Review

# A Survey on the Theory of $n$-Hypergroups 

Bijan Davvaz ${ }^{1, *}$ (D) , Violeta Leoreanu-Fotea ${ }^{2}$ and Thomas Vougiouklis ${ }^{3}$<br>1 Department of Mathematical Sciences, Yazd University, Yazd 8975818411 , Iran<br>2 Faculty of Mathematics, "Al.I. Cuza" University, Bd Carol I, no.11, 6600 Iaşi, Romania<br>3 School of Education, Democritus University of Thrace, 68100 Alexandroupolis, Greece<br>* Correspondence: davvaz@yazd.ac.ir

Citation: Davvaz, B.; Leoreanu-Fotea, V.; Vougiouklis, T. A Survey on the Theory of $n$-Hypergroups. Mathematics 2023,11, 551. https:// doi.org/10.3390/math11030551

Academic Editor: Adolfo Ballester-Bolinches

Received: 19 December 2022
Revised: 10 January 2023
Accepted: 16 January 2023
Published: 19 January 2023


Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).


#### Abstract

This paper presents a series of important results from the theory of $n$-hypergroups. Connections with binary relations and with lattices are presented. Special attention is paid to the fundamental relation and to the commutative fundamental relation. In particular, join $n$-spaces are analyzed.


Keywords: $n$-hypergroup; fundamental relation; join $n$-space
MSC: 20N20

## 1. Introduction

The theory of $n$-ary hypergroups, also called $n$-hypergroups, contains two generalizations of the notion of a group: $n$-groups and hypergroups, which are briefly presented in the next paragraph. The two concepts were introduced around the same time.
$n$-groups, also called polyadic groups, were introduced in 1928 by W. Dörnte [1], and they are a generalization of classical groups. An important role in $n$-group theory is the paper written by E.L. Post of 143 pages [2]. Such operations are used then in the study of $(m, n)$-rings. Among those who made recently important contributions in the theory of n-groups, we mention W. Dudek and his collaborators; see for instance [3-5]. Let $n>2$, and denote the chain $x_{i}, \ldots, x_{j}$ by $x_{i}^{j}$ (for $j<i$, the above sequence is the empty symbol). For a nonempty set $G$ with one $n$-operation, $f: G^{n} \rightarrow G$ is a $n$-groupoid, which is a $n$-quasigroup, if, for all $a_{1}^{n}, b \in G$, there is exactly one $x_{i} \in G$ such that $f\left(a_{1}^{i-1}, x_{i}, a_{i+1}^{n}\right)=b$. An $n$-quasigroup with an associative operation is called an $n$-ary group.

Hypergroup theory is a field of algebra that appeared in 1934 and was introduced by the French mathematician Marty [6]. The theory has known various periods of flourishing: the 1940s, then 1970s, and especially after the 1990s, the theory has been studied on all continents, both theoretically and for a multitude of applications in various fields of knowledge: various chapters of mathematics, computer science, biology, physics, chemistry, and sociology. Several books have been written in this field, which highlight both the theoretical aspects and the applications; for instance, see [7]. Figure 1 suggestively shows the connections between the previously mentioned domains.

This survey is structured as follows: First, basic notions in the field of algebraic hyperstructures are recalled, followed by results, in particular characterizations in the field of $n$-hypergroups. Special attention is given to the connections with binary relations and fundamental relations. Finally, join n-spaces with connections to lattice theory are presented.


Figure 1. The connections between groups, $n$-groups, hypergroups, and $n$-hypergroups.

## 2. Hypergroups

An algebraic hyperstructure is a nonempty set $H$ together with one or some functions from $H \times H$ to the set $\mathcal{P}^{*}(H)$ of nonempty subsets of $H$. For all $(x, y) \in H^{2}$, one denotes by $x \circ y$ the image $f(x, y)$, where $f$ is the function $f: H \times H \rightarrow \mathcal{P}^{*}(H)$. Then, $(H, 0)$ is called a hypergroupoid.

If $S, T \in \mathcal{P}^{*}(H), S \circ T$ denotes the set $\bigcup_{s \in S, t \in T} s \circ t$.
Definition 1. The pair $(H, o)$ is called a semihypergroup if

$$
\forall(r, s, t) \in H^{3},(r \circ s) \circ t=r \circ(s \circ t),
$$

where $(r \circ s) \circ t$ denotes the union

$$
\bigcup_{a \in r \circ s} a \circ t .
$$

Analogously,

$$
r \circ(s \circ t)=\bigcup_{b \in s \circ t} r \circ b .
$$

Definition 2. A hypergroup $(H, \circ)$ is a semihypergroup such that

$$
\begin{gathered}
\forall(a, b) \in H^{2}, \exists(x, y) \in H^{2} \text { such that } \\
a \in b \circ x \text { and } a \in y \circ b
\end{gathered}
$$

Several types of hypergroup homomorphisms are analyzed. We refer to [8]. Furthermore, several classes of subhypergroups are introduced and studied, such as canonical hypergroups, join spaces, and complete hypergroups. Join Spaces were introduced by Prenowitz.

Definition 3. Let $(H, \circ)$ be a commutative hypergroup. Then, $(H, \circ)$ is a join space if the following implication is satisfied:

$$
\begin{gathered}
\forall(r, s, t, w) \in H^{4} \\
r / s \cap t / w \neq \varnothing \Rightarrow r \circ w \cap s \circ t \neq \varnothing
\end{gathered}
$$

where $r / s$ denotes the set

$$
\{a \in H \mid r \in a \circ s\} .
$$

Example 1. Suppose that $(L, \vee, \wedge)$ is a lattice. Then, $L$ is a distributive lattice if and only if $(L, \star)$ is a join space, where $a \star b=\{x \in L \mid a \wedge b \leq x \leq a \vee b\}$.

Example 2. Suppose that $(L, \vee, \wedge)$ is a lattice. Then, $L$ is a modular lattice if and only if $(L, \circ)$ is $a$ join space, where $a \circ b=\{x \in L \mid a \vee b=b \vee x=a \vee x\}$. Clearly, $a \vee b \in a \circ b$.

Canonical hypergroups have a structure close to that of a commutative group: they are commutative, have a scalar identity $e$ (that is, $\forall x \in H, x \circ e=e \circ x=x$ ), every element has a unique inverse, and they are reversible (that is, if $x \in y \circ z$, then $z \in y^{-1} \circ x, y \in x \circ z^{-1}$ ).

An important result is the next one:
Theorem 1. Let $(H, \circ)$ be a commutative hypergroup. Then, it is a canonical hypergroup iff it is a join space with a scalar identity.

One of the most-investigated hypergroups associated with binary relations is that introduced by Rosenberg [9] in 1998. It represents a theme of research of numerous papers. Rosenberg associated a partial hypergroupoid $H_{\rho}=(H, \circ)$ with a binary relation $\rho$ defined on a set $H$, where, for any $x, y \in H$, we have $x \circ x=\{z \in H \mid(x, z) \in \rho\}$ and $x \circ y=x \circ x \cup y \circ y$.

Definition 4. An element $b$ in $H$ is an outer element of $\rho$ if there exists $a \in H$ such that $(a, b) \notin \rho^{2}$.
Theorem 2. $(H, \circ)$ is a hypergroup iff:
(1) $\rho$ has full domain;
(2) $\rho$ has full range;
(3) $\rho \subseteq \rho^{2}$;
(4) If $(a, b) \in \rho^{2}$, then $(a, b) \in \rho$, where $b$ is an outer element of $\rho$.

Special attention is paid to the fundamental $\beta$ relation, which leads to a group quotient structure.

Definition 5. Suppose that $(H, \circ)$ is a semihypergroup and $n$ is a natural number greater than 1 . We can consider the relation $\beta_{n}$ on $H$ as follows: $x \beta_{n} y$ if there exist $a_{1}, a_{2}, \ldots, a_{n}$ in $H$, such that $\{x, y\} \subseteq \prod_{i=1}^{n} a_{i}$, and assume that $\beta=\bigcup_{n \geq 1} \beta_{n}$, where $\beta_{1}=\{(r, r) \mid r \in H\}$.

In [10], Freni showed that, in every hypergroup, the relation $\beta$ is transitive, so the following result holds:

Theorem 3. If $(H, 0)$ is a hypergroup, then $(H / \beta, \cdot)$ is a group, where $\bar{x} \cdot \bar{y}=\bar{z}$, where $z$ is an arbitrary element of $x \circ y$. Moreover, the canonical projection $\varphi: H \rightarrow H / \beta$ is a good homomorphism.

## 3. $n$-Hypergroups

Davvaz and Vougiouklis [11] defined the notion of $n$-hypergroups for the first time. This concept is a generalization of $n$-groups, as well as hypergroups in the sense of Marty. Some properties of such hyperstructures were investigated in [12-18]. Moreover, some researchers have pointed out the relation between $n$-hypergroup and fuzzy sets.

Suppose that $H$ is a nonempty set. A function $f: \underbrace{H \times \ldots \times H}_{n \text { times }} \rightarrow \mathcal{P}^{*}(H)$ is called an n-hyperoperation. As usual, we may write $H^{n}=H \times \ldots \times H$, where $H$ appears $n$ times. An element of $H^{n}$ is denoted by $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i} \in H$ for any $i$ with $1 \leq i \leq n$. Let $P_{1}, \ldots, P_{n}$ be nonempty subsets of $H$. We define

$$
f\left(P_{1}, \ldots, P_{n}\right)=\bigcup\left\{f\left(p_{1}, \ldots, p_{n}\right) \mid p_{i} \in P_{i}, i=1, \ldots, n\right\}
$$

The pair $(H, f)$ is called an $n$-hypergroupoid. An $n$-hypergroupoid $(H, f)$ is called an $n$ semihypergroup iff

$$
f\left(h_{1}^{i-1}, f\left(h_{i}^{n+i-1}\right), h_{n+i}^{2 n-1}\right)=f\left(h_{1}^{j-1}, f\left(h_{j}^{n+j-1}\right), h_{n+j}^{2 n-1}\right),
$$

for all $1 \leq i, j \leq n$ and $h_{1}, h_{2}, \ldots, h_{2 n-1} \in H$. An $n$-semihypergroup $(H, f)$ in which the equation:

$$
\begin{equation*}
b \in f\left(h_{1}^{i-1}, x_{i}, h_{i+1}^{n}\right) \tag{1}
\end{equation*}
$$

has the solution $x_{i} \in H$ for every $h_{1}, \ldots, h_{i-1}, h_{i+1}, \ldots, h_{n}, b \in H$, and $1 \leq i \leq n$ is called an $n$-hypergroup. If the value of $f\left(h_{1}, \ldots, h_{n}\right)$ is independent of the permutation of elements $h_{1}, \ldots, h_{n}$, then we have a commutative $n$-hypergroup.

