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Abstract: The article considers a model system that describes a dynamically symmetric rigid body in
the Lagrange case with a suspension point that performs high-frequency oscillations. This system,
reduced to axes rigidly connected to the body, after the averaging procedure, has the form of the
Hamilton equations with two degrees of freedom and has the Liouville integrability property of
a Hamiltonian system with two degrees of freedom, which describes the dynamics of a Lagrange
top with an oscillating suspension point. The paper presents a bifurcation diagram of the moment
mapping. Using the bifurcation diagram, we presented in geometric form the results of the study of
the problem of stability of singular points, in particular, singular points of rank zero and rank one.
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1. Introduction

In the framework of this article, we study a bifurcations of Liouville tori, equilibrium
positions and special periodic motions that arise in dynamics of a heavy rigid body with an
axial symmetry of mass distribution moving in a uniform gravitational field around one
of its points. This point (suspension point) lies on the axis of dynamical symmetry. The
position of the suspension point, in a general case, does not coincide with the center of
inertia of the body. The suspension point performs high-frequency periodic or conditionally
periodic oscillations (vibrations) of small amplitude. The cause of these forced oscillations,
the differential equations of the motion of a rigid body, describing its orientation relative to
the inertial frame of reference, explicitly depend on time. In the works of Markeev [1–3]
and Kholostova [4], the procedure of averaging over the period of the driving force is
indicated. This leads the original equations of motion, presented in the form of Euler-
Poisson equations, to an approximate system with respect to new variables, which also
has the form of Euler-Poisson equations but is already autonomous. It turns out that
the reduced system of differential equations is completely integrable in a Liouville sense
Hamiltonian system with two degrees of freedom. Such a system can be subjected to
bifurcation analysis and clearly demonstrate the problems of stability research based on
the analysis of the types of singularities; namely, stable solutions correspond to elliptic non-
degenerate singularities, and unstable solutions correspond to hyperbolic non-degenerate
ones [5].

One of the fundamental concepts in the analysis of phase topology and the study
of bifurcations of Liouville tori, equilibrium positions, and periodic motions is the inte-
gral mapping and analytical representation of the critical subsystem, which, for given
specific values of the physical parameters of the system, is an almost Hamiltonian system
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with one degree of freedom. The concept of a critical subsystem arose in the works of
M. P. Kharlamov, published in the first years of the 2000s, devoted to the study of irreducible
integrable systems with more than two degrees of freedom [6]. In the case of integrable
Hamiltonian systems with n degrees of freedom, which have the Hamilton function and
additional first integrals in the form of a polynomial or a rational expression, it was shown
that the set of critical values of the integral mapping F can be written as the relation P = 0,
where P is a polynomial with respect to phase variables. Factorization of this polynomial
into irreducible factors P = ∏j Lj allows us to define the critical subsystemMj as the set
of critical points of the zero level of some function Lj. From this point of view, the critical
point of an integral mapping of rank k is locally the intersection point of n− k subsets of
critical subsystems. Then, the integrals Lj of these subsystems make it possible to obtain
symplectic operators ALj whose eigenvalues determine the type of the corresponding
critical point. The bifurcations that arise when the surfaces F (Mj) intersect at the point
F (x) make it possible to obtain a semilocal classification of singular points. For a number
of integrable cases of rigid body dynamics (the Kowalevski top under the action of two
force fields, the Kowalevski–Sokolov top, the Kowalevski–Yehia integrable case), it was
possible to efficiently implement bifurcation analysis based on the analytical description of
critical subsystems [7–9].

