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Abstract: Crude oil plays an important role in the global economy, as it contributes one-third of the
energy consumption worldwide. However, despite its importance in policymaking and economic
development, forecasting its price is still challenging due to its complexity and irregular price
trends. Although a significant amount of research has been conducted to improve forecasting using
external factors as well as machine-learning and deep-learning models, only a few studies have used
hybrid models to improve prediction accuracy. In this study, we propose a novel hybrid model that
captures the finer details and interconnections between multivariate factors to improve the accuracy
of petroleum oil price prediction. Our proposed hybrid model integrates a convolutional neural
network and a recurrent neural network with skip connections and is trained using petroleum oil
prices and external data directly accessible from the official website of South Korea’s national oil
corporation and the official Yahoo Finance site. We compare the performance of our univariate and
multivariate models in terms of the Pearson correlation, mean absolute error, mean squared error,
root mean squared error, and R squared (R2) evaluation metrics. Our proposed models exhibited
significantly better performance than the existing models based on long short-term memory and gated
recurrent units, showing correlations of 0.985 and 0.988, respectively, for 10-day price predictions
and obtaining better results for longer prediction periods when compared with other deep-learning
models. We validated that our proposed model with skip connections outperforms the benchmark
models and showed that the convolutional neural network using gated recurrent units with skip
connections is superior to the compared models. The findings suggest that, to some extent, relying on
a single source of data is ineffective in predicting long-term changes in oil prices, and thus, to develop
a better prediction model based on time-series based data, it is necessary to take a multivariate
approach and develop an efficient computational model with skip connections.

Keywords: crude oil price; hybrid model; multivariate; petroleum price; skip connection technique;
univariate

MSC: 68T01

1. Introduction

The price of crude oil is predicted more often than the price of any other commodity
in the global market economy because it has significant political and economic impacts. In
fact, its complex and irregular price fluctuations affect both living costs at an individual
level and the supply of manufactured goods at the industrial level [1–3]. Crude oil is a
commodity that is widely used globally, and its price contributes over 50% to petroleum
prices [4], which suggests that any changes in crude oil prices will greatly impact petroleum
prices. Because of the recent COVID-19 global pandemic, we now experience greater
uncertainty in predicting crude oil prices. Therefore, it is necessary to develop an improved
prediction model that can capture the swift transitions made in daily time-series data so
that individuals and industries alike can predict unusual trends. Given the accessibility of
the internet through smart devices such as smartphones and laptops, it has become easier to
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acquire large amounts of oil price data. The development of an accurate prediction model
based on crude oil prices along with the use of big data resources and machine learning has
drawn significant attention because of the advantages of such models in capturing complex
relationships among data variables [5–7].

Oil prices and stock prices share similar characteristics in terms of how they are
historically recorded. Stock price predictions are classified as very short-term, short-term,
and medium-term predictions. Very short-term ranges from a single day to a month;
short-term can range from one to two months, and medium-term can range from two to
six months [8]. Because short-term prediction refers to predicting the daily changes in the
stock price over a month, oil price prediction over a few consecutive days has been studied.
Thus, research on short-term prediction models has attracted substantial attention from
researchers. Many advanced data-driven methods using machine-learning methods [9]
and statistical analysis [10] have achieved much progress in improving prediction models.

While these previously proposed methods perform well, achieving high performance
using these methods requires a large amount of historical data from the same oil price
index to train the models. Furthermore, because of inconsistent and unpredictable events
as well as the complex correlations among variables related to oil prices, it is even more
challenging to achieve the highest performance. In such cases, conventional machine
learning approaches cannot be trained to effectively capture the finer details of quick
transitions. Thus, to overcome or solve the lack of historical training data, a better prediction
model should be developed.

Many researchers have introduced various methods of improving single models by
introducing newly developed optimizers that are replaced by the traditional predictive
models being utilized in different engineering applications. Ref. [11] have experimented in
predicting the thermal efficiency and water yield based on tubular solar still by optimizing
the hybrid artificial neural network model with humpback whale optimizer (HWO) that is
based on a meta-heuristic optimization approach. Unlike the traditional artificial neural
network model performance, the combination of the ANN-HWO model reveals much
better results in enhancing the thermal performance of the solar still. Ref. [12] have studied
ways of predicting the mechanical and micro-structural properties of friction stir processed
(FSP) aluminium alloy by introducing the hybrid method of the integration between the
grey wolf optimizer (GWO) and the deep-learning-based multilayer perceptron model. The
aforementioned authors also introduce and experiment with various input variables such
as rotational speed, linear processing speed, and number of passes, while the outputs are
grain size, aspect ratio, micro-hardness, and ultimate tensile strength. Ref. [13] researchers
surveyed the use of various artificial neural network (ANN) models on solar energy (SE)
systems, which covers the basics of the multilayer perceptron neural network model,
wavelet-neural network (WNN) models, the function of radial basis, and RNN-based
models (i.e., Elman Neural Network). The previous authors summarized in detail several
applications applied in different solar devices including solar collectors, solar-assisted heat
pumps, solar air, and water heaters, photovoltaic/thermal (PV/T) systems, solar stills, solar
cookers, and solar dryers. In this sense, there is a trend of introducing and implementing
the hybrid model developed by various authors in various real-world applications [14–19].

