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Abstract

:

This paper presents a series of important results from the theory of n-hypergroups. Connections with binary relations and with lattices are presented. Special attention is paid to the fundamental relation and to the commutative fundamental relation. In particular, join n-spaces are analyzed.
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1. Introduction


The theory of n-ary hypergroups, also called n-hypergroups, contains two generalizations of the notion of a group: n-groups and hypergroups, which are briefly presented in the next paragraph. The two concepts were introduced around the same time.



n-groups, also called polyadic groups, were introduced in 1928 by W. Dörnte [1], and they are a generalization of classical groups. An important role in n-group theory is the paper written by E.L. Post of 143 pages [2]. Such operations are used then in the study of   ( m , n )  -rings. Among those who made recently important contributions in the theory of n-groups, we mention W. Dudek and his collaborators; see for instance [3,4,5]. Let   n > 2  , and denote the chain    x i  , … ,  x j    by   x i j   (for   j < i ,   the above sequence is the empty symbol). For a nonempty set G with one n-operation,   f :  G n  → G   is a n-groupoid, which is a n-quasigroup, if, for all    a 1 n  , b ∈ G  , there is exactly one    x i  ∈ G   such that   f (  a 1  i − 1   ,  x i  ,  a  i + 1  n  ) = b .   An n-quasigroup with an associative operation is called an n-ary group.



Hypergroup theory is a field of algebra that appeared in 1934 and was introduced by the French mathematician Marty [6]. The theory has known various periods of flourishing: the 1940s, then 1970s, and especially after the 1990s, the theory has been studied on all continents, both theoretically and for a multitude of applications in various fields of knowledge: various chapters of mathematics, computer science, biology, physics, chemistry, and sociology. Several books have been written in this field, which highlight both the theoretical aspects and the applications; for instance, see [7]. Figure 1 suggestively shows the connections between the previously mentioned domains.



This survey is structured as follows: First, basic notions in the field of algebraic hyperstructures are recalled, followed by results, in particular characterizations in the field of n-hypergroups. Special attention is given to the connections with binary relations and fundamental relations. Finally, join n-spaces with connections to lattice theory are presented.




2. Hypergroups


An algebraic hyperstructure is a nonempty set H together with one or some functions from   H × H   to the set    P *   ( H )    of nonempty subsets of H. For all    ( x , y )  ∈  H 2   , one denotes by   x ∘ y   the image   f ( x , y ) ,   where f is the function   f : H × H →  P *   ( H )  .   Then,   ( H , ∘ )   is called a hypergroupoid.



If    S , T  ∈  P *   ( H )  ,    S ∘ T   denotes the set    ⋃  s ∈ S , t ∈ T   s ∘ t .  



Definition 1.

The pair   ( H , ∘ )   is called a semihypergroup if


  ∀  ( r , s , t )  ∈  H 3  ,    ( r ∘ s )  ∘ t = r ∘  ( s ∘ t )  ,  








where   ( r ∘ s ) ∘ t   denotes the union


   ⋃  a ∈ r ∘ s   a ∘ t .  








Analogously,


  r ∘  ( s ∘ t )  =  ⋃  b ∈ s ∘ t   r ∘ b .  













Definition 2.

A hypergroup   ( H , ∘ )   is a semihypergroup such that


  ∀  ( a , b )  ∈  H 2  ,  ∃  ( x , y )  ∈  H 2    such  that    










  a ∈ b ∘ x   and   a ∈ y ∘ b  













Several types of hypergroup homomorphisms are analyzed. We refer to [8]. Furthermore, several classes of subhypergroups are introduced and studied, such as canonical hypergroups, join spaces, and complete hypergroups. Join Spaces were introduced by Prenowitz.



Definition 3.

Let   ( H , ∘ )   be a commutative hypergroup. Then,   ( H , ∘ )   is a join space if the following implication is satisfied:


  ∀  ( r , s , t , w )  ∈  H 4  ,  










  r / s ∩ t / w ≠ ∅ ⇒ r ∘ w ∩ s ∘ t ≠ ∅ ,  








where   r / s   denotes the set


  { a ∈ H ∣ r ∈ a ∘ s } .  













Example 1.

Suppose that   ( L , ∨ , ∧ )   is a lattice. Then, L is a distributive lattice if and only if   ( L , ⋆ )   is a join space, where   a ⋆ b = { x ∈ L | a ∧ b ≤ x ≤ a ∨ b } .  





Example 2.

Suppose that   ( L , ∨ , ∧ )   is a lattice. Then, L is a modular lattice if and only if   ( L , ∘ )   is a join space, where   a ∘ b = { x ∈ L | a ∨ b = b ∨ x = a ∨ x } .   Clearly,   a ∨ b ∈ a ∘ b .  





Canonical hypergroups have a structure close to that of a commutative group: they are commutative, have a scalar identity e (that is,   ∀ x ∈ H , x ∘ e = e ∘ x = x )  , every element has a unique inverse, and they are reversible (that is, if   x ∈ y ∘ z ,   then   z ∈  y  − 1   ∘ x ,  y ∈ x ∘  z  − 1    ) .   



An important result is the next one:



Theorem 1.

Let   ( H , ∘ )   be a commutative hypergroup. Then, it is a canonical hypergroup iff it is a join space with a scalar identity.





One of the most-investigated hypergroups associated with binary relations is that introduced by Rosenberg [9] in 1998. It represents a theme of research of numerous papers. Rosenberg associated a partial hypergroupoid    H ρ  =  ( H , ∘ )    with a binary relation  ρ  defined on a set H, where, for any   x , y ∈ H ,   we have   x ∘ x = { z ∈ H | ( x , z ) ∈ ρ }   and   x ∘ y = x ∘ x ∪ y ∘ y .  



Definition 4.

An element b in H is an outer element of ρ if there exists   a ∈ H   such that    ( a , b )  ∉  ρ 2   .





Theorem 2.

  ( H , ∘ )   is a hypergroup iff:




	(1)

	
ρ has full domain;




	(2)

	
ρ has full range;




	(3)

	
  ρ ⊆  ρ 2   ;




	(4)

	
If    ( a , b )  ∈  ρ 2   , then   ( a , b ) ∈ ρ  , where b is an outer element of   ρ .  











Special attention is paid to the fundamental  β  relation, which leads to a group quotient structure.



Definition 5.

Suppose that   ( H , ∘ )   is a semihypergroup and n is a natural number greater than 1. We can consider the relation   β n   on H as follows:   x  β n  y   if there exist    a 1  ,  a 2  , … ,  a n    in H, such that    { x , y }  ⊆   ∏  i = 1  n    a i   , and assume that   β =   ⋃  n ≥ 1     β n   , where    β 1  =  {  ( r , r )  | r ∈ H }   .





In [10], Freni showed that, in every hypergroup, the relation  β  is transitive, so the following result holds:



Theorem 3.

If   ( H , ∘ )   is a hypergroup, then   ( H / β , · )   is a group, where    x ¯  ·  y ¯  =  z ¯   , where z is an arbitrary element of   x ∘ y .   Moreover, the canonical projection   φ : H → H / β   is a good homomorphism.






3. n-Hypergroups


Davvaz and Vougiouklis [11] defined the notion of n-hypergroups for the first time. This concept is a generalization of n-groups, as well as hypergroups in the sense of Marty. Some properties of such hyperstructures were investigated in [12,13,14,15,16,17,18]. Moreover, some researchers have pointed out the relation between n-hypergroup and fuzzy sets.



Suppose that H is a nonempty set. A function   f :    H × … × H  ︸   n  times   →   P  *   ( H )    is called an n-hyperoperation. As usual, we may write    H n  = H × … × H  , where H appears n times. An element of   H n   is denoted by   (  x 1  , … ,  x n  )  , where    x i  ∈ H   for any i with   1 ≤ i ≤ n  . Let    P 1  , … ,  P n    be nonempty subsets of H. We define


  f  (  P 1  , … ,  P n  )  = ⋃  { f  (  p 1  , … ,  p n  )   |   p i  ∈  P i  , i = 1 , … , n }   








The pair   ( H , f )   is called an n-hypergroupoid. An n-hypergroupoid   ( H , f )   is called an n-semihypergroup iff


  f  (  h 1  i − 1   , f  (  h i  n + i − 1   )  ,  h  n + i   2 n − 1   )  = f  (  h 1  j − 1   , f  (  h j  n + j − 1   )  ,  h  n + j   2 n − 1   )  ,  








for all   1 ≤ i , j ≤ n   and    h 1  ,  h 2  , … ,  h  2 n − 1   ∈ H  . An n-semihypergroup   ( H , f )   in which the equation:


  b ∈ f (  h 1  i − 1   ,  x i  ,  h  i + 1  n  )  



(1)




has the solution    x i  ∈ H   for every    h 1  , … ,  h  i − 1   ,  h  i + 1   , … ,  h n  , b ∈ H  , and   1 ≤ i ≤ n   is called an n-hypergroup. If the value of   f (  h 1  , … ,  h n  )   is independent of the permutation of elements    h 1  , … ,  h n   , then we have a commutative n-hypergroup.