2. Model and Definitions

Consider a rigid body with dynamic symmetry, the center of inertia of which belongs
to the axis of dynamic symmetry. Let the body move around one of its points (suspension
point), in the general case, not coinciding with the center of mass. It is well known that the
equations of motion of such a body have the form of the generalized Kirchhoff equations

Ṁ = M × ∂H
∂M

+ γ× ∂H
∂γ

, γ̇ = γ× ∂H
∂M

(1)

with Hamilton function

H =
1
2

(
M2

1 + M2
2 + cM2

3

)
+ aγ3 −

1
2

bγ2
3. (2)

We introduced the notation M = {M1, M2, M3} and γ = {γ1, γ2, γ3} for the components
of the angular momentum and the unit vector of the vertical, with respect to a coordinate
system rigidly connected to the rigid body, the axes of which are directed along the
principal axes of inertia and pass through the suspension point. The physical meaning of
the parameters a, b and c can be interpreted according to [1,3]. Namely, a means a parameter
related to the distance from the point of attachment to the center of mass. Everywhere
below the sign of a is assumed to be fixed. The value b describes the difference between
the averaged squared projections of the velocity of the suspension point onto the axis OX
and OX in the coordinate system OXYZ with the origin at the suspension point. The value
of b can be either positive or negative. The parameter c is a positive value characterizing
the ratio of the principal components of the tensor of inertia of the considered dynamically
symmetric body.

We can rewrite Equation (1) in Hamiltonian form

Ṁ = {M, H}, γ̇ = {γ, H}

with respect to Lie–Poisson bracket which corresponds to the Lie algebra e(3),

{Mi, Mj} = −εijk Mk,
{Mi, γj} = −εijkγk, {γi, γj} = 0.

(3)
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It is well known that Lie–Poisson bracket (3) is degenerate and has two Casimir functions,
which commute with respect to the structure (3) with any functions of M, γ:

L = (M, γ) (integral of areas),
Γ = |γ|2 (geometric integral).

Due to the existence of Casimir functions, the phase space P of a system under
consideration is the tangent bundle TS2 of the two-dimensional sphere S2:

P = {(M; γ) : L = `, Γ = 1}.

In addition, system (1) has one additional first integral, linear of angular momentum,
namely the Lagrange integral

F = M3.

The first integral F and Hamilton function H form a complete involutive set of integrals
of system (1) on P and according to the Liouville–Arnold theorem existence, such a set of
integrals are sufficient for complete integrability of our Hamiltonian system in a Liouville
sense. It means that a regular level surface of the first integrals of our system is a non-
connective union of tori filled with conditionally periodic trajectories [10]. The integral
mapping (momentum mapping)

F : P → R2, (4)

by definition is ( f , h) = F (x) = (F(x), H(x)). Let C denote the set of all critical points of the
integral mapping, i.e., points at which the rank of mapping is not maximal rank dF (x) < 2.
The set of critical values, i.e., image of critical set of integral mapping Σ = F (C ∩ P), is
called the bifurcation diagram. In the present paper, we continue the study of the singulari-
ties of the momentum mapping, which was started in [11], where the points of rank 0 were
determined. Be reminded that rank-zero singularities of the integral mapping correspond
to equilibrium points of dynamical system. Paper [3] contains stability analysis of the
upper equilibrium with the classical approach. Our results, which were obtained by using
an analysis of the type of singularities of the integral mapping, showed analogous conclu-
sions about the upper equilibrium like for the classical method, and in addition revealed
conditions under which the lower equilibrium position becomes unstable. Another unique
phenomenon is observed in the considered mechanical system, namely the appearance of a
double pinched torus.

Finally, in the current paper, we derive in analytical manner the bifurcation diagram Σ
of the momentum mapping F for the system (1).

3. Regular Precessions—Critical Points of Rank 1 Integral Mapping

The critical points of the integral mapping (4) can be determined from the condition

rank(H × F× L× Γ) < 4. (5)

This method will lead to a description of the critical subsystem for the rank 1 features of
the integral mapping (4).