While many research studies have been explored in developing hybrid-model ap-
proaches, there is also a wide range of research that has been conducted on predicting oil
prices. A few studies have explored the impact of external factors on oil prices, as these
factors help in forecasting the finer details of irregular price movements. For example,
ref. [20] demonstrated that using the prior knowledge data transfer variable on oil prices
improves prediction accuracy. Refs. [21–23] used social media news and external infor-
mation about the oil markets and macroeconomic news to predict the weekly trends in
West Texas Intermediate (WTI) oil prices using sentiment analysis. Ref. [24] analyzed the
correlation between oil and gold prices and concluded that gold prices affect oil prices.
Refs. [25–27] used the support vector machine (SVM) model, which is a conventional
machine-learning approach, whereas [28] used the autoregressive-integrated moving aver-



Mathematics 2023, 11, 547 3 of 16

age (ARIMA) model to predict Brent oil prices. Using a deep-learning approach, ref. [4]
employed a back-propagation neural network model for predicting oil prices. Although
many studies based on oil price prediction focus on using the WTI and Brent indices, few
studies have focused on predicting the price of petrol. In South Korea, two types of oil are
mainly consumed: (1) petroleum oil and (2) diesel oil for vehicles. Because these prices
change in response to the changes in crude oil price, it is often beneficial to make accurate
price predictions.

However, unexpected or sudden changes in oil prices caused by unusual events can
drastically affect the accuracy of the predictions. In such cases, recent studies have explored
the use of hybrid models to predict the precise details of changes in crude oil prices. For
example, ref. [29] proposed a hybrid model consisting of a genetic algorithm (GA) and
neural network (NN) to predict the WTI crude oil price. Ref. [30] proposed AdaBoost-LSTM
and AdaBoost-GRU (Gated Recurrent Unit) models to improve the accuracy of crude oil
price prediction.

There has been a growth in the use of hybrid models to improve the forecasting of
crude oil prices using external data. However, studies using such models have focused
on predicting crude oil prices via a univariate single-step approach using conventional
deep-learning methods. These methods lack medium- and long-term prediction ability;
however, it is more important to forecast oil prices for the next several days to prepare for
and mitigate the effects of any sudden changes.

Therefore, in this study, we aim to predict the petrol price in South Korea using the
data accessible from the official website of South Korea’s national oil corporation [31]
and the Yahoo Finance site [32]. We also use influential factors to predict the price with
better accuracy and explanation; we compare univariate and multivariate methods. For
short-term prediction, we set a prediction period of 10 days and consider a multi-step
approach. We propose a novel model, inspired by DenseNet architecture, that employs
skip connections to improve the existing convolutional neural network (CNN)-long short-
term memory (LSTM) model by capturing the finer details and accuracy of petrol price
movements. In our experiments, we evaluated our proposed model and compared it with
other models using several evaluation metrics (Pearson correlation, mean absolute error,
root mean squared error, and R squared (R2). The results clearly show that our proposed
model outperforms the conventional models. The following bullet points represent the
main contribution in our study.

2. Materials and Methods
2.1. Proposed Model

This section is subdivided into five subsections that describe the: (1) multivariate
input, (2) CNN-based architecture, (3) LSTM/GRU-based architecture, (4) skip connection
technique, and (5) output layer.

2.2. Multivariate Input Sequences

Our data are a multivariate time-series sequence and consist of a total of 7 variables:
(1) petroleum price (normal), (2) petroleum price (premium), (3) diesel price, (4) WTI crude
oil price, (5) Brent oil price, (6) Dubai oil price, and (7) heating oil price. Each row of our
data is a vector that represents the sequential data of the variable and varies in length
according to the number of past timesteps (t) in our input layer. Including more past
timesteps in the data increases the sample size; therefore, prediction accuracy is increased
because more data are used. We then input our data into the CNN layers.

2.3. CNN

CNN models have shown great performance in several image datasets [33]. The CNN
architecture consists of two types of layers: (1) the convolutional layers and (2) the pooling
layers, which are specifically designed to filter and extract useful features such as the
channels, color, and resolution from images.
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For every convolutional layer, there is a convolution kernel (filter) that acts as a small
window, sliding from left to right sequentially over a sub-region to extract the minimal
but crucial aspects of a given image through complicated convolution operations. It is
followed by a nonlinear activation function, which is a rectified linear unit (ReLU) and a
pooling layer.