Example 3.

If   ( H , ⋆ )   is a hypergroup, then obtain an n-hypergroup by defining   f  (  h 1  , … ,  h n  )  =  h 1  ⋆ … ⋆  h n   , for all    h 1  , … ,  h n  ∈ H  .





Example 4.

Let  Z  be the set of integer numbers. If we define


   f  (  h 1  , … ,  h n  )  =  {  m 1   h 1  + … +  m n   h n   |   m 1  , … ,  m n  ∈ Z }  ,   








then   ( Z , f )   is an n-hypergroup.





Example 5.

Assume   ( L , ∨ , ∧ )   is a modular lattice. For every    h 1  , … ,  h n  ∈ L   and   i ∈ { 1 , … , n }  , we define


       A n  ( i )   =  h 1  ∨ … ∨  h  i − 1   ∨  h  i + 1   ∨ … ∨  h n  ,             A n  =  h 1  ∨ … ∨  h n  .      








If we define:


   f  (  h 1  , … ,  h n  )  =  { x ∈ L  |  x ∨  A n  ( i )   =  A n  ,   for  all   1 ≤ i ≤ n }  ,   








then   ( L , f )   is a commutative n-hypergroup.





Theorem 4.

Suppose that   ( H , f )   is an n-semihypergroup. Then,   ( H , f )   is an n-hypergroup iff Equation (1) is solvable at the first place and at the last place or at least one place   1 < i < n  .





Proof. 

If Equation (1) is solvable at the place   i = 1   and   i = n  , then, for every    h 1  , … ,  h n  , b ∈ H  , there are    x 0  ,  z 0  ∈ H   such that


  b ∈ f  (  x 0  ,  h 2 n  )   and   x 0  ∈ f  (  h 1  n − 1   ,  z 0  )  .  








If   j ∈ { 1 , … , n }   is arbitrary, then we have


  b ∈ f  ( f  (  h 1  n − 1   ,  z 0  )  ,  h 2 n  )  = f  (  h 1  j − 1   , f  (  h j  n − 1   ,  z 0  ,  h 2 j  )  ,  h  j + 1  n  )  .  








Hence, there is   x ∈ f (  h j  n − 1   ,  z 0  ,  h 2 j  )   such that   b ∈ f (  h 1  j − 1   , x ,  h  j + 1  n  )  .



Now, assume that Equation (1) is solvable at place   1 < i < n  . Assume that   j < i  , then for every    a 1  , … ,  a n  , b ∈ H  , there is    y 1  ∈ H   such that


  b ∈ f (  h 1  i − 1   ,  y 1  , f  (     h 1  , … ,  h 1   ︸   n − ( i − j + 1 )   ,  h  j + 1   i + 1   )  ,  h  i + 2  n  ) .  








This implies that


  b ∈ f (  h 1  j − 1   , f  (  h j  i − 1   ,  y 1  ,     h 1  , … ,  h 1   ︸   n − ( i − j + 1 )   )  ,  h  j + 1  n  ) .  








Hence, there is   x ∈ f (  h j  i − 1   ,  y 1  ,  h 1  , …  h 1  )   such that   b ∈ f (  h 1  j − 1   , x ,  h  j + 1  n  )  . If we consider   i < j  , then in a similar, way we can prove that Equation (1) is solvable. □





An n-hyperoperation f is called weakly   ( i , j )  -associative if


  f  (  x 1  i − 1   , f  (  x i  n + i − 1   )  ,  x  n + i   2 n − 1   )  ∩ f  (  x 1  j − 1   , f  (  x j  n + j − 1   )  ,  x  n + j   2 n − 1   )  ≠ ∅ ,  








and   ( i , j )  -associative if


  f  (  x 1  i − 1   , f  (  x i  n + i − 1   )  ,  x  n + i   2 n − 1   )  = f  (  x 1  j − 1   , f  (  x j  n + j − 1   )  ,  x  n + j   2 n − 1   )  ,  








holds for fixed   1 ≤ i < j ≤ n   and all    x 1  ,  x 2  , … ,  x  2 n − 1   ∈ H  .



We say that the element   a ∈ H   is in the center of an n-hypergroupoid   ( G , f )  , if


  f  ( a ,  x 2 n  )  = f  (  x 2  , a ,  x 3 n  )  = f  (  x 2 3  , a ,  x 4 n  )  = … = f  (  x 2 n  , a )  ,  








for all    x 2  , … ,  x n  ∈ H  . An   ( i , i + k )  -associative n-hypergroupoid   ( G , f )   containing cancelable elements in the center (cancelable elements belong to the center) is   ( 1 , n )  -associative [12].



Theorem 5

([12]). An n-hypergroupoid containing cancellative elements in the center is an n-semihypergroup iff it is   ( i , j )  -associative for some   1 ≤ i < j ≤ n  .





An n-hypergroupoid   ( H , f )   is called a b-derived from a binary hypergroupoid   ( G , ⋆ )   [12], and denote this fact by    ( H , f )  = d e  r b   ( H , ⋆ )    if the hyperoperation f has the form


  f  (  x 1 n  )  =  (  x 1  ⋆  x 2  ⋆ … ⋆  x n  )  ⋆ b .  











Theorem 6

([12]). An n-semihypergroup has a neutral element iff it is derived from a binary semihypergroup with the identity.





Theorem 7

([12]). An n-semihypergroup derived from a binary semihypergroup has a neutral polyad iff it has a neutral element.





Consequently, if an n-semihypergroup without neutral elements is derived from a binary semihypergroup, then it does not possess any neutral polyad.



Theorem 8

([12]). If an n-semihypergroup   ( H , f )   does not contain any neutral elements, then to   ( H , f )  , we can adjoint the neutral element if and only if   ( H , f )   is derived from a binary semihypergroup.





Theorem 9

([12]). To an n-semihypergroup   ( H , f )   we can adjoint the neutral element iff   ( H , f )   is derived from a binary semihypergroup.





Theorem 10

([12]). For any n-semihypergroup   ( H , f )   with a right neutral polyad, there is a semihypergroup   ( H , ⋆ )   with a right identity and an endomorphism φ of   ( H , ⋆ )   such that


  f  (  x 1 n  )  =  x 1  ⋆ φ  (  x 2  )  ⋆  φ 2   (  x 3  )  ⋆ … ⋆  φ  n − 1    (  x n  )  ⋆ b ,  








for some   b ∈ H  .





Theorem 11

([12]). For any n-semihypergroup   ( H , f )   with a left neutral polyad, there is a semihypergroup   ( H , ⋆ )   with a left identity and an endomorphism ψ of   ( H , ⋆ )   such that


  f  (  x 1 n  )  = b ⋆  ψ  n − 1    (  x 1  )  ⋆  ψ  n − 2    (  x 2  )  ⋆ … ⋆  ϕ 2   (  x  n − 2   )  ⋆ ϕ  (  x  n − 1   )  ⋆  x n   








for some   b ∈ H  .






4. Binary Relations and Fundamental Relations


Suppose that R is a binary relation on a nonempty set H. We define a partial n-hypergroupoid   ( H ,  f R  )  , as follows:


   f R  (    w , … , w  ︸  n  ) =  { y ∣  ( w , y )  ∈ R }  ,  








for all w in H and


   f R   (  w 1  ,  w 2  , … ,  w n  )  =  f R  (     w 1  , … ,  w 1   ︸  n  ) ∪  f R  (     w 2  , … ,  w 2   ︸  n  ) ∪ … ∪  f R  (     w n  , … ,  w n   ︸  n  ) ,  








for every    w 1  ,  w 2  , … ,  w n  ∈ H  . It is clear that   ( H ,  f R  )   is commutative. The partial n-hypergroupoid   ( H ,  f R  )   is a generalization of the Rosenberg partial hypergroupoid. We denote    f R   (  w 1  ,  w 2  , … ,  w n  )    by    f R   (  w 1 n  )   . The relation R is transitive iff, for any w in H, we have


   f R  (  f R  (    w , … , w  ︸  n  ) ,    w , … , w  ︸   n − 1   ) =  f R  (    w , … , w  ︸  n  ) .  