Example 3. If $(H, \star)$ is a hypergroup, then obtain an $n$-hypergroup by defining $f\left(h_{1}, \ldots, h_{n}\right)=$ $h_{1} \star \ldots \star h_{n}$, for all $h_{1}, \ldots, h_{n} \in H$.

Example 4. Let $\mathbb{Z}$ be the set of integer numbers. If we define

$$
f\left(h_{1}, \ldots, h_{n}\right)=\left\{m_{1} h_{1}+\ldots+m_{n} h_{n} \mid m_{1}, \ldots, m_{n} \in \mathbb{Z}\right\}
$$

then $(\mathbb{Z}, f)$ is an $n$-hypergroup.
Example 5. Assume $(L, \vee, \wedge)$ is a modular lattice. For every $h_{1}, \ldots, h_{n} \in L$ and $i \in\{1, \ldots, n\}$, we define

$$
\begin{aligned}
& A_{n}^{(i)}=h_{1} \vee \ldots \vee h_{i-1} \vee h_{i+1} \vee \ldots \vee h_{n}, \\
& A_{n}=h_{1} \vee \ldots \vee h_{n} .
\end{aligned}
$$

If we define:

$$
f\left(h_{1}, \ldots, h_{n}\right)=\left\{x \in L \mid x \vee A_{n}^{(i)}=A_{n}, \text { for all } 1 \leq i \leq n\right\}
$$

then $(L, f)$ is a commutative $n$-hypergroup.
Theorem 4. Suppose that $(H, f)$ is an $n$-semihypergroup. Then, $(H, f)$ is an n-hypergroup iff Equation (1) is solvable at the first place and at the last place or at least one place $1<i<n$.

Proof. If Equation (1) is solvable at the place $i=1$ and $i=n$, then, for every $h_{1}, \ldots, h_{n}, b \in$ $H$, there are $x_{0}, z_{0} \in H$ such that

$$
b \in f\left(x_{0}, h_{2}^{n}\right) \text { and } x_{0} \in f\left(h_{1}^{n-1}, z_{0}\right) .
$$

If $j \in\{1, \ldots, n\}$ is arbitrary, then we have

$$
b \in f\left(f\left(h_{1}^{n-1}, z_{0}\right), h_{2}^{n}\right)=f\left(h_{1}^{j-1}, f\left(h_{j}^{n-1}, z_{0}, h_{2}^{j}\right), h_{j+1}^{n}\right)
$$

Hence, there is $x \in f\left(h_{j}^{n-1}, z_{0}, h_{2}^{j}\right)$ such that $b \in f\left(h_{1}^{j-1}, x, h_{j+1}^{n}\right)$.
Now, assume that Equation (1) is solvable at place $1<i<n$. Assume that $j<i$, then for every $a_{1}, \ldots, a_{n}, b \in H$, there is $y_{1} \in H$ such that

$$
b \in f(h_{1}^{i-1}, y_{1}, f(\underbrace{h_{1}, \ldots, h_{1}}_{n-(i-j+1)}, h_{j+1}^{i+1}), h_{i+2}^{n}) \text {. }
$$

This implies that

$$
b \in f(h_{1}^{j-1}, f(h_{j}^{i-1}, y_{1}, \underbrace{h_{1}, \ldots, h_{1}}_{n-(i-j+1)}), h_{j+1}^{n}) .
$$

Hence, there is $x \in f\left(h_{j}^{i-1}, y_{1}, h_{1}, \ldots h_{1}\right)$ such that $b \in f\left(h_{1}^{j-1}, x, h_{j+1}^{n}\right)$. If we consider $i<j$, then in a similar, way we can prove that Equation (1) is solvable.

An $n$-hyperoperation $f$ is called weakly $(i, j)$-associative if

$$
f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2 n-1}\right) \cap f\left(x_{1}^{j-1}, f\left(x_{j}^{n+j-1}\right), x_{n+j}^{2 n-1}\right) \neq \varnothing,
$$

and $(i, j)$-associative if

$$
f\left(x_{1}^{i-1}, f\left(x_{i}^{n+i-1}\right), x_{n+i}^{2 n-1}\right)=f\left(x_{1}^{j-1}, f\left(x_{j}^{n+j-1}\right), x_{n+j}^{2 n-1}\right)
$$

holds for fixed $1 \leq i<j \leq n$ and all $x_{1}, x_{2}, \ldots, x_{2 n-1} \in H$.
We say that the element $a \in H$ is in the center of an $n$-hypergroupoid $(G, f)$, if

$$
f\left(a, x_{2}^{n}\right)=f\left(x_{2}, a, x_{3}^{n}\right)=f\left(x_{2}^{3}, a, x_{4}^{n}\right)=\ldots=f\left(x_{2}^{n}, a\right),
$$

for all $x_{2}, \ldots, x_{n} \in H$. An $(i, i+k)$-associative $n$-hypergroupoid ( $G, f$ ) containing cancelable elements in the center (cancelable elements belong to the center) is $(1, n)$-associative [12].

Theorem 5 ([12]). An n-hypergroupoid containing cancellative elements in the center is an $n$ semihypergroup iff it is $(i, j)$-associative for some $1 \leq i<j \leq n$.

An $n$-hypergroupoid $(H, f)$ is called a $b$-derived from a binary hypergroupoid $(G, \star)$ [12], and denote this fact by $(H, f)=\operatorname{der}_{b}(H, \star)$ if the hyperoperation $f$ has the form

$$
f\left(x_{1}^{n}\right)=\left(x_{1} \star x_{2} \star \ldots \star x_{n}\right) \star b .
$$

Theorem 6 ([12]). An n-semihypergroup has a neutral element iff it is derived from a binary semihypergroup with the identity.

Theorem 7 ([12]). An n-semihypergroup derived from a binary semihypergroup has a neutral polyad iff it has a neutral element.

Consequently, if an $n$-semihypergroup without neutral elements is derived from a binary semihypergroup, then it does not possess any neutral polyad.

Theorem 8 ([12]). If an n-semihypergroup $(H, f)$ does not contain any neutral elements, then to $(H, f)$, we can adjoint the neutral element if and only if $(H, f)$ is derived from a binary semihypergroup.

Theorem 9 ([12]). To an n-semihypergroup $(H, f)$ we can adjoint the neutral element iff $(H, f)$ is derived from a binary semihypergroup.

Theorem 10 ([12]). For any n-semihypergroup ( $H, f$ ) with a right neutral polyad, there is a semihypergroup $(H, \star)$ with a right identity and an endomorphism $\varphi$ of $(H, \star)$ such that

$$
f\left(x_{1}^{n}\right)=x_{1} \star \varphi\left(x_{2}\right) \star \varphi^{2}\left(x_{3}\right) \star \ldots \star \varphi^{n-1}\left(x_{n}\right) \star b,
$$

for some $b \in H$.
Theorem 11 ([12]). For any n-semihypergroup $(H, f)$ with a left neutral polyad, there is a semihypergroup $(H, \star)$ with a left identity and an endomorphism $\psi$ of $(H, \star)$ such that

$$
f\left(x_{1}^{n}\right)=b \star \psi^{n-1}\left(x_{1}\right) \star \psi^{n-2}\left(x_{2}\right) \star \ldots \star \phi^{2}\left(x_{n-2}\right) \star \phi\left(x_{n-1}\right) \star x_{n}
$$

for some $b \in H$.

## 4. Binary Relations and Fundamental Relations

Suppose that $R$ is a binary relation on a nonempty set $H$. We define a partial $n$ hypergroupoid ( $H, f_{R}$ ), as follows:

$$
f_{R}(\underbrace{w, \ldots, w}_{n})=\{y \mid(w, y) \in R\},
$$

for all $w$ in $H$ and

$$
f_{R}\left(w_{1}, w_{2}, \ldots, w_{n}\right)=f_{R}(\underbrace{w_{1}, \ldots, w_{1}}_{n}) \cup f_{R}(\underbrace{w_{2}, \ldots, w_{2}}_{n}) \cup \ldots \cup f_{R}(\underbrace{w_{n}, \ldots, w_{n}}_{n}),
$$

for every $w_{1}, w_{2}, \ldots, w_{n} \in H$. It is clear that $\left(H, f_{R}\right)$ is commutative. The partial $n$ hypergroupoid $\left(H, f_{R}\right)$ is a generalization of the Rosenberg partial hypergroupoid. We denote $f_{R}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ by $f_{R}\left(w_{1}^{n}\right)$. The relation $R$ is transitive iff, for any $w$ in $H$, we have

$$
f_{R}(f_{R}(\underbrace{w, \ldots, w}_{n}), \underbrace{w, \ldots, w}_{n-1})=f_{R}(\underbrace{w, \ldots, w}_{n}) .
$$

Moreover, $\left(H, f_{R}\right)$ is an $n$-hypergroupoid if the domain of $R$ is $H$.

Theorem 12 ([17]). Suppose that $R$ is a binary relation on $H$, with full domain. Then, $\left(H, f_{R}\right)$ is an $n$-semihypergroup iff $R \subset R^{2}$ and for each outer element $y$ of $R$, if $(x, y) \in R^{2}$ implies $(x, y) \in R$.