In every pooling layer, the CNN subsamples and extracts specific values from the
convolved features and reduces the dimensions of the matrix to extract the unique features
from the raw input image data. For example, the max-pooling method computes the
maximum value from every shift of the window, and this represents the most critical
feature characteristics within that kernel. Hence, the pooling layer produces matrices with
different dimensions repeatedly processed layer by layer to produce the final pooled output
value before the fully connected layer is used. A CNN architecture is appropriate for
capturing the robust features for our time-series data while avoiding iterative expansion
in the dimensions of the matrix. After the CNN layers, we then process our data using an
RNN, which considers the long-term features of the data.

2.4. RNN

Many researchers used the LSTM model [34] to predict sequential data due to its
powerful mechanisms for overcoming problems such as the vanishing/exploding gradient
problem, which is frequently faced in the RNN approach. In particular, in terms of time-
series datasets, several research have shown that, compared to the traditional time-series
models such as ARIMA (AutoRegressive Integrated Moving Average), deep learning
models such as LSTM are far superior at predicting with better accuracy. This is due to the
fact that deep-learning models are capable of identifying structures and patterns in data,
such as the non-linearity and complexity in time-series forecasting, whereas the ARIMA
lacks such capability. Despite ARIMA’s non-stationary and univariate characteristics, in
which it is effective when there is a strong trend or seasonality within the data, petroleum
oil prices fluctuate in a non-cyclical and nonlinear trend. Not knowing the external factors
that shift the petrol oil prices to change can become problematic in assessing accuracy
when using the ARIMA method. In comparison, LSTM-based models are capable of
preserving and training the features of given data for a much longer period of time. This
can become crucial and advantageous when it comes to being able to control the length of
time durations, which are difficult to see in the ARIMA models [35–37]. Initially, the LSTM
architecture shares some of the characteristics of the RNN architecture but was designed
to avoid problems with long-term dependency. In contrast to the RNN design, a vanilla
LSTM model has three gates (i.e., input, forget, and output gates) that are controlled by the
cell state and the activation function. The following equations represent the steps of the
overall process of a vanilla LSTM model:

forget gate( ft) = δg(W f ∗ [ht−1, Xt] + b f )

input gate(it) = δg(Wi ∗ [ht−1, Xt] + bi)

output gate(ot) = δg(Wo ∗ [ht−1, Xt] + bo)

current state(gt) = tanh(Wc ∗ [ht−1, Xt] + bc)

cell state(Ct) = ft
⊙

Ct−1 + it
⊙

gt

hidden state(ht) = ot
⊙

tanh(Ct)

where δg is the sigmoid function, tanh is the hyperbolic tangent activation function, W f ,
Wi, Wo and Wc represent the weight matrices of each input gate, b f , bi, bo, and bc represent
the bias matrices of each gate, ht−1 is the information for the t-1 units stored in the memory,
and xt is the input to the memory cell.

Using the above equations, the model evaluates and updates each weight by determin-
ing whether to forget the past value according to the forget gate and the state of the current
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cell using the result of the sigmoid function (i.e., “0” for forget and “1” for remember). The
model provides the final output value by using the tanh activation function on the sum of
the hidden state and output gate. A GRU model [38] uses the same principles as the LSTM
model in terms of its mechanisms; however, it uses two gates (i.e., reset and update) that
require fewer parameters, resulting in much lower computational cost and higher speed
than the LSTM approach. Because the memory gate is not used, the GRU memory and
hidden layers consider only data points from the recent past to predict the next target value,
which is theoretically a much more efficient method than that of the LSTM model. The
following equations express the overall mechanisms of the GRU model:

update gate(Zt) = δ(Wz ∗ [ht−1, Xt] + bz)

reset gate(rt) = δ(Wr ∗ [ht−1, Xt] + br)

current state(h̃t) = tanh(W ∗ [rt, ht−1])]

hidden state(ht) = (1− Zt) ∗ ht−1 + Zt ∗ h̃t

The reset gate calculates how much of the previous information in memory should
be forgotten when given the new input value. In contrast, the update gate calculates how
much of the previous information needs to be stored based on the number of time steps
relative to the future time steps.

2.5. Skip Connection

The use of skip connections has been shown to solve the degradation in performance
of deeper models, which are unable to perform much better than shallow models because
the increase in the layer depth in the architecture causes the performance to drop dramat-
ically [39]. Ref. [39] compared 20-layer and 56-layer networks trained on the CIFAR-10
image dataset, reporting that the training error and test error demonstrate the problem of
this degradation.