Moreover,   ( H ,  f R  )   is an n-hypergroupoid if the domain of R is H.



Theorem 12

([17]). Suppose that R is a binary relation on H, with full domain. Then,   ( H ,  f R  )   is an n-semihypergroup iff   R ⊂  R 2    and for each outer element y of R, if    ( x , y )  ∈  R 2    implies   ( x , y ) ∈ R .  





It follows that:



Corollary 1.

Suppose that R is a binary relation with full domain. Then,   ( H ,  f R  )   is an n-hypergroup iff the following hold:




	(1)

	
R has a full range;




	(2)

	
  R ⊂  R 2   ;




	(3)

	
   ( x , y )  ∈  R 2    implies   ( x , y ) ∈ R   for every outer element   y ∈ R  .











Note that if R is a subset of   R 2  , then x is an outer element of R iff   x ∉  f R   (   f R   (    w , … , w  ︸  n  )  ,       w , … , w  ︸   n − 1    )    for some   w ∈ H  .



If R is a subset of   R 2  , then there are no outer elements of R iff, for each   w ∈ H  , we have


   f R   (  f R   (    w , … , w  ︸  n  )  ,    w , … , w  ︸   n − 1   )  = H .  











Theorem 13

([17]). Suppose that the relation R is reflexive and symmetric. Then,   ( H ,  f R  )   is an n-hypergroup iff, for every   u , w ∈ H  , we have


   f R   (  f R   (    u , … , u  ︸  n  )  ,    u , … , u  ︸   n − 1   )  −  f R   (    u , … , u  ︸  n  )  ⊂  f R   (  f R   (    w , … , w  ︸  n  )  ,    w , … , w  ︸   n − 1   )  .  













Corollary 2.

Suppose that the relation R is reflexive and symmetric, but not transitive. Then,   ( H ,  f R  )   is an n-hypergroup iff    R 2  =  H 2  .  





The concept of mutually associative hypergroupoids was introduced by Corsini [19]. We generalize this concept to n-hypergroupoids. Two partial n-hypergroupoids   ( H ,  f 1  )   and   ( H ,  f 2  )   are mutually associative if, for every    w 1  , … ,  w  2 n − 1   ∈ H  , we have:




	(i   1  )

	
   f 2   (  f 1   (  w 1 n  )  ,  w  n + 1   2 n − 1   )  =  f 1   (  w 1  n − 1   ,  f 2   (  w n  2 n − 1   )  )  ;  




	(i   2  )

	
   f 2   (  w 1  ,  f 1   (  w 2  n + 1   )  ,  w  n + 2   2 n − 1   )  =  f 1   (  w 1  n − 2   ,  f 2   (  w  n − 1   2 n − 2   )  ,  w  2 n − 1   )  ;  




	(i   3  )

	
   f 2   (  w 1  ,  w 2  ,  f 1   (  w 3  n + 2   )  ,  w  n + 3   2 n − 1   )  =  f 1   (  w 1  n − 3   ,  f 2   (  w  n − 2   2 n − 3   )  ,  w  2 n − 2   ,  w  2 n − 1   )  ;  



…




	(i    n − 1   )

	
   f 2   (  w 1  n − 2   ,  f 1   (  w  n − 1   2 n − 2   )  ,  w  2 n − 1   )  =  f 1   (  w 1  ,  f 2   (  w 2  n + 1   )  ,  w  n + 2   2 n − 1   )  ;  




	(i   n  )

	
   f 2   (  w 1  n − 1   ,  f 1   (  w n  2 n − 1   )  )  =  f 1   (  f 2   (  w 1 n  )  ,  w  n + 1   2 n − 1   )  .  









Let   f 1   and   f 2   be two ordinary hyperoperations. Then, we obtain two mutually associative partial hypergroupoids. If R is a binary relation on H and   A ⊂ H  , we denote


  R ( A ) = { b ∣ ( a , b ) ∈ R , for   some   a ∈ A } .  








If   A = {  w 1  ,  w 2  , … ,  w k  }  , we write   R (  w 1 k  )   for   R ( A )  . If R and S are binary relations on H, then we denote by   S R   the relation   {  ( a , c )  ∈  H 2  ∣  ( a , b )  ∈ R   and   ( b , c ) ∈ S  , for some   b ∈ H }  .



Theorem 14

([17]). Let R and S be two relations on H with full domains. Then,   ( H ,  f R  )   and   ( H ,  f S  )   are mutually associative iff, for every    w 1  ,  w 2  , … ,  w  2 n − 1   ∈ H  , we have


  S R  (  w 1 n  )  ∪ S  (  w  n + 1   2 n − 1   )  = R S  (  w n  2 n − 1   )  ∪ R  (  w 1  n − 1   )  .  













Theorem 15

([17]). If   ( H ,  f R  )   and   ( H ,  f S  )   are mutually associative n-hypergroups, then   ( H ,  f  R ∪ S   )   is also an n-hypergroup.





Theorem 16.

Let R and S be relations on H, such that   R ⊂ S R  . If   ( H ,  f R  )   is an n-hypergroup,   ( H ,  f R  )   and   ( H ,  f S  )   are mutually associative and one of the following two conditions holds:




	(1)

	
   R S ∩ { ( w , w ) ∣ w ∈ H } = ∅ ;   




	(2)

	
The domain    ( R S )    of   R S   is different from H.









Then,   ( H ,  f  S R   )   is an n-hypergroup, as well.





Now, suppose that   ( H , f )   is an n-semihypergroup. We denote


      f  ( 1 )   =  { f  (  w 1 n  )  ∣  w i  ∈ H ,  1 ≤ i ≤ n }   } ,          f  ( 2 )    = { f   ( f  (  u 1 n  )  ,  w 2 n  )  ∣  u i  ∈ H ,   w j  ∈ H ,   1 ≤ i ≤ n ,       ∀  2 ≤ j ≤ n } ,         f  ( 3 )    = { f   ( f  ( f  (  v 1 n  )  ,  u 2 n  )  ,  w 2 n  )  ∣  v i  ∈ H ,   u j  ∈ H ,   w j  ∈ H ,        ∀ 1 ≤ i ≤ n ,  ∀ 2 ≤ j ≤ n } ,     








and so on. Denote    U =  ⋃  k ∈   I  N  *     f  ( k )   .    We define    β =  ⋃  k ≥ 1    β k    , where, for all   x , y   of H,


  a  β k  y  ⇔ ∃ u ∈  f  ( k )   ,   such  that    { x , y }  ⊆ u .  








Denote     ⋃    u ∈ U   a ∈ u    u    by    C 1   ( a )   , which means


   C 1   ( w )  =  { a ∣   there  exists   u ∈ U   such  that   w ∈ u ,  a ∈ u }  .  








For every   n ∈   I  N  *  ,   denote


   C  n + 1    ( w )  =  { a ∣   there  exists   u ∈ U   such  that    C n   ( w )  ∩ u ≠ ∅ ,  a ∈ u }  .  











A subsets B is a complete part of   ( H , f )   if, for every   u ∈ U ,  


  B ∩ u = ∅ ⟹ u ⊂ B .  











Suppose that   C ( w )   is the complete closure of w. We have    C  ( w )  =  ⋃  i ∈   I  N  *     C i   ( w )  ,    for all   w ∈ H  .



Theorem 17

([17]). Suppose that   ( H , f )   is an n-semihypergroup. The relation β is transitive iff   C  ( w )  =  C 1   ( w )   , for all   w ∈ H .  





Theorem 18

([17]). If   ( H , f )   is an n-hypergroup, then β is transitive.





Suppose that   (  H 1  , f )   and   (  H 2  , g )   are n-hypergroups. We define    ( f , g )  :   (  H 1  ×  H 2  )  n  ⟶   P  *   (  H 1  ×  H 2  )    by    ( f , g )   (  (  u 1  ,  v 1  )  , … ,  (  u n  ,  v n  )  )   = {   ( u , v )    |  u ∈ f  (  u 1  , … ,  u n  )  , v ∈ g (   v 1  , … ,     v n   ) }   . Clearly,   (  H 1  ×  H 2  ,  ( f , g )  )   is an n-hypergroup, and it is the direct hyperproduct of   H 1   and   H 2  .