It follows that:
Corollary 1. Suppose that $R$ is a binary relation with full domain. Then, $\left(H, f_{R}\right)$ is an $n$ hypergroup iff the following hold:
(1) $R$ has a full range;
(2) $R \subset R^{2}$;
(3) $(x, y) \in R^{2}$ implies $(x, y) \in R$ for every outer element $y \in R$.

Note that if $R$ is a subset of $R^{2}$, then $x$ is an outer element of $R$ iff $x \notin f_{R}(f_{R}(\underbrace{w, \ldots, w}_{n})$, $\underbrace{w, \ldots, w}_{n-1})$ for some $w \in H$.

If $R$ is a subset of $R^{2}$, then there are no outer elements of $R$ iff, for each $w \in H$, we have

$$
f_{R}(f_{R}(\underbrace{w, \ldots, w}_{n}), \underbrace{w, \ldots, w}_{n-1})=H .
$$

Theorem 13 ([17]). Suppose that the relation $R$ is reflexive and symmetric. Then, $\left(H, f_{R}\right)$ is an $n$-hypergroup iff, for every $u, w \in H$, we have

$$
f_{R}(f_{R}(\underbrace{u, \ldots, u}_{n}), \underbrace{u, \ldots, u}_{n-1})-f_{R}(\underbrace{u, \ldots, u}_{n}) \subset f_{R}(f_{R}(\underbrace{w, \ldots, w}_{n}), \underbrace{w, \ldots, w}_{n-1}) .
$$

Corollary 2. Suppose that the relation $R$ is reflexive and symmetric, but not transitive. Then, $\left(H, f_{R}\right)$ is an $n$-hypergroup iff $R^{2}=H^{2}$.

The concept of mutually associative hypergroupoids was introduced by Corsini [19]. We generalize this concept to $n$-hypergroupoids. Two partial $n$-hypergroupoids $\left(H, f_{1}\right)$ and $\left(H, f_{2}\right)$ are mutually associative if, for every $w_{1}, \ldots, w_{2 n-1} \in H$, we have:
(i $\left.1_{1}\right) f_{2}\left(f_{1}\left(w_{1}^{n}\right), w_{n+1}^{2 n-1}\right)=f_{1}\left(w_{1}^{n-1}, f_{2}\left(w_{n}^{2 n-1}\right)\right)$;
(i2) $f_{2}\left(w_{1}, f_{1}\left(w_{2}^{n+1}\right), w_{n+2}^{2 n-1}\right)=f_{1}\left(w_{1}^{n-2}, f_{2}\left(w_{n-1}^{2 n-2}\right), w_{2 n-1}\right)$;
(i3) $f_{2}\left(w_{1}, w_{2}, f_{1}\left(w_{3}^{n+2}\right), w_{n+3}^{2 n-1}\right)=f_{1}\left(w_{1}^{n-3}, f_{2}\left(w_{n-2}^{2 n-3}\right), w_{2 n-2}, w_{2 n-1}\right)$;
$\left(\mathrm{i}_{n-1}\right) f_{2}\left(w_{1}^{n-2}, f_{1}\left(w_{n-1}^{2 n-2}\right), w_{2 n-1}\right)=f_{1}\left(w_{1}, f_{2}\left(w_{2}^{n+1}\right), w_{n+2}^{2 n-1}\right)$;
( $\mathrm{i}_{n}$ ) $f_{2}\left(w_{1}^{n-1}, f_{1}\left(w_{n}^{2 n-1}\right)\right)=f_{1}\left(f_{2}\left(w_{1}^{n}\right), w_{n+1}^{2 n-1}\right)$.
Let $f_{1}$ and $f_{2}$ be two ordinary hyperoperations. Then, we obtain two mutually associative partial hypergroupoids. If $R$ is a binary relation on $H$ and $A \subset H$, we denote

$$
R(A)=\{b \mid(a, b) \in R, \text { for some } a \in A\}
$$

If $A=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$, we write $R\left(w_{1}^{k}\right)$ for $R(A)$. If $R$ and $S$ are binary relations on $H$, then we denote by $S R$ the relation $\left\{(a, c) \in H^{2} \mid(a, b) \in R\right.$ and $(b, c) \in S$, for some $\left.b \in H\right\}$.

Theorem 14 ([17]). Let $R$ and $S$ be two relations on $H$ with full domains. Then, $\left(H, f_{R}\right)$ and $\left(H, f_{S}\right)$ are mutually associative iff, for every $w_{1}, w_{2}, \ldots, w_{2 n-1} \in H$, we have

$$
S R\left(w_{1}^{n}\right) \cup S\left(w_{n+1}^{2 n-1}\right)=R S\left(w_{n}^{2 n-1}\right) \cup R\left(w_{1}^{n-1}\right)
$$

Theorem 15 ([17]). If $\left(H, f_{R}\right)$ and $\left(H, f_{S}\right)$ are mutually associative n-hypergroups, then $\left(H, f_{R \cup S}\right)$ is also an n-hypergroup.

Theorem 16. Let $R$ and $S$ be relations on $H$, such that $R \subset S R$. If $\left(H, f_{R}\right)$ is an n-hypergroup, $\left(H, f_{R}\right)$ and $\left(H, f_{S}\right)$ are mutually associative and one of the following two conditions holds:
(1) $R S \cap\{(w, w) \mid w \in H\}=\varnothing$;
(2) The domain (RS) of $R S$ is different from $H$.

Then, $\left(H, f_{S R}\right)$ is an n-hypergroup, as well.
Now, suppose that $(H, f)$ is an $n$-semihypergroup. We denote

$$
\begin{aligned}
&\left.f_{(1)}=\left\{f\left(w_{1}^{n}\right) \mid w_{i} \in H, 1 \leq i \leq n\right\}\right\}, \\
& f_{(2)}=\left\{f\left(f\left(u_{1}^{n}\right), w_{2}^{n}\right) \mid u_{i} \in H, w_{j} \in H, 1 \leq i \leq n,\right. \\
&\forall 2 \leq j \leq n\}, \\
& f_{(3)}=\left\{f\left(f\left(f\left(v_{1}^{n}\right), u_{2}^{n}\right), w_{2}^{n}\right) \mid v_{i} \in H, u_{j} \in H, w_{j} \in H,\right. \\
&\forall 1 \leq i \leq n, \forall 2 \leq j \leq n\},
\end{aligned}
$$

and so on. Denote $\mathcal{U}=\bigcup_{k \in \mathbb{N}^{*}} f_{(k)}$. We define $\beta=\bigcup_{k \geq 1} \beta_{k}$, where, for all $x, y$ of $H$,

$$
a \beta_{k} y \Leftrightarrow \exists u \in f_{(k)}, \text { such that }\{x, y\} \subseteq u
$$

Denote $\bigcup_{\substack{a \in u \\ u \in \mathcal{U}}} u$ by $\mathcal{C}_{1}(a)$, which means

$$
\mathcal{C}_{1}(w)=\{a \mid \text { there exists } u \in \mathcal{U} \text { such that } w \in u, a \in u\} .
$$

For every $n \in \mathbb{N}^{*}$, denote

$$
\mathcal{C}_{n+1}(w)=\left\{a \mid \text { there exists } u \in \mathcal{U} \text { such that } \mathcal{C}_{n}(w) \cap u \neq \varnothing, a \in u\right\} .
$$

A subsets $B$ is a complete part of $(H, f)$ if, for every $u \in \mathcal{U}$,

$$
B \cap u=\varnothing \Longrightarrow u \subset B
$$

Suppose that $\mathcal{C}(w)$ is the complete closure of $w$. We have $\mathcal{C}(w)=\bigcup_{i \in \mathbb{N}^{*}} \mathcal{C}_{i}(w)$, for all $w \in H$.

Theorem 17 ([17]). Suppose that $(H, f)$ is an $n$-semihypergroup. The relation $\beta$ is transitive iff $\mathcal{C}(w)=\mathcal{C}_{1}(w)$, for all $w \in H$.

Theorem 18 ([17]). If $(H, f)$ is an n-hypergroup, then $\beta$ is transitive.
Suppose that $\left(H_{1}, f\right)$ and $\left(H_{2}, g\right)$ are $n$-hypergroups. We define $(f, g):\left(H_{1} \times H_{2}\right)^{n} \longrightarrow$ $\mathcal{P}^{*}\left(H_{1} \times H_{2}\right)$ by $(f, g)\left(\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)\right)=\left\{(u, v) \mid u \in f\left(u_{1}, \ldots, u_{n}\right), v \in g\left(v_{1}, \ldots\right.\right.$, $\left.\left.v_{n}\right)\right\}$. Clearly, $\left(H_{1} \times H_{2},(f, g)\right)$ is an $n$-hypergroup, and it is the direct hyperproduct of $H_{1}$ and $\mathrm{H}_{2}$.