Skip connections are known to solve such problems. There are two methods of adding
skip connections: (1) addition and (2) concatenation. The addition method was introduced
in the ResNet architecture, in which [39] proposed the core idea of updating the back-
propagation through the identity function by adding a matrix consisting of one row of an
identity matrix. Through such a method, the gradient can simply be multiplied by one,
which preserves the gradient. The following mathematical equation can be solved using its
partial derivative (gradient) given a loss function:

∂L
∂x

=
∂L
∂H

∂H
∂x

=
∂L
∂H

(
∂F
∂x

+ 1
)

=
∂L
∂H

∂F
∂x

+
∂L
∂H

Unlike the ResNet model, a skip connection model based on concatenation retains
information learned from the initial input throughout its entire architecture, all the way to
its final output layer. This method ensures that the maximum amount of information is
passed on to each layer and effectively builds a rich number of feature channels in the last
layers. This approach is more compact, and the features are reusable. DenseNet [40] is an
example of skip connections based on concatenation. Figure 1 shows an example of feature
reusability by concatenating five convolutional layers.
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Figure 1. DenseNet architecture consisting of five concatenated convolutional layers.

In this study, we adopt concatenated skip connections. Therefore, in our proposed
hybrid models, CNN-LSTM and CNN-GRU, we add concatenated skip connections on top
of the hybrid model. At present, skip connections are a standard mechanism implemented
in many convolutional architectures. Therefore, similar to the DenseNet architecture, we
implement a modified version of the skip connection layer just before the fully connected
layers (i.e., the dense layers). Our proposed models are designed as follows: The first
proposed model is CNN-LSTM-Skip, which consists of two convolutional 1-dimensional
(1D) layers of 512 × 512 filters with a kernel size of 3, and two max-pooling layers of pool
size of 3 × 2, followed by two LSTM layers consisting of 512 units. We then use flatten
layers as our last encoder layer and the initial input layer of the dense layers to concatenate
the data and produce the skip connection layer. Finally, five dense layers with the leaky-
ReLU activation function are applied. The second proposed model is CNN-GRU-Skip,
comprising two convolutional layers of 512 × 256 filters with a kernel size of 1 and two
max-pooling layers with a pooling size of 3, followed by two GRU layers of 256 units each.
We apply the concatenated skip connection layer as the last encoder layer and the initial
input layer of the dense layers and employ six dense layers with the leaky-ReLU activation
function. In both proposed models, we predict 10 days of petrol prices. The complete
proposed model architectures are shown in Figure 2, which shows the steps of how the
input data are shifted with respect to time, where each row of cells represents a single
day. In this manner, a univariate model would only include a single column of cells that
varies with respect to changes over time. In our experiments, we compared univariate and
multivariate versions of the various models mentioned previously in our proposed model.

Figure 2. Proposed models (CNN-LSTM-Skip and CNN-GRU-Skip).
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2.6. Data Preprocessing

In this section, we introduce the dataset we used and explain how its data were
processed before the experiment. Our dataset was extracted from the official website of
South Korea’s national oil corporation [31] and the official Yahoo Finance site [32] using
a Python-based application programming interface. The national oil corporation website
provides South Korea’s daily petrol oil prices, including regular, premium, and diesel prices,
while the Yahoo Finance site provides a range of stock market prices for stockholders and
investors, including the daily stock prices, exchange traded funds, exchange rates, and oil
prices. Among the many types of oil, petroleum oil, which includes premium and diesel oil,
are the most-used oils worldwide. In addition, from many lists of oil prices, WTI, Brent, and
Dubai, in order, are popular globally. In this study, we also included heating oil because
it is one type of petroleum oil and is used in many homes and buildings to produce heat
during the winter season. Hence, our dataset consists of 7 columns of variables, and a total
of 3623 rows of values. Because our dataset includes a series of dates, we assume that our
dataset is based on a daily time series. Since our study is focused on time-series prediction,
we adjusted our time period so that all variables in the data have timestamps with a fixed
duration between 1 January 2012 and 1 December 2021. There were no missing values in
our data. It was necessary to normalize the values of our date to efficiently optimize and
train our models. Therefore, we used min–max scaling to convert our values to fall within
the range of 0 and 1 for efficient computation.

xnorm =
x− xmin

xmax − xmin

In a multi-step prediction, we must consider a sequence of past input values (i.e.,
X1, X2, . . . , Xn), where n is the number of past data points used to predict the next t days
(i.e., Xn+1, Xn+2, . . . , Xn+t). This method is also known as the window-slicing or forward-
moving method; we set our window size to 14 (which we found to be optimal for these
data) to predict the next 10 days of petrol prices. Before determining the optimal hyper-
parameter settings for our model, other settings were tested in which the number of past
data points ranged from 7 to 31 days and the number of predicted days ranged from 1 to
21 days. We split our dataset into training, validation, and test datasets using a ratio of
7:1:2, respectively, because validation was also used in our study. The performance of the
model on the validation set was used to check the training of the models throughout the
experiments. We matched the columns with the target variable (y) and the input variables.
As our focus is on multivariate multi-step prediction, we must alter our data dimensions so
that they fit our models. Thus, we must reshape our datasets so that they can be input to
our initial layers, which have three dimensions (i.e., samples, time steps, and variables).
In our case, the number of time steps and variables were fixed to 10 and 7, respectively,
as we are using up to 14 days of historical data to predict the next 10 days of prices using
7 variables.