Theorem 19

([11]). Let   (  H 1  , f )   and   (  H 2  , g )   be two n-hypergroups, and let   β 1 *  ,   β 2 *  , and   β *   be fundamental equivalence relations on   H 1  ,   H 2  , and    H 1  ×  H 2   , respectively. Then,


   (  H 1  ×  H 2  )  /  β *   ≅   H 1  /  β 1 *   ×  H 2  /  β 2 *  .  













Let   ( H , f )   be an n-semihypergroup and  ρ  be an equivalence relation on H; we define


  X   ρ ¯  ¯  Y ⟺ x ρ y   for  all   x ∈ X , y ∈ Y .  








The relation  ρ  is a strongly regular relation if    x i  ρ  y i    for all   1 ≤ i ≤ n  , then,


  f  (  x 1  , … ,  x n  )    ρ ¯  ¯  f  (  y 1  , … ,  y n  )  .  








If  ρ  is a strongly regular relation on an n-semihypergroup   ( H , f )  , then the quotient   ( H / ρ , f / ρ )   is an n-semigroup such that


  f / ρ  ( ρ  (  x 1  )  , … , ρ  (  x n  )  )  = ρ  ( z )     for  all   z ∈ f  (  x 1  , … ,  x n  )   








where    x 1  , … ,  x n  ∈ H  .



Similar to the relation defined by Freni [20,21] on semihypergroups, Davvaz et al. [13] introduced the following relation on an n-semihypergroup so that the quotient is a commutative n-semigroup. Let   ( H , f )   be an n-semihypergroup. Then,   γ ^   denotes the transitive closure of the relation    γ =  ⋃  k ≥ 1    γ k    , where    γ 1  =  {  ( w , w )  |  w ∈ H }   , and for every integer   k > 1  , we define


  x  γ k  y  ⟺  x ∈  u  ( k )     a n d   y ∈  u  ( k )  σ  .  








When   m = k ( n − 1 ) + 1  , there are    a 1 m  ∈  H m    and   σ ∈  S m    such that    u  ( k )   =  f  ( k )    (  a 1 m  )    and    u  ( k )  σ  =  f  ( k )    (  a  σ ( 1 )   σ ( m )   )  .    x  γ 1  y   (i.e.,   x = y  ), then we write   x ∈  u  ( 0 )     and   y ∈  u  ( 0 )  σ  =  u  ( 0 )    . We define   γ *   as the smallest equivalence relation such that the quotient   ( H /  γ *  , f /  γ *  )   is a commutative n-semigroup.



Theorem 20

([13]). The fundamental relation   γ *   is the transitive closure of the relation γ.





Proof. 

The n-operation   f /  γ ^    in   H /  γ ^    is defined in the usual manner:


  f /  γ ^   (  γ ^   (  x 1  )  , … ,  γ ^   (  x n  )  )  =  {  γ ^   ( y )  |  y ∈ f  (  γ ^   (  x 1  )  , … ,  γ ^   (  x n  )  )  }   








for all    x 1  , … ,  x n  ∈ H  . Let    a 1  ∈  γ ^   (  x 1  )  , … ,  a n  ∈  γ ^   (  x n  )   . Then, we have:








	
   a 1   γ ^   x 1    iff there exist    x 11  , …  x  1  m 1  + 1     with    x 11  =  a 1   ,    x  1  m 1  + 1   =  x 1    such that


      x  1  i 1    ∈  u  (  k 1  )      ( 1 ≤  i 1  ≤  m 1  − 1 )  ,        x  1  i 1  + 1   ∈  u  (  k 1  )   σ 1      ( 2 ≤  i 1  ≤  m 1  )  .     











	
…



	
   a n   γ ^   x n    iff there exist    x  n 1   , …  x  n  m n  + 1     with    x  n 1   =  a n   ,    x  n  m n  + 1   =  x n    such that


      x  n  i n    ∈  u  (  k n  )      ( 1 ≤  i n  ≤  m n  − 1 )  ,        x  n  i n  + 1   ∈  u  (  k n  )   σ n      ( 2 ≤  i n  ≤  m n  )  .     
















Therefore, we obtain


     f  (  x  1  i 1    ,  x 21  , … ,  x  n 1   )  ⊆  u  (  k 1  )       1 ≤  i 1  ≤  m 1  − 1 ,       f  (  x  1  i 1  + 1   ,  x 21  , … ,  x  n 1   )  ⊆  u  (  k 1  )   σ 1       2 ≤  i 1  ≤  m 1  ,       f  (  x  1  m 1  + 1   ,  x  2  i 2    , … ,  x  n 1   )  ⊆  u  (  k 2  )       1 ≤  i 2  ≤  m 2  − 1 ,       f  (  x  1  m 1  + 1   , ,  x  2  i 2  + 1   , … ,  x  n 1   )  ⊆  u  (  k 2  )   σ 2       2 ≤  i 2  ≤  m 2  ,      …   …      f  (  x  1  m 1  + 1   ,  x  2  m 2  + 1   , … ,  x  n  i n    )  ⊆  u  (  k n  )       1 ≤  i n  ≤  m n  − 1 ,       f  (  x  1  m 1  + 1   ,  x  2  m 2  + 1   , … ,  x  n  i n  + 1   )  ⊆  u  (  k n  )   σ n       2 ≤  i n  ≤  m n  .     








This yields that   f /  γ ^   (  γ ^   (  x 1  )  , … ,  γ ^   (  x n  )  )    is singleton. Therefore, we can write


  f /  γ ^   (  γ ^   (  x 1  )  , … ,  γ ^   (  x n  )  )  =  γ ^   ( z )     for  all   z ∈ f  (  γ ^   (  x 1  )  , … ,  γ ^   (  x n  )  )  .  








Moreover, since f is associative, we obtain that   f /  γ ^    is associative, and consequently,   H /  γ ^    is an n-semigroup.



  ( H /  γ ^  , f /  γ ^  )   is commutative because, if   σ ∈  S n    and   a ∈ f (  x 1 n  )   and   b ∈ f (  x  σ ( 1 )   σ ( n )   )  , then   a γ b  , and so,    γ ^   ( a )  =  γ ^   ( b )   . Therefore,   f /  γ ^   (  γ ^   (  x 1  )  , … ,  γ ^   (  x n  )  )  = f /  γ ^   (  γ ^   (  x  σ ( 1 )   )  , … ,  γ ^   (  x  σ ( n )   )  )  ;   thus   ( H /  γ ^  , f /  γ ^  )   is commutative.



Now, assume that  θ  is an equivalence relation on H such that   H / θ   is a commutative n-semigroup. Then, for all    w 1  , … ,  w n  ∈ H  ,


  f / θ  ( θ  (  w 1  )  , … , θ  (  w n  )  )  = θ  ( z )     for  all   z ∈ f  ( θ  (  w 1  )  , … , θ  (  w n  )  )  .  








However, for any   σ ∈  S n    and    w 1  , … ,  w n  ∈ H   and    X i  ⊆ θ  (  w i  )    ( i = 1 , … , n )   , we have


  f / θ  ( θ  (  w 1  )  , … , θ  (  w n  )  )  = θ  ( f  (  w  σ ( 1 )   , … ,  w  σ ( n )   )  )  = θ  ( f  (  X  σ ( 1 )   , … ,  X  σ ( n )   )  )  .  








Therefore,


  θ  ( w )  = θ  (  u  ( k )  σ  )     for  all   k ≥ 0   and  for  all   w ∈  u  ( k )   .  








This gives that, for all   y ∈ H  ,


  w ∈ γ ( y )   implies   w ∈ θ ( y ) .  








Since  θ  is transitively closed, it follows that


  w ∈  γ ^   ( y )    implies   w ∈ θ  ( y )  .  








Consequently, we obtain    γ ^  =  γ *   . □





Relation  γ  is a strongly regular relation.



Now, we present some necessary and sufficient conditions such that the relation  γ  is transitive. These conditions are analogous to those determined in [20] for the transitivity of relation  γ  in hypergroups. Let M be a nonempty subset of n-semihypergroup   ( H , f ) .   We say that M is a  γ -  p a r t   if, for any   k ∈ N ,     i = 1 , 2 , … , m = k ( n − 1 ) + 1 ,    ∀  (  w 1  ,  w 2  , … ,  w m  )  ∈  H m   ,   ∀ σ ∈  S m  ,   we have


   f  ( k )    (  w 1 m  )  ∩ M ≠ ∅ ⟹  f  ( k )    (  w  σ ( 1 )   σ ( m )   )  ⊆ M .  