Theorem 19 ([11]). Let $\left(H_{1}, f\right)$ and $\left(H_{2}, g\right)$ be two $n$-hypergroups, and let $\beta_{1}^{*}, \beta_{2}^{*}$, and $\beta^{*}$ be fundamental equivalence relations on $H_{1}, H_{2}$, and $H_{1} \times H_{2}$, respectively. Then,

$$
\left(H_{1} \times H_{2}\right) / \beta^{*} \cong H_{1} / \beta_{1}^{*} \times H_{2} / \beta_{2}^{*}
$$

Let $(H, f)$ be an $n$-semihypergroup and $\rho$ be an equivalence relation on $H$; we define

$$
X \overline{\bar{\rho}} Y \Longleftrightarrow x \rho y \text { for all } x \in X, y \in Y
$$

The relation $\rho$ is a strongly regular relation if $x_{i} \rho y_{i}$ for all $1 \leq i \leq n$, then,

$$
f\left(x_{1}, \ldots, x_{n}\right) \overline{\bar{\rho}} f\left(y_{1}, \ldots, y_{n}\right) .
$$

If $\rho$ is a strongly regular relation on an $n$-semihypergroup $(H, f)$, then the quotient ( $H / \rho, f / \rho$ ) is an $n$-semigroup such that

$$
f / \rho\left(\rho\left(x_{1}\right), \ldots, \rho\left(x_{n}\right)\right)=\rho(z) \text { for all } z \in f\left(x_{1}, \ldots, x_{n}\right)
$$

where $x_{1}, \ldots, x_{n} \in H$.
Similar to the relation defined by Freni [20,21] on semihypergroups, Davvaz et al. [13] introduced the following relation on an $n$-semihypergroup so that the quotient is a commutative $n$-semigroup. Let $(H, f)$ be an $n$-semihypergroup. Then, $\widehat{\gamma}$ denotes the transitive closure of the relation $\gamma=\bigcup_{k \geq 1} \gamma_{k}$, where $\gamma_{1}=\{(w, w) \mid w \in H\}$, and for every integer $k>1$, we define

$$
x \gamma_{k} y \Longleftrightarrow x \in u_{(k)} \text { and } y \in u_{(k)}^{\sigma} .
$$

When $m=k(n-1)+1$, there are $a_{1}^{m} \in H^{m}$ and $\sigma \in \mathbb{S}_{m}$ such that $u_{(k)}=f_{(k)}\left(a_{1}^{m}\right)$ and $u_{(k)}^{\sigma}=f_{(k)}\left(a_{\sigma(1)}^{\sigma(m)}\right) . x \gamma_{1} y$ (i.e., $x=y$ ), then we write $x \in u_{(0)}$ and $y \in u_{(0)}^{\sigma}=u_{(0)}$. We define $\gamma^{*}$ as the smallest equivalence relation such that the quotient $\left(H / \gamma^{*}, f / \gamma^{*}\right)$ is a commutative $n$-semigroup.

Theorem 20 ([13]). The fundamental relation $\gamma^{*}$ is the transitive closure of the relation $\gamma$.
Proof. The $n$-operation $f / \widehat{\gamma}$ in $H / \widehat{\gamma}$ is defined in the usual manner:

$$
f / \widehat{\gamma}\left(\widehat{\gamma}\left(x_{1}\right), \ldots, \widehat{\gamma}\left(x_{n}\right)\right)=\left\{\widehat{\gamma}(y) \mid y \in f\left(\widehat{\gamma}\left(x_{1}\right), \ldots, \widehat{\gamma}\left(x_{n}\right)\right)\right\}
$$

for all $x_{1}, \ldots, x_{n} \in H$. Let $a_{1} \in \widehat{\gamma}\left(x_{1}\right), \ldots, a_{n} \in \widehat{\gamma}\left(x_{n}\right)$. Then, we have:
$a_{1} \widehat{\gamma} x_{1}$ iff there exist $x_{11}, \ldots x_{1 m_{1}+1}$ with $x_{11}=a_{1}, x_{1 m_{1}+1}=x_{1}$ such that

$$
\begin{aligned}
& x_{1 i_{1}} \in u_{\left(k_{1}\right)}\left(1 \leq i_{1} \leq m_{1}-1\right) \\
& x_{1 i_{1}+1} \in u_{\left(k_{1}\right)}^{\sigma_{1}} \\
& \left(2 \leq i_{1} \leq m_{1}\right)
\end{aligned}
$$

$a_{n} \widehat{\gamma} x_{n}$ iff there exist $x_{n 1}, \ldots x_{n m_{n}+1}$ with $x_{n 1}=a_{n}, x_{n m_{n}+1}=x_{n}$ such that

$$
\begin{aligned}
& x_{n i_{n}} \in u_{\left(k_{n}\right)}\left(1 \leq i_{n} \leq m_{n}-1\right) \\
& x_{n i_{n}+1} \in u_{\left(k_{n}\right)}^{\sigma_{n}} \\
& \left(2 \leq i_{n} \leq m_{n}\right) .
\end{aligned}
$$

Therefore, we obtain

$$
\begin{array}{ll}
f\left(x_{1 i_{1}}, x_{21}, \ldots, x_{n 1}\right) \subseteq u_{\left(k_{1}\right)} & 1 \leq i_{1} \leq m_{1}-1 \\
f\left(x_{1 i_{1}+1}, x_{21}, \ldots, x_{n 1}\right) \subseteq u_{\left(k_{1}\right)}^{\sigma_{1}} & 2 \leq i_{1} \leq m_{1} \\
f\left(x_{1 m_{1}+1}, x_{2 i_{2}}, \ldots, x_{n 1}\right) \subseteq u_{\left(k_{2}\right)} & 1 \leq i_{2} \leq m_{2}-1, \\
f\left(x_{1 m_{1}+1}, x_{2 i_{2}+1}, \ldots, x_{n 1}\right) \subseteq u_{\left(k_{2}\right)}^{\sigma_{2}} & 2 \leq i_{2} \leq m_{2} \\
\ldots & \ldots \\
f\left(x_{1 m_{1}+1}, x_{2 m_{2}+1}, \ldots, x_{n i_{n}}\right) \subseteq u_{\left(k_{n}\right)} & 1 \leq i_{n} \leq m_{n}-1, \\
f\left(x_{1 m_{1}+1}, x_{2 m_{2}+1}, \ldots, x_{n i_{n}+1}\right) \subseteq u_{\left(k_{n}\right)}^{\sigma_{n}} & 2 \leq i_{n} \leq m_{n} .
\end{array}
$$

This yields that $f / \widehat{\gamma}\left(\widehat{\gamma}\left(x_{1}\right), \ldots, \widehat{\gamma}\left(x_{n}\right)\right)$ is singleton. Therefore, we can write

$$
f / \widehat{\gamma}\left(\widehat{\gamma}\left(x_{1}\right), \ldots, \widehat{\gamma}\left(x_{n}\right)\right)=\widehat{\gamma}(z) \text { for all } z \in f\left(\widehat{\gamma}\left(x_{1}\right), \ldots, \widehat{\gamma}\left(x_{n}\right)\right) .
$$

Moreover, since $f$ is associative, we obtain that $f / \widehat{\gamma}$ is associative, and consequently, $H / \widehat{\gamma}$ is an $n$-semigroup.
$(H / \widehat{\gamma}, f / \widehat{\gamma})$ is commutative because, if $\sigma \in \mathbb{S}_{n}$ and $a \in f\left(x_{1}^{n}\right)$ and $b \in f\left(x_{\sigma(1)}^{\sigma(n)}\right)$, then $a \gamma b$, and so, $\widehat{\gamma}(a)=\widehat{\gamma}(b)$. Therefore, $f / \widehat{\gamma}\left(\widehat{\gamma}\left(x_{1}\right), \ldots, \widehat{\gamma}\left(x_{n}\right)\right)=f / \widehat{\gamma}\left(\widehat{\gamma}\left(x_{\sigma(1)}\right), \ldots, \widehat{\gamma}\left(x_{\sigma(n)}\right)\right)$; thus $(H / \widehat{\gamma}, f / \widehat{\gamma})$ is commutative.

Now, assume that $\theta$ is an equivalence relation on $H$ such that $H / \theta$ is a commutative $n$-semigroup. Then, for all $w_{1}, \ldots, w_{n} \in H$,

$$
f / \theta\left(\theta\left(w_{1}\right), \ldots, \theta\left(w_{n}\right)\right)=\theta(z) \text { for all } z \in f\left(\theta\left(w_{1}\right), \ldots, \theta\left(w_{n}\right)\right)
$$

However, for any $\sigma \in \mathbb{S}_{n}$ and $w_{1}, \ldots, w_{n} \in H$ and $X_{i} \subseteq \theta\left(w_{i}\right)(i=1, \ldots, n)$, we have

$$
f / \theta\left(\theta\left(w_{1}\right), \ldots, \theta\left(w_{n}\right)\right)=\theta\left(f\left(w_{\sigma(1)}, \ldots, w_{\sigma(n)}\right)\right)=\theta\left(f\left(X_{\sigma(1)}, \ldots, X_{\sigma(n)}\right)\right)
$$

Therefore,

$$
\theta(w)=\theta\left(u_{(k)}^{\sigma}\right) \text { for all } k \geq 0 \text { and for all } w \in u_{(k)}
$$

This gives that, for all $y \in H$,

$$
w \in \gamma(y) \text { implies } w \in \theta(y)
$$

Since $\theta$ is transitively closed, it follows that

$$
w \in \widehat{\gamma}(y) \text { implies } w \in \theta(y)
$$

Consequently, we obtain $\widehat{\gamma}=\gamma^{*}$.
Relation $\gamma$ is a strongly regular relation.
Now, we present some necessary and sufficient conditions such that the relation $\gamma$ is transitive. These conditions are analogous to those determined in [20] for the transitivity of relation $\gamma$ in hypergroups. Let $M$ be a nonempty subset of $n$-semihypergroup $(H, f)$. We say
that $M$ is a $\gamma$-part if, for any $k \in \mathbb{N}, i=1,2, \ldots, m=k(n-1)+1, \forall\left(w_{1}, w_{2}, \ldots, w_{m}\right) \in H^{m}$, $\forall \sigma \in \mathbb{S}_{m}$, we have

$$
f_{(k)}\left(w_{1}^{m}\right) \cap M \neq \varnothing \Longrightarrow f_{(k)}\left(w_{\sigma(1)}^{\sigma(m)}\right) \subseteq M
$$

Theorem 21. Suppose that $M$ is a nonempty subset of an $n$-semihypergroup $H$. Then, the following statements are equivalent:
(1) $M$ is a $\gamma$-part of $H$;
(2) $x \in M, x \gamma y$ implies that $y \in M$;
(3) $x \in M, x \gamma^{*} y$ implies that $y \in M$.