Six petrol price forecasting models using LSTM-based structures were analyzed. Specif-
ically, the first two forecasting models were univariate and multivariate versions of the
vanilla LSTM model (i.e., LSTM(U) and LSTM(M), respectively). The next two forecasting
models were univariate and multivariate versions of a hybrid-model design that combined
the CNN and LSTM models (i.e., CNN-LSTM(U) and CNN-LSTM(M), respectively). The
last two forecasting models are univariate and multivariate versions of our proposed model
with the skip connections applied on top of the hybrid model (i.e., CNN-LSTM-Skip Con-
nection(U) and CNN-LSTM-Skip Connection(M), respectively). Using the same designs
and architectures, we also implemented an additional six forecasting models based on
GRUs. To evaluate our models, we used four evaluation metrics.

We initially trained for 100 epochs with a dropout ratio of 10% and found that the over-
fitting problem occurred. We then increased our number of epochs to 500 for each model
and removed the dropout technique to improve performance. We also used Adam opti-
mization [41] and a fixed learning rate of 3 × 10−4. The use of Adam optimization is very



Mathematics 2023, 11, 547 8 of 16

computationally efficient, uses little memory, and is appropriate for non-stationary datasets
such as the petrol price data considered in this study. Compared to other optimization
functions such as RMSProp [42] and AdaGrad [43], Adam optimization is advantageous
in terms of having a bias-correction term that enables it to achieve convergence much
better with small steps, which RMSProp optimization lacks. Moreover, although AdaGrad
optimization works well for sparse gradients, it is incredibly slow in terms of computation.
In this sense, Adam optimization combines the advantages of both RMSProp and AdaGrad,
and thus, it is ideal for our sparse and non-stationary dataset of petrol prices. Despite
tuning our hyperparameter settings, there were insufficient performance improvements to
meet our requirements. Therefore, we increased the number of units in each neural network
layer and stacked another layer in the network to improve the performance of our proposed
models. All our networks were trained using Google’s TensorFlow 2.6.0 in Python 3.7 using
Jupyter Notebook. We used a single GPU (RTX 3090) for faster computation.

2.7. Evaluation Metrics

We used four performance metrics to evaluate our proposed models (i.e., LSTM-Skip
and GRU-Skip) with other neural network models and evaluate our performance and
errors. These metrics are the mean absolute error (MAE), root mean squared error (RMSE),
Pearson correlation, and R squared (R2). The MAE and RMSE metrics are widely used.
Although these metrics are easy to compute, it is difficult to interpret the effectiveness of
our models due to the differences in the units of the values of the time-series variables, as
these were normalized before processing [44]. We therefore used the Pearson correlation
equation to determine the suitability of our evaluation metrics. The following mathematical
equations are used to calculate the first two evaluation metrics:

MAE =
1
n

n

∑
i=1
|yi − y|

RMSE =

√
∑(yi − ŷi)2

n
where n is the number of observations, yi is the ith observed value, ŷi is the corresponding
predicted value, and y is the true value (or ground-truth value). RMSE is simply the root of
the mean squared error, and the Pearson correlation is:

Pearson Correlation =
n(∑ xy)− (∑ x)(∑ y)√[

n ∑ x2 − (∑ x)2
][

n ∑ y2 − (∑ y)2
]

where x and y represent the independent and dependent variables, respectively. We
calculated how well these sets of data are related to each other. Finally, the coefficient of
determination (R2) provides us with an overall guideline for tracking the goodness of fit of
our proposed model throughout the next n-days of prediction. It is calculated as follows:

R2 = 1− sum squared regression(SSR)
total sum of squares (SST)

= 1− ∑(yi − ŷi)
2

∑(yi − ȳi)
2

where yi is the vector of actual values, ŷi is the vector of predicted values, and ȳi is the mean
value of the y values. Therefore, the sum of squared regression is the residuals obtained
from y-points.
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3. Results

After tuning our hyperparameter settings, we compared the baseline and hybrid
models with our final proposed models. Our proposed models outperformed the baseline
models and the hybrid models with respect to all four metrics. We evaluated the perfor-
mance for the two separate cases of models based on LSTM and GRU. Our setup was
evaluated by increasing the prediction period from 1 to 10 days, with the window size
fixed to 14 past days. Figure 3 compares results of the baseline, hybrid, and proposed
models based on LSTM and GRU. We also demonstrate that a multivariate model is better
at predicting the petrol price than a univariate model.