Theorem 21.

Suppose that M is a nonempty subset of an n-semihypergroup   H .   Then, the following statements are equivalent:








	(1)

	
M is a γ-part of H;




	(2)

	
  x ∈ M , x  γ  y   implies that   y ∈ M ;  




	(3)

	
  x ∈ M , x   γ *   y   implies that   y ∈ M .  











Proof. 

  ( 1 ⇒ 2 ) :   If    ( x , y )  ∈  H 2    is a pair such that   x ∈ M   and   x  γ  y ,   then   ∃ k ∈ N   for   i = 1 , … , m = k  ( n − 1 )  + 1 ,  ∃ σ ∈  S m    and   ∃  (  z 1  , … ,  z m  )  ∈  H m  ,   such that   x ∈  f  ( k )    (  z 1 m  )  ⋂ M   and   y ∈  f  ( k )    (  z  σ ( 1 )   σ ( m )   )  .   Since M is a  γ -part of   H ,   we have    f  ( k )    (  z  σ ( 1 )   σ ( m )   )  ⊆ M   and   y ∈ M .  



  ( 2 ⇒ 3 ) :   Assume that    ( x , y )  ∈  H 2    such that   x ∈ M   and   x   γ *   y .   Then, there exist   p ∈ N   and    ( x =  w 0  ,  w 1  , … ,  w  p − 1   ,  w p  = y )  ∈  H  p + 1     such that   x =  w 0   γ   w 1   γ … γ   w  p − 1    γ   w p  = y .   Since   x ∈ M ,   applying   ( 2 )  p times, it follows that   y ∈ M .  



  ( 3 ⇒ 1 ) :   Suppose that    f  ( k )    (  z 1 m  )  ⋂ M ≠ ∅ ,   and   x ∈  f  ( k )    (  z 1 m  )  ⋂ M .   For any   σ ∈  S m    and   y ∈  f  ( k )    (  z  σ ( 1 )   σ ( m )   )  ,   we have   x  γ  y .   This yields that   x ∈ M   and   x   γ *   y .   Finally, by   ( 3 ) ,   we obtain   y ∈ M .   This means that    f  ( k )    (  z  σ ( 1 )   σ ( m )   )  ⊆ M  . □





For every element x of an n-semihypergroup   ( H , f ) ,   set:



    T k   ( w )  =  {  (  w 1  , … ,  w m  )  ∈  H m  | m = k  ( n − 1 )  + 1 , w ∈  f  ( k )    (  x 1 m  )  }    



     P k   ( w )  = ⋃  {  f  ( k )    (  w  σ ( 1 )   σ ( m )   )  | σ ∈  S m  ,  (  w 1  , … ,  w m  )  ∈  T k   ( w )  , m = k  ( n − 1 )  + 1 }     



     P σ   ( w )  =  ⋃  k ≥ 1    P k   ( w )  .    



From the preceding notations and definitions, it follows that



Corollary 3

([13]). For every   x ∈ H ,   P σ   ( x )  =  { y ∈ H | x  γ  y }  .  





Theorem 22

([13]). Let   ( H , f )   be an n-semihypergroup. The following statements are equivalent:








	(1)

	
γ is transitive;




	(2)

	
For any   w ∈ H ,  γ *   ( w )  =  P σ   ( w )  ;  




	(3)

	
For any   w ∈ H ,     P σ   ( w )    is a γ-part of   H .  











Let   ( H , f )   be an n-hypergroup; we consider the canonical projection   φ : H → H /  γ *    with   φ  ( x )  =  γ *   ( x )  .  



Corollary 4

([13]). Let   ( H , f )   be an n-hypergroup and   δ ∈ H /  γ *  ,   then    φ  − 1    ( δ )    is a γ-part of   H .  





Corollary 5

([13]). If   ( H , f )   is a commutative n-semihypergroup, then   γ = β .  





Theorem 23

([13]). For every nonempty subset M of an n-hypergroup   ( H , f )  , we have:








	(1)

	
If   H /  γ *    has a neutral element ε and   D =  φ  − 1    ( ε )  ,   then for every   i = 1 , … , n ,  


   f  (  D  i − 1   , M ,  D  n − i   )  ⊆  φ  − 1    ( φ  ( M )  )  ;   












	(2)

	
Moreover if   H /  γ *    is one-cancellative, then   f  (  D  i − 1   , M ,  D n  )  =  φ  − 1    ( φ  ( M )  )  ;  




	(3)

	
If M is a γ-part of   H ,   then    φ  − 1    ( φ  ( M )  )  = M .  











Proof. 

(1) For any   x ∈ f (  D  i − 1   , M ,  D  n − i   ) ,   there exist    d 2  , … ,  d n  ∈ D   and   b ∈ M   such that   x ∈ f (  d 2  i − 1   , b ,  d  i + 1  n  ) ,   so   φ  ( x )  = f /  γ *   (  ε  i − 1   , φ  ( b )  ,  ε  n − i   )  = φ  ( b )  ;   therefore,   x ∈  φ  − 1    ( φ  ( x )  )  ⊆  φ  − 1    ( φ  ( M )  )  .  



(2) For any   x ∈  φ  − 1    ( φ  ( M )  )  ,   an element   b ∈ M   exists such that   φ ( x ) = φ ( b )  . Let   d ∈ D  . Then, there exists   a ∈ H   such that   x ∈ f ( a , b ,  d  n − 2   ) .   Therefore,


  φ  ( b )  = φ  ( x )  = f /  γ *   ( φ  ( a )  , φ   ( d )   i − 2   , φ  ( b )  , φ   ( d )   n − i   )  = f /  γ *   ( φ  ( a )  ,  ε  i − 2   , φ  ( b )  ,  ε  n − 2   )  .  








However,   f (  ε  i − 1   , φ  ( b )  ,  ε  n − i   ) = φ  ( b )   , and since   ( H , f )   is one-cancellative, thus   φ ( a ) = ε   and   a ∈  φ  − 1    ( ε )  = D .   Therefore,   x ∈ f  ( a , b ,  d  n − 2   )  = f  (  D  i − 1   , M ,  D  n − i   )  .   This and (1) prove that    φ  − 1    ( φ  ( M )  )  = f  (  D  i − 1   , M ,  D  n − i   )  .  



(3) Clearly, we have   M ⊆  φ  − 1    ( φ  ( M )  )  .   Furthermore, if   x ∈  φ  − 1    ( φ  ( M )  )  ,   then there exists   b ∈ M   such that   φ ( x ) = φ ( b ) .   This yields that   x ∈  γ *   ( x )  =  γ *   ( b )  ⊆ M   and    φ  − 1    ( φ  ( M )  )  ⊆ M .   □





Theorem 24

([13]). If   ( H , f )   is an n-hypergroup with neutral (identity)   e ,   such that   H /  γ *    is j-cancellative, then we have:








	(1)

	
If   x ∈  P σ   ( e )    and   x  γ  y  , then   y ∈  P σ   ( e )  ;  




	(2)

	
γ is transitive.











Proof. 

(1) If   x ∈  P σ   ( e )    and   x  γ  y ,   then   ∃  ( k ,  k ′  )  ∈ N × N , m = k  ( n − 1 )  + 1 ,  m ′  =  k ′   ( n − 1 )  + 1 ,     ∃   (  x 1  , … ,  x m  )  ∈  H m   ,   ∃   (  y 1  , … ,  y  m ′   )  ∈  H  m ′   ,    ∃  σ ∈  S m    and   ∃   σ ′  ∈  S  m ′   ,   such that   e ∈  f  ( k )    (  x  1  m  )  ,  x ∈  f  ( k )    (  x  σ ( 1 )   σ ( m )   )  ,  x ∈  f  (  k ′  )    (  y  1   m ′   )  ,  y ∈  f  (  k ′  )    (  y   σ ′   ( 1 )     σ ′   (  m ′  )    )  .   Therefore, if   x ′   is an element of H such that


     e ∈ f (  e  n − 2   , x ,  x ′  )     ⊆ f (  e  n − 2   , f  (  e  n − 2   , x , e )  ,  x ′  )        ⊆ f (  e  n − 2   , f  (  e  n − 2   ,  f  (  k ′  )    (  y  1   m ′   )  ,  f  ( k )    (  x  1  m  )  )  ,  x ′  ) .     