Proof. $(1 \Rightarrow 2):$ If $(x, y) \in H^{2}$ is a pair such that $x \in M$ and $x \gamma y$, then $\exists k \in \mathbb{N}$ for $i=1, \ldots, m=k(n-1)+1, \exists \sigma \in \mathbb{S}_{m}$ and $\exists\left(z_{1}, \ldots, z_{m}\right) \in H^{m}$, such that $x \in f_{(k)}\left(z_{1}^{m}\right) \cap M$ and $y \in f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right)$. Since $M$ is a $\gamma$-part of $H$, we have $f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right) \subseteq M$ and $y \in M$.
$(2 \Rightarrow 3)$ : Assume that $(x, y) \in H^{2}$ such that $x \in M$ and $x \gamma^{*} y$. Then, there exist $p \in \mathbb{N}$ and $\left(x=w_{0}, w_{1}, \ldots, w_{p-1}, w_{p}=y\right) \in H^{p+1}$ such that $x=w_{0} \gamma w_{1} \gamma \ldots \gamma w_{p-1} \gamma w_{p}=y$. Since $x \in M$, applying (2) $p$ times, it follows that $y \in M$.
$(3 \Rightarrow 1)$ : Suppose that $f_{(k)}\left(z_{1}^{m}\right) \cap M \neq \varnothing$, and $x \in f_{(k)}\left(z_{1}^{m}\right) \cap M$. For any $\sigma \in \mathbb{S}_{m}$ and $y \in f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right)$, we have $x \gamma y$. This yields that $x \in M$ and $x \gamma^{*} y$. Finally, by (3), we obtain $y \in M$. This means that $f_{(k)}\left(z_{\sigma(1)}^{\sigma(m)}\right) \subseteq M$.

For every element $x$ of an $n$-semihypergroup $(H, f)$, set:

$$
\begin{aligned}
& T_{k}(w)=\left\{\left(w_{1}, \ldots, w_{m}\right) \in H^{m} \mid m=k(n-1)+1, w \in f_{(k)}\left(x_{1}^{m}\right)\right\} \\
& P_{k}(w)=\bigcup\left\{f_{(k)}\left(w_{\sigma(1)}^{\sigma(m)}\right) \mid \sigma \in \mathbb{S}_{m},\left(w_{1}, \ldots, w_{m}\right) \in T_{k}(w), m=k(n-1)+1\right\} \\
& P_{\sigma}(w)=\bigcup_{k \geq 1} P_{k}(w)
\end{aligned}
$$

From the preceding notations and definitions, it follows that
Corollary 3 ([13]). For every $x \in H, P_{\sigma}(x)=\{y \in H \mid x \gamma y\}$.
Theorem 22 ([13]). Let $(H, f)$ be an $n$-semihypergroup. The following statements are equivalent:
(1) $\gamma$ is transitive;
(2) For any $w \in H, \gamma^{*}(w)=P_{\sigma}(w)$;
(3) For any $w \in H, P_{\sigma}(w)$ is a $\gamma$-part of $H$.

Let $(H, f)$ be an $n$-hypergroup; we consider the canonical projection $\varphi: H \rightarrow H / \gamma^{*}$ with $\varphi(x)=\gamma^{*}(x)$.

Corollary 4 ([13]). Let $(H, f)$ be an n-hypergroup and $\delta \in H / \gamma^{*}$, then $\varphi^{-1}(\delta)$ is a $\gamma$-part of $H$.
Corollary 5 ([13]). If $(H, f)$ is a commutative $n$-semihypergroup, then $\gamma=\beta$.
Theorem 23 ([13]). For every nonempty subset $M$ of an n-hypergroup $(H, f)$, we have:
(1) If $H / \gamma^{*}$ has a neutral element $\varepsilon$ and $D=\varphi^{-1}(\varepsilon)$, then for every $i=1, \ldots, n$,

$$
f\left(D^{i-1}, M, D^{n-i}\right) \subseteq \varphi^{-1}(\varphi(M)) ;
$$

(2) Moreover if $H / \gamma^{*}$ is one-cancellative, then $f\left(D^{i-1}, M, D^{n}\right)=\varphi^{-1}(\varphi(M))$;
(3) If $M$ is a $\gamma$-part of $H$, then $\varphi^{-1}(\varphi(M))=M$.

Proof. (1) For any $x \in f\left(D^{i-1}, M, D^{n-i}\right)$, there exist $d_{2}, \ldots, d_{n} \in D$ and $b \in M$ such that $x \in f\left(d_{2}^{i-1}, b, d_{i+1}^{n}\right)$, so $\varphi(x)=f / \gamma^{*}\left(\varepsilon^{i-1}, \varphi(b), \varepsilon^{n-i}\right)=\varphi(b)$; therefore, $x \in \varphi^{-1}(\varphi(x)) \subseteq$ $\varphi^{-1}(\varphi(M))$.
(2) For any $x \in \varphi^{-1}(\varphi(M))$, an element $b \in M$ exists such that $\varphi(x)=\varphi(b)$. Let $d \in D$. Then, there exists $a \in H$ such that $x \in f\left(a, b, d^{n-2}\right)$. Therefore,

$$
\varphi(b)=\varphi(x)=f / \gamma^{*}\left(\varphi(a), \varphi(d)^{i-2}, \varphi(b), \varphi(d)^{n-i}\right)=f / \gamma^{*}\left(\varphi(a), \varepsilon^{i-2}, \varphi(b), \varepsilon^{n-2}\right) .
$$

However, $f\left(\varepsilon^{i-1}, \varphi(b), \varepsilon^{n-i}\right)=\varphi(b)$, and since $(H, f)$ is one-cancellative, thus $\varphi(a)=\varepsilon$ and $a \in \varphi^{-1}(\varepsilon)=D$. Therefore, $x \in f\left(a, b, d^{n-2}\right)=f\left(D^{i-1}, M, D^{n-i}\right)$. This and (1) prove that $\varphi^{-1}(\varphi(M))=f\left(D^{i-1}, M, D^{n-i}\right)$.
(3) Clearly, we have $M \subseteq \varphi^{-1}(\varphi(M))$. Furthermore, if $x \in \varphi^{-1}(\varphi(M))$, then there exists $b \in M$ such that $\varphi(x)=\varphi(b)$. This yields that $x \in \gamma^{*}(x)=\gamma^{*}(b) \subseteq M$ and $\varphi^{-1}(\varphi(M)) \subseteq M$.

Theorem 24 ([13]). If $(H, f)$ is an n-hypergroup with neutral (identity) $e$, such that $H / \gamma *$ is $j$-cancellative, then we have:
(1) If $x \in P_{\sigma}(e)$ and $x \gamma y$, then $y \in P_{\sigma}(e)$;
(2) $\gamma$ is transitive.

Proof. (1) If $x \in P_{\sigma}(e)$ and $x \gamma y$, then $\exists\left(k, k^{\prime}\right) \in \mathbb{N} \times \mathbb{N}, m=k(n-1)+1, m^{\prime}=k^{\prime}(n-1)+1$, $\exists\left(x_{1}, \ldots, x_{m}\right) \in H^{m}, \exists\left(y_{1}, \ldots, y_{m^{\prime}}\right) \in H^{m^{\prime}}, \exists \sigma \in \mathbb{S}_{m}$ and $\exists \sigma^{\prime} \in \mathbb{S}_{m^{\prime}}$, such that $e \in$ $f_{(k)}\left(x_{1}^{m}\right), x \in f_{(k)}\left(x_{\sigma(1)}^{\sigma(m)}\right), x \in f_{\left(k^{\prime}\right)}\left(y_{1}^{m^{\prime}}\right), y \in f_{\left(k^{\prime}\right)}\left(y_{\sigma^{\prime}(1)}^{\sigma^{\prime}\left(m^{\prime}\right)}\right)$. Therefore, if $x^{\prime}$ is an element of $H$ such that

$$
\begin{aligned}
e \in f\left(e^{n-2}, x, x^{\prime}\right) & \subseteq f\left(e^{n-2}, f\left(e^{n-2}, x, e\right), x^{\prime}\right) \\
& \subseteq f\left(e^{n-2}, f\left(e^{n-2}, f_{\left(k^{\prime}\right)}\left(y_{1}^{m^{\prime}}\right), f_{(k)}\left(x_{1}^{m}\right)\right), x^{\prime}\right) .
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
y \in f\left(e^{n-2}, y, e\right) & \subseteq f\left(e^{n-2}, y, f\left(e^{n-2}, x, x^{\prime}\right)\right) \\
& \subseteq f\left(e^{n-2}, f_{\left(k^{\prime}\right)}\left(y_{\sigma^{\prime}(1)}^{\sigma^{\prime}\left(m^{\prime}\right)}\right), f\left(e^{n-2}, f_{(k)}\left(x_{\sigma(1)}^{\sigma(m)}\right), x^{\prime}\right)\right)
\end{aligned}
$$

Thus, $y \in P_{\sigma}(e)$.
(2) By (1), we have $P_{\sigma}(e)=\gamma^{*}(e)=D$. Moreover, if $x \gamma^{*} y$, then $x \in \gamma^{*}(y)$, so $x \in \varphi^{-1}(\varphi(y))=f\left(D^{i-1}, y, D^{n-i}\right)$. Therefore, there exist $\left(a_{2}^{n}\right) \in D^{n}$ such that $x \in$ $f\left(a_{2}^{i-1}, y, a_{i+1}^{n}\right)$. Thus, there exist $k_{i} \in \mathbb{N}$, and there are $\left(x_{i 1}, \ldots, x_{i m_{i}}\right) \in H^{m_{i}}$, where $m_{i}=$ $k_{i}(n-1)+1$, and $\sigma_{i} \in \mathbb{S}_{m_{i}}$ such that $e \in f_{\left(k_{i}\right)}\left(x_{i 1}^{i m_{i}}\right)=A_{i}$ and $a_{i} \in f_{(k)}\left(x_{i \sigma_{i}(1)}^{i \sigma_{i}\left(m_{i}\right)}\right)=A_{\sigma(i)}$, where $i=2, \ldots, n$. If $j \in\{1, \ldots, n\}$, it follows that

$$
x \in f\left(a_{2}^{j-1}, y, a_{j+1}^{n}\right) \subseteq f\left(A_{\sigma(2)}^{\sigma(j-1)}, y, A_{\sigma(j+1)}^{\sigma(n)}\right) \text { and } y \in f\left(e^{j-1}, y, e^{j-n)}\right) \subseteq f\left(A_{2}^{j-1}, y, A_{j+1}^{n}\right)
$$

Whence $x \gamma y$ and $\gamma^{*}=\gamma$.