In the case of LSTM, the univariate and multivariate proposed models were compared
with the baseline and hybrid models. For 1-day prediction, our multivariate proposed
model outperformed other models, obtaining the lowest RMSE and the highest correlation
and R2 scores. A minor difference in the MAE of 0.005 showed that our univariate proposed
model performed better than the multivariate proposed model by a small margin. For 2-day
to 5-day predictions, the results show that the univariate proposed model performed better
than the multivariate proposed model by a small margin. Despite this small difference,
the results for the 3-day to 5-day predictions show that the multivariate proposed model
maintained the highest Pearson correlation score throughout that period, indicating that
our multivariate proposed model maintained its strong performance when compared with
other models. Furthermore, throughout the 6-day to 10-day predictions, our multivariate
proposed model maintained the highest performance, outperforming other models in
almost all four evaluation metrics. There was an approximately 1.8–2.2% difference in the
Pearson correlation in the 9-day and 10-day predictions of the univariate and multivariate
proposed models. Our multivariate proposed model can maintain its high performance for
longer prediction periods than can the other models.

In the case of GRU, the comparison of the baseline, hybrid, and proposed models
varied according to whether the model was univariate or multivariate. Despite the 1-day
prediction results, almost all predictions for the next 9 days reveal that our proposed model
outperformed the baseline and hybrid models. For the 1-day prediction, the univariate
baseline model outperformed the other models, yielding the smallest errors and highest
R2 score; the multivariate proposed model obtained its highest correlation score for this
prediction period. However, the prediction results for the next 9 days show that our
proposed model outperformed the other models. A small difference was observed when
comparing the univariate and multivariate proposed models. The 1-day to 5-day prediction
shows that the univariate proposed model outperformed the multivariate proposed model
by a small margin in all metrics except for the Pearson correlation score.

Our multivariate proposed model yielded the best Pearson correlation scores through-
out the prediction period. The results for predictions for 6 days and more reveal that
the multivariate proposed model outperformed the other models, including the univari-
ate proposed model. A comparison of the performance results of the proposed models
reveals that the univariate proposed models based on both LSTM and GRU maintained
the highest overall performance over short-term periods (i.e., 1 to 5 days), whereas the
multivariate proposed models obtained the best performance in all four evaluation metrics
over medium-term periods (i.e., 6 to 10 days). Table 1 reports the performance of the
LSTM-based models, and Table 2 reports the performance of the GRU-based models for
1-day to 10-day predictions. The highest (or lowest) values for each prediction period and
each evaluation metric are shown in bold.
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Figure 3. Comparison of the performance results of the LSTM and GRU models as a function of
forecasting period up to 10 days.
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Table 1. Comparison of the performance results for LSTM-based models for 1-day to 10-day predic-
tions.

Models 1-Day Prediction 2-Day Prediction 4-Day Prediction

MAE RMSE CORR R2 MAE RMSE CORR R2 MAE RMSE CORR R2

LSTM
(Univariate) 0.0257 0.0323 0.9877 0.9519 0.0332 0.0403 0.9831 0.9258 0.0287 0.0365 0.9798 0.9388

LSTM
(Multivariate) 0.0311 0.0420 0.9764 0.9189 0.0314 0.0426 0.9758 0.9169 0.0321 0.0444 0.9710 0.9094
CNN-LSTM
(Univariate) 0.0234 0.0301 0.9846 0.9582 0.0250 0.0328 0.9804 0.9509 0.0268 0.0346 0.9783 0.9449
CNN-LSTM

(Multivariate) 0.0179 0.0301 0.9834 0.9584 0.0190 0.0304 0.9825 0.9576 0.0199 0.0312 0.9809 0.9552
Proposed Model

(Univariate) 0.0157 0.0206 0.9919 0.9805 0.0146 0.0208 0.9917 0.9802 0.0207 0.0270 0.9854 0.9664
Proposed Model

(Multivariate) 0.0161 0.0203 0.9954 0.9810 0.0243 0.0308 0.9897 0.9567 0.0211 0.0274 0.9936 0.9656

Models 5-Day Prediction 6-Day Prediction 7-Day Prediction

MAE RMSE CORR R2 MAE RMSE CORR R2 MAE RMSE CORR R2

LSTM
(Univariate) 0.0278 0.0380 0.9766 0.9335 0.0306 0.0392 0.9730 0.9297 0.0346 0.0441 0.9676 0.9108

LSTM
(Multivariate) 0.0314 0.0435 0.9712 0.9130 0.0326 0.0450 0.9689 0.9072 0.0333 0.0452 0.9695 0.9064
CNN-LSTM
(Univariate) 0.0288 0.0371 0.9733 0.9367 0.0299 0.0396 0.9679 0.9281 0.0308 0.0401 0.9668 0.9263
CNN-LSTM

(Multivariate) 0.0205 0.0309 0.9805 0.9562 0.0219 0.0327 0.9792 0.9509 0.0223 0.0336 0.9766 0.9485
Proposed Model

(Univariate) 0.0218 0.0302 0.9801 0.9581 0.0214 0.0298 0.9808 0.9594 0.0245 0.0349 0.9729 0.9442
Proposed Model

