = bAc = m, and eithera > b or a,b,c

are mutually non-comparable. We have ¢ € a/{ E’_VLB tNb/{a,...,a},and since (L, g)
n—1 n—1

is a join n-space, we obtain

,...a)Ng(b,...,b Q,
8(a,... a)ngl ) #

n n

that is 4 = b, which is a contradiction.
Therefore, (L, V, A) is distributive. 0

Corollary 10 ([18]). The n-hypergroupoid (L, g) is a join n-space iff the lattice (L, V, \) is distributive.

Theorem 36 ([18]). Let (L, V, \) be a distributive lattice. If I is an ideal and F is a filter of L, then
(1,g) and (F, g) are n-subhypergroups of (L, g).

Proof. Let I be an ideal of L. For any a/ of I, we have g(a}') = {z | B, < z < A, }. Since
Ay, =mV...Va, € land z < A,, it follows z € I. Hence, g(ag’) C I. On the other hand,
we havea € g(a, a{‘_l) for any a, a{‘_l of I. Therefore, (I, g) is an n-subhypergroup of (L, g).
Similarly, it follows that (F, g) is an n-subhypergroup of (L,g). O

The converse fails, as can be seen from the following example:

Example 6. Let us consider the distributive lattice (P (M), U, N), where M is a set with at least
three elements. Let a,b € M, a # band S = {M — {a}, M —{a,b}}. Then, (S,g) is an
n-subhypergroup of (P(M), g), but S is neither an ideal, nor a filter of P(M), since @ ¢ S and
M & S, respectively.
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