## 5. Join $\boldsymbol{n}$-Spaces

Let $(L, \leq, \vee)$ be a join semi-lattice and $a_{1}^{n}$ be elements of $L$. We denote

$$
\begin{array}{ll}
A_{n}=a_{1} \vee a_{2} \vee \ldots \vee a_{n}, & A_{n}^{(1)}=a_{2} \vee \ldots \vee a_{n} \\
A_{n}^{(n)}=a_{1} \vee \ldots \vee a_{n-1}, & A_{n}^{(i)}=a_{1} \vee \ldots \vee a_{i-1} \vee a_{i+1} \vee \ldots \vee a_{n},
\end{array}
$$

for any $2 \leq i \leq n-1$. For any $a_{1}^{n}$ of $L$, we define the following $n$-hyperoperation:

$$
f\left(a_{1}^{n}\right)=\left\{x \mid x \vee A_{n}^{(i)}=A_{n}, \text { for any } i \in\{1,2, \ldots, n\}\right\} .
$$

Notice that $A_{n} \in f\left(a_{1}^{n}\right)$. Notice also that the $n$-hyperoperation $f$ is commutative.
If $(L, \leq, V)$ is a join semi-lattice, then the following statements hold:
(1) For any $b, a_{1}^{n-1}$ of $L$, there is $x=b \vee A_{n-1}$ such that $b \in f\left(x, a_{1}^{n-1}\right)$.
(2) If $L$ has a 0 , then 0 is a scalar identity for $(L, f)$.
(3) If $n \geq 3$, then any $x \in L$ is an identity for $(L, f)$.
(4) For any $a, x, b_{1}^{n-1}$ of $L$, we have the equivalence:

$$
a \in f\left(x, b_{1}^{n-1}\right) \text { iff } x \in f\left(a, b_{1}^{n-1}\right)
$$

(5) For any $a, b_{1}^{n-1}$ of $L$, we have $a / b_{1}^{n-1}=f\left(a, b_{1}^{n-1}\right)$.

Theorem 25 ([18]). If $(L, f)$ is an n-semihypergroup, then for any $a, c, b_{1}^{n-1}, d_{1}^{n-1}$ of $L$, we have

$$
f\left(a, b_{1}^{n-1}\right) \cap f\left(c, d_{1}^{n-1}\right) \neq \varnothing \Longrightarrow f\left(a, d_{1}^{n-1}\right) \cap f\left(c, b_{1}^{n-1}\right) \neq \varnothing .
$$

Theorem 26 ([18]). For any $a_{1}^{2 n-1}$ of $L$, if we denote

$$
S=\left\{y \mid A_{2 n-1}=A_{2 n-1}^{(i)} \vee y, \text { for any } i \in\{1,2, \ldots, 2 n-1\}\right\},
$$

then $f\left(a_{1}^{n-1}, f\left(a_{n}^{2 n-1}\right)\right) \subset S$.
Theorem 27 ([18]). If $(L, \vee, \wedge)$ is a modular lattice, then $S \subset f\left(a_{1}^{n-1}, f\left(a_{n}^{2 n-1}\right)\right)$.
Proof. Let $y \in S$. Set $z \in\left(y \vee A_{n-1}\right) \wedge\left(a_{n} \vee \ldots \vee a_{2 n-1}\right)$. We check $z \in f\left(a_{n}^{2 n-1}\right)$ and $y \in f\left(a_{1}^{n-1}, z\right)$. Indeed, for any $i \in\{1,2, \ldots, n-2\}$, we have

$$
\begin{aligned}
& a_{n} \vee \ldots \vee a_{n+i-1} \vee z \vee a_{n+i+1} \vee \ldots \vee a_{2 n-1}= \\
& =\left(a_{n} \vee \ldots \vee a_{n+i-1} \vee a_{n+i-1} \vee \ldots \vee a_{2 n-1}\right) \vee\left[\left(y \vee A_{n-1}\right) \wedge\left(a_{n} \vee \ldots \vee a_{2 n-1}\right)\right]= \\
& =\left(A_{2 n-1}^{(n+i)} \vee y\right) \wedge\left(a_{n} \vee \ldots \vee a_{2 n-1}\right)=A_{2 n-1} \wedge\left(a_{n} \vee \ldots \vee a_{2 n-1}\right)=a_{n} \vee \ldots \vee a_{2 n-1} .
\end{aligned}
$$

Similarly, we have

$$
z \vee a_{n+1} \vee \ldots \vee a_{2 n-1}=a_{n} \vee \ldots \vee a_{2 n-2} \vee z=a_{n} \vee \ldots \vee a_{2 n-1} .
$$

Hence, $z \in f\left(a_{n}^{2 n-1}\right)$. On the other hand,

$$
\begin{aligned}
& A_{n-1} \vee z=A_{n-1} \vee\left[\left(y \vee A_{n-1}\right) \wedge\left(a_{n} \vee \ldots \vee a_{2 n-1}\right)\right]= \\
& =\left(y \vee A_{n-1}\right) \wedge A_{2 n-1}=\left(y \vee A_{n-1}\right) \wedge\left(A_{2 n-2} \vee y\right)=y \vee A_{n-1}
\end{aligned}
$$

and for any $i \in\{1,2, \ldots, n-1\}$, we have

$$
\begin{aligned}
& A_{n}^{(i)} \vee y \vee z=\left(A_{n-1}^{(i)} \vee y\right) \vee\left[\left(y \vee A_{n-1}\right) \wedge\left(a_{n} \vee \ldots \vee a_{2 n-1}\right)=\right. \\
& =\left(y \vee A_{n-1}\right) \wedge\left(A_{n-1}^{(i)} \vee y \vee a_{n} \vee \ldots \vee a_{2 n-1}\right)= \\
& =\left(y \vee A_{n-1}\right) \wedge\left(A_{2 n-1}^{(i)} \vee y\right)= \\
& =\left(y \vee A_{n-1}\right) \wedge\left(A_{2 n-2} \vee y\right)=y \vee A_{n-1} .
\end{aligned}
$$

Therefore, $y \in f\left(a_{1}^{n-1}, z\right) \subset f\left(a_{1}^{n-1}, f\left(a_{n}^{2 n-1}\right)\right)$.
Corollary 6 ([18]). If $(L, \vee, \wedge)$ is a modular lattice, then $(L, f)$ is an $n$-semihypergroup.
Theorem 28 ([18]). If $(L, \vee, \wedge)$ is a lattice and $(L, f)$ is an $n$-semihypergroup, then the lattice ( $L, \vee, \wedge$ ) is modular.

Proof. Assume that $L$ is not modular. Hence, $L$ contains a five-element sublattice, isomorphic to this one: $\{m, a, b, c, M\}$, where $m<b<a<M, m<c<M, a, c$, and $b, c$, respectively, are not comparable. We have $c \in f(a, \underbrace{b, \ldots, b}_{n-2}, M)$ and $M \in f(b, \underbrace{c, \ldots, c}_{n-1})$, since $a \vee c=b \vee c=M$. Hence,

$$
c \in f(a, \underbrace{b, \ldots, b}_{n-2}, f(b, \underbrace{c, \ldots, c}_{n-1}))=f(f(a, \underbrace{b, \ldots, b}_{n-1}), \underbrace{c, \ldots, c}_{n-1}) .
$$

Therefore, there exists $x \in f(a, \underbrace{b, \ldots, b}_{n-1})$, such that $c \in f(x, \underbrace{c, \ldots, c}_{n-1})$. We have $a=a \vee b=$ $b \vee x=a \vee x \vee b=a \vee x$ and $c \vee x=c$, whence $x \leq a$ and $x \leq c$, that is $x \leq a \wedge c=m$. Hence, $x<b$, which contradicts $a=b \vee x$. Therefore, $(L, \vee, \wedge)$ is modular.

Corollary $7([18])$. A lattice $(L, \vee, \wedge)$ is modular iff $(L, f)$ is an $n$-semihypergroup.
Corollary $8([18])$. The lattice $(L, \vee, \wedge)$ is modular iff the $n$-hypergroupoid $(L, f)$ is a join $n$-space.
Now, we can consider the following dual- $n$-hyperoperation $f^{\circ}$ on a meet semilattice $(L, \leq, \wedge)$, defined by: for any $a_{1}^{n}$ of $L$, we have:

$$
f^{\circ}\left(a_{1}^{n}\right)=\left\{x \in L \mid x \wedge B_{n}^{(i)}=B_{n}, \text { for any } i \in\{1,2, \ldots, n\}\right\}
$$

where $B_{n}=a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n}, B_{n}^{(1)}=a_{2} \wedge \ldots \wedge a_{n}, B_{n}^{(n)}=a_{1} \wedge \ldots \wedge a_{n-1}$ and for any $i \in$ $\{2, \ldots, n-1\}, B_{n}^{(i)}=a_{1} \wedge \ldots \wedge a_{i-1} \wedge a_{i+1} \wedge \ldots \wedge a_{n}$. By duality, the following result holds:

Theorem 29 ([18]). A lattice $(L, \vee, \wedge)$ is modular iff the $n$-hypergroupoid $\left(L, f^{\circ}\right)$ is a join $n$-space:

- If $L$ has the greatest element 1 , then 1 is a scalar identity for $\left(L, f^{\circ}\right)$.
- If $n \geq 3$, then any $x \in L$ is an identity for $\left(L, f^{\circ}\right)$.