(Multivariate) 0.0233 0.0313 0.9886 0.9548 0.0217 0.0291 0.9890 0.9612 0.0197 0.0264 0.9903 0.9681

Models 8-Day Prediction 9-Day Prediction 10-Day Prediction

MAE RMSE CORR R2 MAE RMSE CORR R2 MAE RMSE CORR R2

LSTM
(Univariate) 0.0456 0.0583 0.9552 0.8449 0.0481 0.0581 0.9521 0.8460 0.0390 0.0527 0.9573 0.8742

LSTM
(Multivariate) 0.0350 0.0485 0.9613 0.8926 0.0374 0.0503 0.9624 0.8850 0.0384 0.0516 0.9587 0.8795
CNN-LSTM
(Univariate) 0.0328 0.0426 0.9631 0.9172 0.0338 0.0445 0.9575 0.9099 0.0345 0.0456 0.9557 0.9060
CNN-LSTM

(Multivariate) 0.0238 0.0352 0.9756 0.9434 0.0234 0.0347 0.9736 0.9452 0.0252 0.0374 0.9732 0.9366
Proposed Model

(Univariate) 0.0269 0.0364 0.9735 0.9396 0.0266 0.0369 0.9697 0.9379 0.0278 0.0387 0.9666 0.9323
Proposed Model

(Multivariate) 0.0247 0.0345 0.9835 0.9456 0.0261 0.0332 0.9874 0.9498 0.0232 0.0298 0.9885 0.9599
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Table 2. Comparison of the performance results for GRU-based models for 1-day to 10-day predic-
tions.

Models 1-Day Prediction 2-Day Prediction 4-Day Prediction

MAE RMSE CORR R2 MAE RMSE CORR R2 MAE RMSE CORR R2

GRU
(Univariate) 0.0104 0.0158 0.9953 0.9885 0.0179 0.0220 0.9930 0.9778 0.0196 0.0249 0.9894 0.9715

GRU
(Multivariate) 0.0241 0.0313 0.9855 0.9550 0.0259 0.0338 0.9833 0.9477 0.0244 0.0326 0.9827 0.9512

CNN-GRU
(Univariate) 0.0129 0.0182 0.9933 0.9847 0.0170 0.0236 0.9885 0.9746 0.0187 0.0262 0.9849 0.9684
CNN-GRU

(Multivariate) 0.0142 0.0218 0.9911 0.9781 0.0155 0.0239 0.9901 0.9738 0.0177 0.0262 0.9881 0.9685
Proposed Model

(Univariate) 0.0139 0.0180 0.9943 0.9851 0.0152 0.0219 0.9925 0.9780 0.0159 0.0222 0.9897 0.9773
Proposed Model

(Multivariate) 0.0153 0.0210 0.9956 0.9796 0.0187 0.0238 0.9950 0.9741 0.0187 0.0247 0.9938 0.9719

Models 5-Day Prediction 6-Day Prediction 7-Day Prediction

MAE RMSE CORR R2 MAE RMSE CORR R2 MAE RMSE CORR R2

GRU
(Univariate) 0.0208 0.0269 0.9867 0.9667 0.0254 0.0324 0.9825 0.9518 0.0261 0.0335 0.9793 0.9487

GRU
(Multivariate) 0.0252 0.0332 0.9815 0.9493 0.0284 0.0379 0.9768 0.9341 0.0275 0.0357 0.9776 0.9416

CNN-GRU
(Univariate) 0.0204 0.0293 0.9806 0.9606 0.0244 0.0342 0.9739 0.9464 0.0234 0.0331 0.9754 0.9498
CNN-GRU

(Multivariate) 0.0183 0.0269 0.9864 0.9667 0.0184 0.0269 0.9855 0.9668 0.0217 0.0312 0.9834 0.9554
Proposed Model

(Univariate) 0.0219 0.0276 0.9861 0.9649 0.0204 0.0286 0.9821 0.9625 0.0230 0.0325 0.9770 0.9518
Proposed Model

(Multivariate) 0.0205 0.0238 0.9957 0.9740 0.0181 0.0266 0.9891 0.9675 0.0205 0.0276 0.9904 0.9652

Models 8-Day Prediction 9-Day Prediction 10-Day Prediction

MAE RMSE CORR R2 MAE RMSE CORR R2 MAE RMSE CORR R2

GRU
(Univariate) 0.0229 0.0317 0.9788 0.9542 0.0401 0.0518 0.9652 0.8777 0.0321 0.0405 0.9698 0.9258

GRU
(Multivariate) 0.0307 0.0409 0.9712 0.9238 0.0297 0.0388 0.9725 0.9316 0.0321 0.0422 0.9696 0.9193

CNN-GRU
(Univariate) 0.0257 0.0359 0.9712 0.9413 0.0264 0.0371 0.9689 0.9372 0.0286 0.0398 0.9645 0.9282
CNN-GRU

(Multivariate) 0.0223 0.0322 0.9811 0.9526 0.0236 0.0339 0.9794 0.9476 0.0241 0.0345 0.9779 0.9460
Proposed Model

(Univariate) 0.0233 0.0326 0.9766 0.9516 0.0262 0.0357 0.9725 0.9421 0.0284 0.0386 0.9674 0.9326
Proposed Model

(Multivariate) 0.0220 0.0297 0.9882 0.9598 0.0186 0.0274 0.9874 0.9658 0.0237 0.0319 0.9856 0.9540

4. Discussion

First, we compared our proposed models based on LSTM and GRU separately. We
also compared univariate and multivariate predictions of the petroleum oil price. Using
external factors to predict petroleum oil price improves the performance of our proposed
models.