The condition (5) is equivalent to a redundant system of nonlinear equations on P :

Fk = 0, k = 1, . . . , 5, (6)

where
F1 = γ1M2 − γ2M1,
F2 = γ3M2

1 − γ1M1M3 + (a− bγ3)γ
2
1,

F3 = γ3M2
2 − γ2M2M3 + (a− bγ3)γ

2
2,

F4 = (a− bγ3)γ1γ2 + (γ3M2 − γ2M3)M1,
F5 = (a− bγ3)γ1γ2 + (γ3M1 − γ1M3)M2.
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Note that there is a functional relationship between Fk in the form of the following
relations:

(F3γ2
1 − γ2

2F2 − 2F2
1 γ3)

2

−4γ2
2[M

2
3γ2

1 + 2γ3F2 − 4γ2
1γ3(a− bγ3)]F2

1 = 0,

(F4,5γ1 ∓M3γ1F1 − γ2F2)
2

−[M2
3γ2

1 + 2γ3F2 − 4γ2
1γ3(a− bγ3)]F2

1 = 0,
F4 − F5 = M3F1.

(7)

It follows from the relations (7) that F3, F4 and F5 are functionally expressed in terms
of F1 and F2, which, as it is easy to check, are independent on P\ {M1 = M2 = γ1 =
γ2 = 0, M3 = ±`, γ3 = ±1}. Denoted byM is the closure of the set of solutions of the
following system

M :
{

F1 = 0,
F2 = 0.

(8)

Thus, the redundant system of nonlinear Equation (6) is equivalent to (8), which defines
critical subsystemM by P .

Theorem 1. The set of critical pointsM integral mapping (4) coincides with the set of solutions of
the system (8). The setM on P is a two-dimensional invariant submanifold of the system (1) with
the Hamiltonian (2).

Proof. To prove the invariance of the setM, we find the brackets {F1, H} and {F2, H}:

Ḟ1 = {F1, H} = −F3 − F4,
Ḟ2 = {F2, H} = 2[−bγ2

1 − 2γ3(a− bγ3)
+M2

1 + (1− c)M2
3]F1 + 2M3(1− 2c)F4.

Since the expressions F3 and F4 are functionally expressed in terms of F1 and F2 from
the relations (7), the invariance ofM follows from here.

Theorem 2. The image of the critical subsystemM, i.e., the bifurcation diagram Σ, is part of the
discriminant set of the polynomial R(x), where

R(x) = −bx4 + 2ax3 + [b + (c− 1) f 2 − 2h]x2

+2( f `− a)x + 2h− c f 2 − `2.
(9)

Proof. For the proof, we use easily verifiable equalities that are valid at all points of the
phase space P : {

R(γ3) = F2
1 ,

F2 + F3 = − 1
2 R′(γ3).

(10)

From the relations (7) and (10) follows R(γ3) = R′(γ3) = 0, i.e., at the points of the critical
subsystemM, the polynomial R(x) for x = γ3 has multiple roots.

Thus, the theorem shows that the bifurcation diagram, as an image of the set of critical
points of the moment mapping, is part of the discriminate set of the polynomial R(x). We
present the parametrization of the critical subsystem (8), which will be used in the future to
determine the types of features and study the stability of the critical subsystemM:

M1 = λ1,2
γ1
γ3

, M2 = λ1,2
γ2
γ3

, M3 = γ3 = s,
γ1 = C1 sin(A1,2t) + C2 cos(A1,2t),
γ2 = C1 cos(A1,2t)− C2 sin(A1,2t),

(11)

where
A1,2 = c f − λ1,2,
λ1,2 = 1

2

[
f ±

√
f 2 − 4s(a− bs)

]
.

(12)
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In the Formula (11), the constant s is a parameter of the curve Σ:
f =

(1 + s2)`± (1− s2)
√
`2 − 4s(a− bs)

2s
,

h =
Q±

√
`2 − 4s(a− bs)(1− s2)[(c− 1)s2 + c]`

4s2 ,

(13)

where
Q = 2bs2[c(1− s2)2 − s4] + 2as[s2(1 + s2)− c(1− s2)2]
+[c + s2 + (c− 1)s4]`2.