Moreover, we have


     y ∈ f (  e  n − 2   , y , e )     ⊆ f (  e  n − 2   , y , f  (  e  n − 2   , x ,  x ′  )  )        ⊆ f (  e  n − 2   ,  f  (  k ′  )    (  y   σ ′   ( 1 )     σ ′   (  m ′  )    )  , f  (  e  n − 2   ,  f  ( k )    (  x  σ ( 1 )   σ ( m )   )  ,  x ′  )  ) .     








Thus,   y ∈  P σ   ( e )  .  



(2) By (1), we have    P σ   ( e )  =  γ *   ( e )  = D .   Moreover, if   x   γ *   y ,   then   x ∈  γ *   ( y )   , so   x ∈  φ  − 1    ( φ  ( y )  )  = f  (  D  i − 1   , y ,  D  n − i   )  .   Therefore, there exist    (  a 2 n  )  ∈  D n    such that   x ∈ f (  a 2  i − 1   , y ,  a  i + 1  n  ) .   Thus, there exist    k i  ∈ N  , and there are    (  x  i 1   , … ,  x  i  m i    )  ∈  H  m i    , where    m i  =  k i   ( n − 1 )  + 1 ,   and    σ i  ∈  S  m i     such that   e ∈  f  (  k i  )    (  x  i 1   i  m i    )  =  A i    and    a i  ∈  f  ( k )    (  x  i  σ i   ( 1 )    i  σ i   (  m i  )    )  =  A  σ ( i )   ,   where   i = 2 , … , n .   If   j ∈ { 1 , … , n }  , it follows that


  x ∈ f  (  a 2  j − 1   , y ,  a  j + 1  n  )  ⊆ f  (  A  σ ( 2 )   σ  ( j − 1 )    , y ,  A  σ  ( j + 1 )    σ ( n )   )    and   y ∈ f  (  e  j − 1   , y ,  e  j − n )   )  ⊆ f  (  A 2  j − 1   , y ,  A  j + 1  n  )  .  








Whence   x  γ  y   and    γ *  = γ .   □






5. Join  n -Spaces


Let   ( L , ≤ , ∨ )   be a join semi-lattice and   a 1 n   be elements of L. We denote


      A n  =  a 1  ∨  a 2  ∨ … ∨  a n  ,      A n  ( 1 )   =  a 2  ∨ … ∨  a n  ,         A n  ( n )   =  a 1  ∨ … ∨  a  n − 1   ,      A n  ( i )   =  a 1  ∨ … ∨  a  i − 1   ∨  a  i + 1   ∨ … ∨  a n  ,     








for any   2 ≤ i ≤ n − 1 .   For any   a 1 n   of L, we define the following n-hyperoperation:


  f  (  a 1 n  )  =  { x ∣ x ∨  A n  ( i )   =  A n  ,  f o r a n y  i ∈  { 1 , 2 , … , n }  }  .  








Notice that    A n  ∈ f  (  a 1 n  )   . Notice also that the n-hyperoperation f is commutative.



If   ( L , ≤ , ∨ )   is a join semi-lattice, then the following statements hold:




	(1)

	
For any   b ,  a 1  n − 1     of L, there is   x = b ∨  A  n − 1     such that   b ∈ f ( x ,  a 1  n − 1   )  .




	(2)

	
If L has a 0, then 0 is a scalar identity for   ( L , f )  .




	(3)

	
If   n ≥ 3  , then any   x ∈ L   is an identity for   ( L , f )  .




	(4)

	
For any   a , x ,  b 1  n − 1     of L, we have the equivalence:


  a ∈ f  ( x ,  b 1  n − 1   )     iff    x ∈ f  ( a ,  b 1  n − 1   )  .  












	(5)

	
For any   a ,  b 1  n − 1     of L, we have   a /  b 1  n − 1   = f  ( a ,  b 1  n − 1   )  .  









Theorem 25

([18]). If   ( L , f )   is an n-semihypergroup, then for any   a , c ,  b 1  n − 1   ,  d 1  n − 1     of L, we have


  f  ( a ,  b 1  n − 1   )  ∩ f  ( c ,  d 1  n − 1   )  ≠ ∅ ⟹ f  ( a ,  d 1  n − 1   )  ∩ f  ( c ,  b 1  n − 1   )  ≠ ∅ .  













Theorem 26

([18]). For any   a 1  2 n − 1    of L, if we denote


  S = { y ∣  A  2 n − 1   =  A  2 n − 1   ( i )   ∨ y ,  f o r   a n y    i ∈  { 1 , 2 , … , 2 n − 1 }  } ,  








then   f (  a 1  n − 1   , f  (  a n  2 n − 1   )  ) ⊂ S .  





Theorem 27

([18]). If   ( L , ∨ , ∧ )   is a modular lattice, then   S ⊂ f (  a 1  n − 1   , f  (  a n  2 n − 1   )  ) .  





Proof. 

Let   y ∈ S  . Set   z ∈  ( y ∨  A  n − 1   )  ∧  (  a n  ∨ … ∨  a  2 n − 1   )  .   We check   z ∈ f (  a n  2 n − 1   )   and   y ∈ f (  a 1  n − 1   , z )  . Indeed, for any   i ∈ { 1 , 2 , … , n − 2 }  , we have


      a n  ∨ … ∨  a  n + i − 1   ∨ z ∨  a  n + i + 1   ∨ … ∨  a  2 n − 1   =        =  (  a n  ∨ … ∨  a  n + i − 1   ∨  a  n + i − 1   ∨ … ∨  a  2 n − 1   )  ∨  [  ( y ∨  A  n − 1   )  ∧  (  a n  ∨ … ∨  a  2 n − 1   )  ]  =        =  (  A  2 n − 1   ( n + i )   ∨ y )  ∧  (  a n  ∨ … ∨  a  2 n − 1   )  =  A  2 n − 1   ∧  (  a n  ∨ … ∨  a  2 n − 1   )  =  a n  ∨ … ∨  a  2 n − 1   .     








Similarly, we have


  z ∨  a  n + 1   ∨ … ∨  a  2 n − 1   =  a n  ∨ … ∨  a  2 n − 2   ∨ z =  a n  ∨ … ∨  a  2 n − 1   .  








Hence,   z ∈ f (  a n  2 n − 1   ) .   On the other hand,


      A  n − 1   ∨ z =  A  n − 1   ∨  [  ( y ∨  A  n − 1   )  ∧  (  a n  ∨ … ∨  a  2 n − 1   )  ]  =        =  ( y ∨  A  n − 1   )  ∧  A  2 n − 1   =  ( y ∨  A  n − 1   )  ∧  (  A  2 n − 2   ∨ y )  = y ∨  A  n − 1       








and for any   i ∈ { 1 , 2 , … , n − 1 }  , we have


      A n  ( i )   ∨ y ∨ z =  (  A  n − 1   ( i )   ∨ y )   ∨ [   ( y ∨  A  n − 1   )  ∧  (  a n  ∨ … ∨  a  2 n − 1   )  =        =  ( y ∨  A  n − 1   )  ∧  (  A  n − 1   ( i )   ∨ y ∨  a n  ∨ … ∨  a  2 n − 1   )  =        =  ( y ∨  A  n − 1   )  ∧  (  A  2 n − 1   ( i )   ∨ y )  =        =  ( y ∨  A  n − 1   )  ∧  (  A  2 n − 2   ∨ y )  = y ∨  A  n − 1   .     








Therefore,   y ∈ f  (  a 1  n − 1   , z )  ⊂ f  (  a 1  n − 1   , f  (  a n  2 n − 1   )  )  .   □





Corollary 6

([18]). If   ( L , ∨ , ∧ )   is a modular lattice, then   ( L , f )   is an n-semihypergroup.





Theorem 28

([18]). If   ( L , ∨ , ∧ )   is a lattice and   ( L , f )   is an n-semihypergroup, then the lattice   ( L , ∨ , ∧ )   is modular.





Proof. 

Assume that L is not modular. Hence, L contains a five-element sublattice, isomorphic to this one:   { m , a , b , c , M }  , where   m < b < a < M  ,   m < c < M  ,   a , c ,   and   b , c  , respectively, are not comparable. We have   c ∈ f ( a ,    b , … , b  ︸   n − 2   , M )   and   M ∈ f ( b ,    c , … , c  ︸   n − 1    )  , since   a ∨ c = b ∨ c = M .   Hence,


  c ∈ f  ( a ,    b , … , b  ︸   n − 2   , f  ( b ,    c , … , c  ︸   n − 1    )  )  = f  ( f  ( a ,    b , … , b  ︸   n − 1    )  ,    c , … , c  ︸   n − 1    )  .  