In the case of the LSTM models, we obtained two findings in this study. The first
finding is that when comparing the baseline and the hybrid models, the univariate model
is more effective than the vanilla LSTM approach. However, when improving the baseline
model, external factors play a significant role in the prediction of petroleum prices. In
this case, by taking the hybrid model approach and adding a CNN architecture to each
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baseline model, we found that the convolutional layers can capture and integrate the
convolutional features of the petroleum price and its related variables together better than
the vanilla LSTM model, which lacks the ability to combine multiple features into one
during processing. As Table 1 shows, the multivariate hybrid model can perform better
than the univariate vanilla LSTM, yielding much lower error scores and higher R2 scores
throughout the 10-day prediction period. Our second observation is that although both
the univariate and multivariate proposed models outperform the other models, they can
also be compared in terms of prediction period. Specifically, over the 10-day period for the
predictions, the results show that the univariate proposed model is more accurate than the
multivariate proposed model for periods of up to five days. However, for periods of six
or more days, the performance of the multivariate proposed model is much better. This
emphasizes that although the univariate proposed model can better predict the price for
the next couple of days, it cannot maintain its accuracy for long or ensure that it will predict
the trend from six days onwards unless some external factors are taken into consideration.
In this sense, utilizing external data can guide the prediction and increase accuracy. Table 1
shows that the univariate proposed model has lower error scores for the first predictions
up to 5 days, whereas the multivariate proposed model performs better on the 6-day to
10-day period predictions. Using external factors to predict short-term prices may be noisy
and unnecessary, but it is beneficial for long-term predictions. Petroleum prices may not
quickly and dramatically fluctuate within a few days because it may take several days (or
even weeks) for a noticeable change caused by other influencing factors to be observed.

In the case of GRU, we made different observations. The univariate vanilla GRU model
obtained the lowest error scores on 1-day predictions of petroleum prices. Interestingly,
it outperformed even the proposed LSTM-based model. Theoretically, when comparing
between the LSTM and GRU models, when there is less training data, the GRU model
can marginally outperform the LSTM model, and it also computes much faster due to
having less complexity, unlike the LSTM equation that needs to determine whether to
update or not on the previous time-steps. Instead, the GRU model can capture multiple
past time-steps at once, though only a few multiple steps at a time, and thus, due to having
small sets of data in this study with fewer than 4000 rows of data for each variable, it does
not require sophisticated and long-term memory units. Therefore, the GRU model can
perform as well as the LSTM, given our set of data, and for this reason, it surpassed the
LSTM performance [45]. However, for 2-day to 4-day predictions, the univariate proposed
model outperformed it. The GRU model is ideal for a single-step approach. Moreover,
comparing Tables 1 and 2, for predictions 5 days and longer, the GRU-based multivariate
proposed model outperforms the LSTM-based proposed model, indicating that the GRU-
based multivariate proposed model is clearly the best model evaluated in our study, thus
proving that external factors are beneficial in long-term prediction.

5. Conclusions

Previous studies on crude oil price prediction have focused on various methods such
as those for finding external factors that correlate with the crude oil price, conventional ma-
chine learning methods, and more recently, hybrid models of ensemble learning algorithms.
However, few studies have attempted to improve both methods of predicting petroleum
oil prices. Indeed, many researchers have focused on predicting the WTI and Brent crude
oil prices. In this study, a novel oil price prediction model using skip connections was
proposed as a novel solution for predicting petroleum prices in South Korea instead of
using the more standardized oil price index.

Our proposed LSTM- and GRU-based models both showed significantly better per-
formance than the existing models, namely, the vanilla LSTM and GRU models as well as
the hybrid models combining the CNN architecture. Furthermore, our proposed models
contribute improvements by considering other factors that are important in predicting
swift changes in oil prices. We evaluated the model performance using four evaluation
metrics to clearly demonstrate that the proposed model outperforms other methods, while
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also confirming that the external data we collected indeed provide the finer details needed
for predicting swift changes in petrol prices. Because using external data can improve the
prediction performance, we plan to introduce other variables such as text-related data like
news articles and social media-sourced texts that can provide extensive and contextual
information about how oil prices change in a more descriptive manner. We leave this
direction of research as our future work.
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