Note that the curve Σ is a parametrization of the discriminant set of the polynomial R(x)
given by the formula (9).

The curve (13) has two cusp points depending on the values of the parameters a, b, `.
The parameter s = γ3, which defines the cusp points, satisfies the equation

P(s) = 0,

where
P(s) = (a + 3as2 − 4bs3)2

−[b− 3bs2(s2 + 2) + 2as(s2 + 3)]`2 + `4.

The resultant of the polynomial P(s) defines a family of curves ∆k, k = 1, . . . , 5 (atlas of the
bifurcation diagrams):

∆1 : ` = 0, ∆2 : a2 − b`2 = 0,
∆3 :

(
a2 + 4b2)2 − 16b3`2 = 0,

∆4 : `2 − 4(a− b) = 0, ∆5 : `2 + 4(a + b) = 0,

when passing through these, the structure of the discriminant set containing the bifurcation
diagram changes qualitatively.

Figure 1 shows an atlas of bifurcation diagrams for a fixed value of the parameter
a = −1, consisting of curves ∆k that split the plane of parameters (b, `) into five regions
(a), (b), (c), (d), (e). In each of these domains, the bifurcation diagram is the same.

(a)

(b)

(c)

(d)

(e)l

b

-2 -1 0 1 2 3

0

0.5

1

1.5

2

Figure 1. The atlas of the bifurcation diagrams.

Various types of bifurcation diagrams are shown in Figure 2. The values of the
constants of the first integrals corresponding to the equilibrium positions determine two
points P± on the plane R2( f , h)

P+ :
{

f = `

h = 1
2 c`2 + a− b

2 ,
P− :

{
f = −`,
h = 1

2 c`2 − a− b
2 .
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P+

P-

f

h

(a)

∅

12

-2 -1 0 1 2

0

1

2

3

4

5

P+

P-

f

h
(b)

∅

12

-1 - 1

2
0

1

2
1

-1

- 1

2

0

1

2

1

3

2

P+

P-

f

h
(c)

∅

12

22

- 3

2
-1 - 1

2
0

1

2
1

3

2

-3

-2

-1

0

1

2

P+

P-

f

h(d)

∅

12

22

-2 -1 0 1 2

-4

-2

0

2

4

P+

P-

f

h(e)

∅

12

-2 -1 0 1 2

1

2

3

2

4

5

6

Figure 2. The regions marked with the empty set correspond to the points of the ( f , h)-plane in which
there are no possible motions. The points of bifurcation curves correspond to the critical values of the
momentum map, which are the images of critical points of rank 1 (periodic motions). The regions
of the ( f , h)-plane marked with 1T2 or 2T2 correspond to the values of the first integrals for which
preimage of the momentum map contains 1 or 2 two-dimensional tori, respectively. Points P+ and
P− correspond to focus singularities of rank 0 (equilibrium points). Qualitatively different types
of bifurcation diagrams (a–e) are determined by the constants (b, `) and correspond to the regions
shown in Figure 1.

We find, explicitly, the bracket {F1, F2} at the point of the critical subsystemM:

{F1, F2} =
γ2

1
2γ2

3
P(s).

As expected, the degeneracy of the symplectic structure occurs at the points where the
polynomial P(s) vanishes, i.e., at the cusp points of the bifurcation curve Σ.
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4. Stability of Critical Trajectories

As an application, we investigate the problem of the stability of critical trajectories (11).
It is sufficient to determine the type (elliptic/hyperbolic) at any one of the points ( f , h) of
the smooth branch of the curve Σ given by the formula in (13).