Therefore, there exists   x ∈ f ( a ,    b , … , b  ︸   n − 1    )  , such that   c ∈ f ( x ,    c , … , c  ︸   n − 1    )  . We have   a = a ∨ b = b ∨ x = a ∨ x ∨ b = a ∨ x   and   c ∨ x = c  , whence   x ≤ a   and   x ≤ c  , that is   x ≤ a ∧ c = m .   Hence,   x < b  , which contradicts   a = b ∨ x .   Therefore,   ( L , ∨ , ∧ )   is modular. □





Corollary 7

([18]). A lattice   ( L , ∨ , ∧ )   is modular iff   ( L , f )   is an n-semihypergroup.





Corollary 8

([18]). The lattice   ( L , ∨ , ∧ )   is modular iff the n-hypergroupoid   ( L , f )   is a join n-space.





Now, we can consider the following dual-n-hyperoperation   f ∘   on a meet semilattice   ( L , ≤ , ∧ )  , defined by: for any   a 1 n   of L, we have:


   f ∘   (  a 1 n  )  =  { x ∈ L ∣ x ∧  B n  ( i )   =  B n  ,  for   any    i ∈  { 1 , 2 , … , n }  }  ,  








where    B n  =  a 1  ∧  a 2  ∧ … ∧  a n   ,    B n  ( 1 )   =  a 2  ∧ … ∧  a n  ,     B n  ( n )   =  a 1  ∧ … ∧  a  n − 1     and for any   i ∈ { 2 , … , n − 1 }  ,    B n  ( i )   =  a 1  ∧ … ∧  a  i − 1   ∧  a  i + 1   ∧ … ∧  a n  .   By duality, the following result holds:



Theorem 29

([18]). A lattice   ( L , ∨ , ∧ )   is modular iff the n-hypergroupoid   ( L ,  f ∘  )   is a join n-space:





	
If L has the greatest element 1, then 1 is a scalar identity for   ( L ,  f ∘  )  .



	
If   n ≥ 3  , then any   x ∈ L   is an identity for   ( L ,  f ∘  )  .






Theorem 30

([18]). Let   ( L , ∨ , ∧ )   be a modular lattice:








	(1)

	
A subset I of L is an n-subhypergroup of   ( L , f )   iff I is an ideal of L.




	(2)

	
A subset I of L is an n-subhypergroup of   ( L ,  f ∘  )   iff I is a filter of L.











Proof. 

(1) Let   ( I , f )   be an n-subhypergroupoid of   ( L , f )  . Then, for any    a 1  ,  a 2  ∈ I  , we have


   a 1  ∨  a 2  ∈ f  (  a 1  ,     a 2  , … ,  a 2   ︸   n − 1    )  ⊂ I .  








If   a ∈ I   and   x ≤ a  , then   x ∈ f (     a , … , a  ︸  n   ) ⊂ I .  



“⟸” Let   a 1 n   be elements of I. If   z ∈ f (  a 1 n  )  , then    A n  = z ∨  A n  ( i )    , for any   i ∈ { 1 , 2 , … , n }  , whence   z ≤  A n   . Since    A n  ∈ I  , it follows that   z ∈ I  . On the other hand, for any   a ,  a 1  i − 1   ,  a  i + 1  n    of I and   1 ≤ i ≤ n  , there is    x i  = a ∨  A n  ( i )     such that   a ∈ f (  a 1  i − 1   ,  x i  ,  a  i + 1  n  ) .   Hence, I is an n-subhypergroup of   ( L , f )  .



(2) It follows by duality. □





Theorem 31

([18]). Let   ( L , ∨ , ∧ )   be a lattice and   φ : L → L   a bijective map. The following conditions are equivalent:








	(1)

	
For any   a 1 n   of L, we have   φ  (  A n  )  = φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  .  




	(2)

	
φ is a morphism from   ( L , f )   to   ( L ,  f ∘  )  .











Proof. 

(1⟹2): For any   a 1 n   of L, we have   φ  ( f  (  a 1 n  )  )  =  { φ  ( z )  ∣ z ∈ f  (  a 1 n  )  }   = { φ   ( z )  ∣  A n  = z ∨  A n  ( i )    , for any   i ∈ { 1 , 2 , … , n } } ,   whence   φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  = φ  (  A n  )  = φ  ( z ∨  A n  ( i )   )  = φ  ( z )  ∧ φ  (  a 1  )  ∧ … ∧ φ  (  a  i − 1   )  ∧ φ  (  a  i + 1   )  ∧ … ∧ φ  (  a n  )  ,   that is


  φ  ( z )  ∈  f ∘   ( φ  (  a 1  )  , … , φ  (  a n  )  )  .  








Now, let   t ∈  f ∘   ( φ  (  a 1  )  , … , φ  (  a n  )  )  .   Since there is x such that   t = φ ( x )  , it follows that


  φ  ( x )  ∧  [ φ  (  a 1  )  ∧ … ∧ φ  (  a  i − 1   )  ∧ φ  (  a  i + 1   )  ∧ … ∧ φ  (  a n  )  ]  = φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  ,  








for any   i ∈ { 1 , 2 , … , n } ,   and according to   ( 1 )  , we obtain   φ  ( x ∨  A n  ( i )   )  = φ  (  A n  )  ,   for any   i ∈ { 1 , 2 , … , n } .   Since  φ  is bijective, it follows that   x ∨  A n  ( i )   =  A n   , for any   i ∈ { 1 , 2 , … , n }  , that is   x ∈ f (  a 1 n  ) .   Hence,


  t = φ  ( x )  ∈ φ ( f  (  a 1 n  )  ) .  











(2⟹1): Let   a 1 n   be elements of L. If   z ∈ f (  a 1 n  ) ,   then


  φ  ( z )  ∈  f ∘   ( φ  (  a 1  )  , … , φ  (  a n  )  )   








that is


  φ  ( z )  ∧ φ  (  a 1  )  ∧ … ∧ φ  (  a  i − 1   )  ∧ φ  (  a  i + 1   )  ∧ …  ∧ φ  (  a n  )  = φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  ,  








for any   i ∈ { 1 , 2 , … , n } .   Hence,


  φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  ≤ φ  ( z )  .  








For   z =  A n  ∈ f  (  a 1 n  )  ,   we obtain   φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  ≤ φ  (  A n  )  .   On the other hand, for any   i ∈ { 1 , 2 , … , n }  ,    A n  ∈ f  (  a i  ,     A n  , … ,  A n   ︸   n − 1    )  ,   so


  φ  (  A n  )  ∈ φ  ( f  (  a i  ,     A n  , … ,  A n   ︸   n − 1    )  )  =  f ∘   ( φ  (  a i  )  ,    φ  (  A n  )  , … , φ  (  A n  )   ︸   n − 1    )   








whence   φ  (  A n  )  = φ  (  a i  )  ∧ φ  (  A n  )  ,   that is   φ  (  A n  )  ≤ φ  (  a i  )  .   It follows that


  φ  (  A n  )  ≤ φ  (  a 1  )  ∧ … ∧ φ  (  a n  )  .  








Therefore, the condition (1) holds. □





By duality, we obtain the following.



Theorem 32

([18]). Let   ( L , ∨ , ∧ )   be a lattice and   φ : L → L   a bijective map. The following conditions are equivalent:








	(1)

	
For any   a 1 n   of L, we have


   φ  (  B n  )  = φ  (  a 1  )  ∨ … ∨ φ  (  a n  )  .   












	(2)

	
φ is a morphism from   ( L ,  f ∘  )   to   ( L , f )  .











Let   ( L , ∨ , ∧ )   be an arbitrary lattice. We define on L the following n-hyperoperation: for any   a 1 n   of L, we have


     g (  a 1 n  )    =    { x ∈ L ∣  B n  ≤ x ≤  A n  } ,  where         B n    =     a 1  ∧  a 2  ∧ … ∧  a n     and     A n  =  a 1  ∨  a 2  ∨ … ∨  a n  .     











The n-hypergroupoid   ( L , g )   has the following properties:




	(1)

	
g is commutative;




	(2)

	
For any   a ∈ L ,   we have   g (     a , … , a  ︸  n   ) = a ;  




	(3)

	
for any   a 1 n   of L, we have    {  a i n  }  ⊂ g  (  a i n  )  ;  




	(4)

	
For any   a 1  n − 1    of   L ,   we have   b ∈ b /  a 1  n − 1   ;  




	(5)

	
For any   a ∈ L ,   we have   a / {     a , … , a  ︸   n − 1    } = L ;  




	(6)

	
For any   a , b ∈ L ,   we have   x ∈ a /  {     b , … , b  ︸   n − 1    }  ∩ b /  {    a , … , a  ︸   n − 1    }    iff   a ∧ x = b ∧ x   and   a ∨ x = b ∨ x .  