Theorem 30 ([18]). Let $(L, \vee, \wedge)$ be a modular lattice:
(1) A subset I of $L$ is an $n$-subhypergroup of $(L, f)$ iff $I$ is an ideal of $L$.
(2) A subset I of $L$ is an $n$-subhypergroup of $\left(L, f^{\circ}\right)$ iff I is a filter of $L$.

Proof. (1) Let $(I, f)$ be an $n$-subhypergroupoid of $(L, f)$. Then, for any $a_{1}, a_{2} \in I$, we have

$$
a_{1} \vee a_{2} \in f(a_{1}, \underbrace{a_{2}, \ldots, a_{2}}_{n-1}) \subset I
$$

If $a \in I$ and $x \leq a$, then $x \in f(\underbrace{a, \ldots, a}_{n}) \subset I$. " $\Longleftarrow "$ Let $a_{1}^{n}$ be elements of $I$. If $z \in f\left(a_{1}^{n}\right)$, then $A_{n}=z \vee A_{n}^{(i)}$, for any $i \in\{1,2, \ldots, n\}$, whence $z \leq A_{n}$. Since $A_{n} \in I$, it follows that $z \in I$. On the other hand, for any $a, a_{1}^{i-1}, a_{i+1}^{n}$ of $I$ and $1 \leq i \leq n$, there is $x_{i}=a \vee A_{n}^{(i)}$ such that $a \in f\left(a_{1}^{i-1}, x_{i}, a_{i+1}^{n}\right)$. Hence, $I$ is an $n$-subhypergroup of $(L, f)$.
(2) It follows by duality.

Theorem 31 ([18]). Let $(L, \vee, \wedge)$ be a lattice and $\varphi: L \rightarrow L$ a bijective map. The following conditions are equivalent:
(1) For any $a_{1}^{n}$ of $L$, we have $\varphi\left(A_{n}\right)=\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)$.
(2) $\quad \varphi$ is a morphism from $(L, f)$ to $\left(L, f^{\circ}\right)$.

Proof. $(1 \Longrightarrow 2)$ : For any $a_{1}^{n}$ of $L$, we have $\varphi\left(f\left(a_{1}^{n}\right)\right)=\left\{\varphi(z) \mid z \in f\left(a_{1}^{n}\right)\right\}=\left\{\varphi(z) \mid A_{n}=\right.$ $z \vee A_{n}^{(i)}$, for any $\left.i \in\{1,2, \ldots, n\}\right\}$, whence $\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)=\varphi\left(A_{n}\right)=\varphi\left(z \vee A_{n}^{(i)}\right)=$ $\varphi(z) \wedge \varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{i-1}\right) \wedge \varphi\left(a_{i+1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)$, that is

$$
\varphi(z) \in f^{\circ}\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right)
$$

Now, let $t \in f^{\circ}\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right)$. Since there is $x$ such that $t=\varphi(x)$, it follows that

$$
\varphi(x) \wedge\left[\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{i-1}\right) \wedge \varphi\left(a_{i+1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)\right]=\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)
$$

for any $i \in\{1,2, \ldots, n\}$, and according to (1), we obtain $\varphi\left(x \vee A_{n}^{(i)}\right)=\varphi\left(A_{n}\right)$, for any $i \in\{1,2, \ldots, n\}$. Since $\varphi$ is bijective, it follows that $x \vee A_{n}^{(i)}=A_{n}$, for any $i \in\{1,2, \ldots, n\}$, that is $x \in f\left(a_{1}^{n}\right)$. Hence,

$$
t=\varphi(x) \in \varphi\left(f\left(a_{1}^{n}\right)\right)
$$

$(2 \Longrightarrow 1)$ : Let $a_{1}^{n}$ be elements of $L$. If $z \in f\left(a_{1}^{n}\right)$, then

$$
\varphi(z) \in f^{\circ}\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right)
$$

that is

$$
\varphi(z) \wedge \varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{i-1}\right) \wedge \varphi\left(a_{i+1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)=\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)
$$

for any $i \in\{1,2, \ldots, n\}$. Hence,

$$
\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right) \leq \varphi(z) .
$$

For $z=A_{n} \in f\left(a_{1}^{n}\right)$, we obtain $\varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right) \leq \varphi\left(A_{n}\right)$. On the other hand, for any $i \in\{1,2, \ldots, n\}, A_{n} \in f(a_{i}, \underbrace{A_{n}, \ldots, A_{n}}_{n-1})$, so

$$
\varphi\left(A_{n}\right) \in \varphi(f(a_{i}, \underbrace{A_{n}, \ldots, A_{n}}_{n-1}))=f^{\circ}(\varphi\left(a_{i}\right), \underbrace{\varphi\left(A_{n}\right), \ldots, \varphi\left(A_{n}\right)}_{n-1})
$$

whence $\varphi\left(A_{n}\right)=\varphi\left(a_{i}\right) \wedge \varphi\left(A_{n}\right)$, that is $\varphi\left(A_{n}\right) \leq \varphi\left(a_{i}\right)$. It follows that

$$
\varphi\left(A_{n}\right) \leq \varphi\left(a_{1}\right) \wedge \ldots \wedge \varphi\left(a_{n}\right)
$$

Therefore, the condition (1) holds.
By duality, we obtain the following.
Theorem 32 ([18]). Let $(L, \vee, \wedge)$ be a lattice and $\varphi: L \rightarrow L$ a bijective map. The following conditions are equivalent:
(1) For any $a_{1}^{n}$ of $L$, we have

$$
\varphi\left(B_{n}\right)=\varphi\left(a_{1}\right) \vee \ldots \vee \varphi\left(a_{n}\right) .
$$

(2) $\varphi$ is a morphism from $\left(L, f^{\circ}\right)$ to $(L, f)$.

Let $(L, \vee, \wedge)$ be an arbitrary lattice. We define on $L$ the following $n$-hyperoperation: for any $a_{1}^{n}$ of $L$, we have

$$
\begin{aligned}
g\left(a_{1}^{n}\right) & =\left\{x \in L \mid B_{n} \leq x \leq A_{n}\right\}, \text { where } \\
B_{n} & =a_{1} \wedge a_{2} \wedge \ldots \wedge a_{n} \text { and } A_{n}=a_{1} \vee a_{2} \vee \ldots \vee a_{n} .
\end{aligned}
$$

The $n$-hypergroupoid $(L, g)$ has the following properties:
(1) $g$ is commutative;
(2) For any $a \in L$, we have $g(\underbrace{a, \ldots, a}_{n})=a$;
(3) for any $a_{1}^{n}$ of $L$, we have $\left\{a_{i}^{n}\right\} \subset g\left(a_{i}^{n}\right)$;
(4) For any $a_{1}^{n-1}$ of $L$, we have $b \in b / a_{1}^{n-1}$;
(5) For any $a \in L$, we have $a /\{\underbrace{a, \ldots, a}_{n-1}\}=L$;
(6) For any $a, b \in L$, we have $x \in a /\{\underbrace{b, \ldots, b}_{n-1}\} \cap b /\{\underbrace{a, \ldots, a}_{n-1}\}$ iff $a \wedge x=b \wedge x$ and $a \vee x=$ $b \vee x$.

Theorem 33 ([18]). If the lattice $(L, \vee, \wedge)$ is distributive, then for any $a_{1}^{2 n-1}$ of $L$, we have

$$
g\left(g\left(a_{1}^{n}\right), a_{n+1}^{2 n-1}\right)=\left[B_{2 n-1}, A_{2 n-1}\right] .
$$

Proof. Indeed, for any $a_{1}^{2 n-1}$ of $L$, we have

$$
g\left(g\left(a_{1}^{n}\right), a_{n+1}^{2 n-1}\right) \subset\left[B_{2 n-1}, A_{2 n-1}\right] .
$$

Conversely, let $z \in\left[B_{2 n-1}, A_{2 n-1}\right]$. If $x=\left(z \wedge A_{n}\right) \vee B_{n}$, then $B_{n} \leq x \leq A_{n}$, that is $x \in g\left(a_{1}^{n}\right)$. On the other hand,

$$
z \in g\left(x, a_{n+1}^{2 n-1}\right)
$$

Indeed, by distributivity, we have

$$
\begin{aligned}
& a_{n+1} \wedge \ldots \wedge a_{2 n-1} \wedge x=a_{n+1} \wedge \ldots \wedge a_{2 n-1} \wedge\left[\left(z \wedge A_{n}\right) \vee B_{n}\right]= \\
& =\left(z \wedge A_{n} \wedge a_{n+1} \wedge \ldots \wedge a_{2 n-1}\right) \vee B_{2 n-1} \leq z
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{n+1} \vee \ldots \vee a_{2 n-1} \vee x=a_{n+1} \vee \ldots \vee a_{2 n-1} \vee\left(z \wedge A_{n}\right) \vee B_{n}= \\
& =\left(a_{n+1} \vee \ldots \vee a_{2 n-1} \vee B_{n} \vee z\right) \wedge\left(a_{n+1} \vee \ldots \vee a_{2 n-1} \vee B_{n} \vee A_{n}\right)= \\
& =A_{2 n-1} \wedge\left(a_{n+1} \vee \ldots \vee a_{2 n-1} \vee B_{n} \vee z\right) \geq z .
\end{aligned}
$$

Hence $z \in g\left(x, a_{n+1}^{2 n-1}\right)$, whence $z \in g\left(g\left(a_{1}^{n}\right), a_{n+1}^{2 n-1}\right)$. We obtain

$$
g\left(g\left(a_{1}^{n}\right), a_{n+1}^{2 n-1}\right)=\left[B_{2 n-1}, A_{2 n-1}\right] .
$$

Corollary 9 ([18]). If $(L, \vee, \wedge)$ is a distributive lattice, then $(L, g)$ is an $n$-hypergroup.
Proof. Since the subset $\left[B_{2 n-1}, A_{2 n-1}\right]$ is invariant to any permutation $\left(a_{i_{1}}, \ldots, a_{i_{2 n-1}}\right)$ of $\left(a_{1}, \ldots, a_{2 n-1}\right)$, it follows that

$$
\left[B_{2 n-1}, A_{2 n-1}\right]=g\left(g\left(a_{i_{1}}, \ldots, a_{i_{n}}\right), a_{i_{n+1}}, \ldots, a_{i_{2 n-1}}\right) .
$$

Moreover, $g$ is commutative, so it follows that $g$ is associative. Therefore, we obtain that ( $L, g$ ) is an $n$-hypergroup.