The type of critical point x0 of rank 1 in an integrable system with two degrees of
freedom is calculated as follows. It is necessary to specify the first integral G, such that
dG(x0) = 0 and dG 6= 0 in the neighborhood of this point. The point x0 turns out to be
fixed for the Hamiltonian field sgrad G and it is possible to calculate the linearization of
this field at a given point – the symplectic operator AG at the point x0. This operator will
have two zero eigenvalues, the remaining multiplier of the characteristic polynomial has
the form µ2 + µ0, where µ0 = 1

2 trace (A2
G). At µ0 > 0, we get a point of type “center” (the

corresponding periodic solution has an elliptic type, is a stable periodic solution in phase
space, the limit of a concentric family of two-dimensional regular tori), and at µ0 < 0 we get
a point of type “saddle” (the corresponding periodic solution has a hyperbolic type, there
are movements asymptotic to this solution lying on two-dimensional separatrix surfaces).
As an integral of G, we can take the function

G = H − A1,2F− λ1,2

s
L +

λ1,2 f − as + bs2

2s2 Γ.

Here, the expressions A1,2 and λ1,2 are defined by the Formula (12), and the parameter s
defines a point on the bifurcation curve (13).

The coefficient µ0 for the characteristic polynomial AG has the explicit form

µ0 =
1
2

trace (A2
G) = P(s),

where is the polynomial P(s) is responsible for the cusp points of the bifurcation curve (13).
Thus, where the polynomial P(s) has a negative sign, regular precessions will be unstable.
In Figure 2c,d, this corresponds to the branch of the bifurcation curve Σ between the cusp
points. At the remaining points of the Σ bifurcation curve, regular precessions have an
elliptical type, which corresponds to the stability of regular precessions.

Note that the work [3] is devoted to the study of the stability of regular precessions
of a Lagrange top with a vibrating suspension point. In the present paper, the study of
the stability of regular precessions is carried out on the basis of determining the type of
singularity and geometric presentation on the bifurcation diagram of the equilibrium point
and periodic motion stability.

The most important advantages of the method used in this paper to study the La-
grange top with a vibrating suspension point are the geometric clarity of the form of
presentation of the results and general methods for studying the phase topology of inte-
grable Hamiltonian systems. Having constructed the image of the critical set, we obtain
a partition of the parameter space of the system under study into areas, inside which the
number of connected components of the level set of first integrals does not change, and
the nature of the singularities of the Liouville foliation is determined by the eigenvalues of
the linearization of the symplectic operator at singular points. The bifurcation diagram,
in such a clear geometric way, contains information about the nature of the stability of
equilibrium positions and periodic solutions. In contrast to this technique, when studying
the stability of equilibrium positions or periodic motions using standard methods used,
for example, in [1–4], there is a need to construct the Lyapunov function or study the
normal form in the vicinity of the equilibrium position (periodic motion). Here, there is a
finding which, in itself, is a non-trivial mathematical problem and the construction of the
Lyapunov function or normal form is the central problem of stability theory. On the other
hand, classical methods almost always answer the question about the type of stability of
singular solutions, even when the system is not Liouville integrable or is not Hamiltonian
at all. However, the method presented in the article gives an answer to the question of
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the stability of primarily Liouville integrable Hamiltonian systems. At the moment, this
approach is generalized to nonholonomic systems and in the case of dissipative systems,
the question of the possibility of generalizing it is currently open.

Finally, we should note the results of the publication [12] where the authors presented
four generic types of bifurcation diagrams. In this paper, we present five different types
of bifurcation diagrams. This fact is not a contradiction because the objects that are being
classified are different. Lagrange top was studied in [12] as a system with three degrees
of freedom with three-dimensional bifurcation diagrams, and there are four types. In the
present paper, the reduction of the top to the body frame is studied, which is a system with
two degrees of freedom and hence a two-dimensional bifurcation diagram, and there are
five types. The objects are related in that planar slices of the bifurcation diagram in [12]
give the bifurcation diagrams in this paper, but the number of topologically different planar
slices can be larger than the number of topologically different three-dimensional diagrams.
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