Theorem 33

([18]). If the lattice   ( L , ∨ , ∧ )   is distributive, then for any   a 1  2 n − 1    of L, we have


  g  ( g  (  a 1 n  )  ,  a  n + 1   2 n − 1   )  =  [  B  2 n − 1   ,  A  2 n − 1   ]  .  













Proof. 

Indeed, for any   a 1  2 n − 1    of L, we have


  g  ( g  (  a 1 n  )  ,  a  n + 1   2 n − 1   )  ⊂  [  B  2 n − 1   ,  A  2 n − 1   ]  .  








Conversely, let   z ∈ [  B  2 n − 1   ,  A  2 n − 1   ] .   If   x =  ( z ∧  A n  )  ∨  B n   , then    B n  ≤ x ≤  A n  ,   that is   x ∈ g (  a 1 n  ) .   On the other hand,


  z ∈ g ( x ,  a  n + 1   2 n − 1   ) .  








Indeed, by distributivity, we have


      a  n + 1   ∧ … ∧  a  2 n − 1   ∧ x =  a  n + 1   ∧ … ∧  a  2 n − 1   ∧  [  ( z ∧  A n  )  ∨  B n  ]  =        =  ( z ∧  A n  ∧  a  n + 1   ∧ … ∧  a  2 n − 1   )  ∨  B  2 n − 1   ≤ z     








and


      a  n + 1   ∨ … ∨  a  2 n − 1   ∨ x =  a  n + 1   ∨ … ∨  a  2 n − 1   ∨  ( z ∧  A n  )  ∨  B n  =        =  (  a  n + 1   ∨ … ∨  a  2 n − 1   ∨  B n  ∨ z )  ∧  (  a  n + 1   ∨ … ∨  a  2 n − 1   ∨  B n  ∨  A n  )  =        =  A  2 n − 1   ∧  (  a  n + 1   ∨ … ∨  a  2 n − 1   ∨  B n  ∨ z )  ≥ z .     








Hence   z ∈ g ( x ,  a  n + 1   2 n − 1   ) ,   whence   z ∈ g ( g  (  a 1 n  )  ,  a  n + 1   2 n − 1   ) .   We obtain


  g  ( g  (  a 1 n  )  ,  a  n + 1   2 n − 1   )  =  [  B  2 n − 1   ,  A  2 n − 1   ]  .  











□





Corollary 9

([18]). If   ( L , ∨ , ∧ )   is a distributive lattice, then   ( L , g )   is an n-hypergroup.





Proof. 

Since the subset   [  B  2 n − 1   ,  A  2 n − 1   ]   is invariant to any permutation   (  a  i 1   , … ,  a  i  2 n − 1    )   of   (  a 1  , … ,  a  2 n − 1   )  , it follows that


   [  B  2 n − 1   ,  A  2 n − 1   ]  = g  ( g  (  a  i 1   , … ,  a  i n   )  ,  a  i  n + 1    , … ,  a  i  2 n − 1    )  .  








Moreover, g is commutative, so it follows that g is associative. Therefore, we obtain that   ( L , g )   is an n-hypergroup. □





Theorem 34

([18]). If   ( L , ∨ , ∧ )   is a distributive lattice, then   ( L , g )   is a join n-space.





Proof. 

We still have to check the join n-space condition. Let   x ∈ a /  b 1  n − 1   ∩ c /  d 1  n − 1   ,   that is


     x ∧  b 1  ∧ … ∧  b  n − 1   ≤ a ≤ x ∨  b 1  ∨ … ∨  b  n − 1        and         x ∧  d 1  ∧ … ∧  d  n − 1   ≤ c ≤ x ∨  d 1  ∨ … ∨  d  n − 1   .     








We have to prove that there is   z ∈ g  ( a ,  d 1  n − 1   )  ∩ g  ( c ,  b 1  n − 1   )  ,   that is


      ( a ∧  d 1  ∧ … ∧  d  n − 1   )  ∨  ( c ∧  b 1  ∧ … ∧  b  n − 1   )  ≤ z ≤        ≤  ( a ∨  d 1  ∨ … ∨  d  n − 1   )  ∧  ( c ∨  b 1  ∨ … ∨  b  n − 1   )  .     








We have   a ∧  d 1  ∧ … ∧  d  n − 1   ≤  ( x ∨  b 1  ∨ … ∨  b  n − 1   )  ∧  (  d 1  ∧ … ∧  d  n − 1   )  =  ( x ∧  d 1  ∧ … ∧  d  n − 1   )  ∨  [  (  b 1  ∨ … ∨  b  n − 1   )  ∧  d 1  ∧ … ∧  d  n − 1   ]  ≤ c ∨  b 1  ∨ … ∨  b  n − 1   .   Hence,    ( a ∧  d 1  ∧ … ∧  d  n − 1   )   ∨ ( c ∧   b 1  ∧    … ∧  b  n − 1    ) ≤ c ∨   b 1  ∨ … ∨  b  n − 1   .   Similarly, we have    ( a ∧  d 1  ∧ … ∧  d  n − 1   )  ∨  ( c ∧  b 1  ∧ … ∧  b  n − 1   )  ≤ a ∨  d 1  ∨ … ∨  d  n − 1   .   Therefore,


   ( a ∧  d 1  ∧ … ∧  d  n − 1   )  ∨  ( c ∧  b 1  ∧ … ∧  b  n − 1   )  ≤  ( a ∨  d 1  ∨ … ∨  d  n − 1   )  ∧  ( c ∨  b 1  ∨ … ∨  b  n − 1   )  ,  








that is


  g  ( a ,  d 1  n − 1   )  ∩ g  ( c ,  b 1  n − 1   )  ≠ ∅ .  











□





Theorem 35

([18]). If   ( L , ∨ , ∧ )   is a join n-space, then the lattice   ( L , ∨ , ∧ )   is distributive.





Proof. 

Suppose that L is not distributive. Then, L contains a five-element sublattice   { m , a , b , c , M }  , where   a ∨ c = b ∨ c = M  ,   a ∧ c = b ∧ c = m  , and either   a > b   or   a , b , c   are mutually non-comparable. We have   c ∈ a /  {     b , … , b  ︸   n − 1    }  ∩ b /  {     a , … , a  ︸   n − 1    }   , and since   ( L , g )   is a join n-space, we obtain


  g  (     a , …  a  ︸  n   )  ∩ g  (     b , … , b  ︸  n   )  ≠ ∅ ,  








that is   a = b  , which is a contradiction.



Therefore,   ( L , ∨ , ∧ )   is distributive. □





Corollary 10

([18]). The n-hypergroupoid   ( L , g )   is a join n-space iff the lattice   ( L , ∨ , ∧ )   is distributive.





Theorem 36

([18]). Let   ( L , ∨ , ∧ )   be a distributive lattice. If I is an ideal and F is a filter of L, then   ( I , g )   and   ( F , g )   are n-subhypergroups of   ( L , g )  .





Proof. 

Let I be an ideal of L. For any   a 1 n   of I, we have   g  (  a 1 n  )  =  { z ∣  B n  ≤ z ≤  A n  }  .   Since    A n  =  a 1  ∨ … ∨  a n  ∈ I   and   z ≤  A n   , it follows   z ∈ I .   Hence,   g (  a 1 n  ) ⊂ I .   On the other hand, we have   a ∈ g ( a ,  a 1  n − 1   )   for any   a ,  a 1  n − 1     of I. Therefore,   ( I , g )   is an n-subhypergroup of   ( L , g )  . Similarly, it follows that   ( F , g )   is an n-subhypergroup of   ( L , g )  . □





The converse fails, as can be seen from the following example:



Example 6.

Let us consider the distributive lattice   ( P ( M ) , ∪ , ∩ )  , where M is a set with at least three elements. Let   a , b ∈ M  ,   a ≠ b   and   S = { M − { a } , M − { a , b } }  . Then,   ( S , g )   is an n-subhypergroup of   ( P ( M ) , g )  , but S is neither an ideal, nor a filter of   P ( M )  , since   ∅ ∉ S   and   M ∉ S  , respectively.
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Figure 1. The connections between groups, n-groups, hypergroups, and n-hypergroups. 
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