Theorem 34 ([18]). If $(L, \vee, \wedge)$ is a distributive lattice, then $(L, g)$ is a join $n$-space.
Proof. We still have to check the join $n$-space condition. Let $x \in a / b_{1}^{n-1} \cap c / d_{1}^{n-1}$, that is

$$
\begin{aligned}
& x \wedge b_{1} \wedge \ldots \wedge b_{n-1} \leq a \leq x \vee b_{1} \vee \ldots \vee b_{n-1} \quad \text { and } \\
& x \wedge d_{1} \wedge \ldots \wedge d_{n-1} \leq c \leq x \vee d_{1} \vee \ldots \vee d_{n-1} .
\end{aligned}
$$

We have to prove that there is $z \in g\left(a, d_{1}^{n-1}\right) \cap g\left(c, b_{1}^{n-1}\right)$, that is

$$
\begin{aligned}
& \left(a \wedge d_{1} \wedge \ldots \wedge d_{n-1}\right) \vee\left(c \wedge b_{1} \wedge \ldots \wedge b_{n-1}\right) \leq z \leq \\
& \leq\left(a \vee d_{1} \vee \ldots \vee d_{n-1}\right) \wedge\left(c \vee b_{1} \vee \ldots \vee b_{n-1}\right) .
\end{aligned}
$$

We have $a \wedge d_{1} \wedge \ldots \wedge d_{n-1} \leq\left(x \vee b_{1} \vee \ldots \vee b_{n-1}\right) \wedge\left(d_{1} \wedge \ldots \wedge d_{n-1}\right)=\left(x \wedge d_{1} \wedge \ldots \wedge d_{n-1}\right) \vee$ $\left[\left(b_{1} \vee \ldots \vee b_{n-1}\right) \wedge d_{1} \wedge \ldots \wedge d_{n-1}\right] \leq c \vee b_{1} \vee \ldots \vee b_{n-1}$. Hence, $\left(a \wedge d_{1} \wedge \ldots \wedge d_{n-1}\right) \vee\left(c \wedge b_{1} \wedge\right.$ $\left.\ldots \wedge b_{n-1}\right) \leq c \vee b_{1} \vee \ldots \vee b_{n-1}$. Similarly, we have $\left(a \wedge d_{1} \wedge \ldots \wedge d_{n-1}\right) \vee\left(c \wedge b_{1} \wedge \ldots \wedge b_{n-1}\right) \leq$ $a \vee d_{1} \vee \ldots \vee d_{n-1}$. Therefore,

$$
\left(a \wedge d_{1} \wedge \ldots \wedge d_{n-1}\right) \vee\left(c \wedge b_{1} \wedge \ldots \wedge b_{n-1}\right) \leq\left(a \vee d_{1} \vee \ldots \vee d_{n-1}\right) \wedge\left(c \vee b_{1} \vee \ldots \vee b_{n-1}\right)
$$

that is

$$
g\left(a, d_{1}^{n-1}\right) \cap g\left(c, b_{1}^{n-1}\right) \neq \varnothing .
$$

Theorem 35 ([18]). If $(L, \vee, \wedge)$ is a join $n$-space, then the lattice $(L, \vee, \wedge)$ is distributive.
Proof. Suppose that $L$ is not distributive. Then, $L$ contains a five-element sublattice $\{m, a, b, c, M\}$, where $a \vee c=b \vee c=M, a \wedge c=b \wedge c=m$, and either $a>b$ or $a, b, c$ are mutually non-comparable. We have $c \in a /\{\underbrace{b, \ldots, b}_{n-1}\} \cap b /\{\underbrace{a, \ldots, a}_{n-1}\}$, and since $(L, g)$ is a join $n$-space, we obtain

$$
g(\underbrace{a, \ldots a}_{n}) \cap g(\underbrace{b, \ldots, b}_{n}) \neq \varnothing,
$$

that is $a=b$, which is a contradiction.
Therefore, $(L, \vee, \wedge)$ is distributive.
Corollary 10 ([18]). The n-hypergroupoid $(L, g)$ is a join $n$-space iff the lattice $(L, \vee, \wedge)$ is distributive.
Theorem 36 ([18]). Let $(L, \vee, \wedge)$ be a distributive lattice. If I is an ideal and $F$ is a filter of $L$, then $(I, g)$ and $(F, g)$ are $n$-subhypergroups of $(L, g)$.

Proof. Let $I$ be an ideal of $L$. For any $a_{1}^{n}$ of $I$, we have $g\left(a_{1}^{n}\right)=\left\{z \mid B_{n} \leq z \leq A_{n}\right\}$. Since $A_{n}=a_{1} \vee \ldots \vee a_{n} \in I$ and $z \leq A_{n}$, it follows $z \in I$. Hence, $g\left(a_{1}^{n}\right) \subset I$. On the other hand, we have $a \in g\left(a, a_{1}^{n-1}\right)$ for any $a, a_{1}^{n-1}$ of $I$. Therefore, $(I, g)$ is an $n$-subhypergroup of $(L, g)$. Similarly, it follows that $(F, g)$ is an $n$-subhypergroup of $(L, g)$.

The converse fails, as can be seen from the following example:
Example 6. Let us consider the distributive lattice $(\mathcal{P}(M), \cup, \cap)$, where $M$ is a set with at least three elements. Let $a, b \in M, a \neq b$ and $S=\{M-\{a\}, M-\{a, b\}\}$. Then, $(S, g)$ is an $n$-subhypergroup of $(\mathcal{P}(M), g)$, but $S$ is neither an ideal, nor a filter of $\mathcal{P}(M)$, since $\varnothing \notin S$ and $M \notin S$, respectively.

Author Contributions: Conceptualization, B.D. and V.L.-F.; methodology, B.D. and V.L.-F.; formal analysis, B.D. and T.V.; investigation, B.D.; resources, B.D., V.L.-F. and T.V.; writing-original draft preparation, B.D. and V.L.-F.; writing-review and editing, B.D., V.L.-F. and T.V.; supervision, B.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicable.
Conflicts of Interest: The authors declare no conflict of interest.

## References

1. Dörnte, W. Untersuchungen uber einen verallgemeinerten Gruppenbegriff. Math. Z. 1929, 29, 1-19. [CrossRef]
2. Post, E.L. Polyadic groups. Trans. Amer. Math. Soc. 1940, 48, 208-350. [CrossRef]
3. Dudek, W.A.; Michalski, J. On retracts of polyadic groups. Demonstr. Math. 1984, 17, 281-302. [CrossRef]
4. Dudek, W.A.; Glazek, K. Around the Hosszu-Gluskin theorem for n-ary groups. Discret. Math. 2008, 308, 4861-4876. [CrossRef]
5. Dudek, W.A. Varieties of polyadic groups. Filomat 1995, 9, 657-674.
6. Marty, F. Sur une generalisation de la notion de groupe. In Proceedings of the 8 th Congres Des Mathematiciens Scandinaves, Stockholm, Sweden, 14-18 August 1934; pp. 45-49.
7. Davvaz, B.; Vougiouklis, T. A Walk through Weak Hyperstructures: $H_{v}$-Structures; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2019.
8. Corsini, P. Prolegomena of Hypergroup Theory; Aviani Editore: Tricesimo, Italy, 1993.
9. Rosenberg, I.G. Hypergroups and join spaces determined by relations. Ital. J. Pure Appl. Math. 1998, 4, 93-101.
10. Freni, D. Une note sur le coeur d'un hypergroupe et sur la cloture $\beta^{*}$ de $\beta$. Mat. Pura Appl. 1991, 8, 153-156.
11. Davvaz, B.; Vougiouklis, T. N-Ary hypergroups. Iran. J. Sci. Technol. Trans. A 2006, 30, 165-174.
12. Davvaz, B.; Dudek, W.A.; Vougiouklis, T. A generalization of $n$-ary algebraic systems. Commun. Algebra 2009, 37, 1248-1263. [CrossRef]
13. Davvaz, B.; Dudek, W.A.; Mirvakili, S. Neutral elements, fundamental relations and $n$-ary hypersemigroups. Int. J. Algebra Comput. 2009, 19, 567-583. [CrossRef]
14. Anvariyeh, S.M.; Momeni, S. $n$-ary hypergroups associated with $n$-ary relations. Bull. Korean Math. Soc. 2013, 502, 507-524. [CrossRef]
15. Davvaz, B.; Leoreanu-Fotea, V. Binary relations on ternary semihypergroups. Commun. Algebra 2010, 38, 3621-3636. [CrossRef]
16. Krehlik, S.; Novak, M.; Bolat, M. Properties of $n$-ary hypergroups relevant for modelling trajectories in HD maps. An. Stiint. Univ. "Ovidius" Constanta Ser. Mat. 2022, 30, 161-178.
17. Leoreanu-Fotea, V.; Davvaz, B. $n$-hypergroups and binary relations. Eur. J. Comb. 2008, 29, 1207-1218. [CrossRef]
18. Leoreanu-Fotea, V.; Davvaz, B. Join $n$-spaces and lattices. J. Mult.-Valued Log. Soft Comput. 2009, 15, 421-432.
19. Corsini, P. Mutually associative hypergroupoids. In Algebraic Hyperstructures and Applications, Prague, 1996; Democritus Univ. Thrace, Alexandroupolis: Komotini, Greece, 1997; pp. 25-33.
20. Freni, D. A new characterization of the derived hypergroup via strongly regular equivalences. Commun. Algebra 2002, 30, 3977-3989. [CrossRef]
21. Freni, D. Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory. Commun. Algebra 2004, 32, 969-988. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

