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Abstract: In the longitudinal data analysis we integrate flexible linear predictor link function and high-
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1. Introduction

Generalized linear models (GLMs) [1], which have a link function connecting the
predictors linearly, are now part of regression models toolbox. Assuming a linear predictor
link function could be very restrictive as the true relationship could be non-linear. Gener-
alized partial linear models (GPLMs) accommodates both parametric and nonparametric
connections. For example, in modelling longitudinal data, the GPLMs have proved useful
as the model account for possible dependencies in the data [2–6].

One of the basic assumptions in the regression analysis is that all the explanatory
variables are linearly independent. However two or more of the explanatory variables
could be correlated with one another, resulting into a multicollinearity problem. Thus, it
becomes harder to distinguish between effects of the independent variables on the outcome
variable. It also results in the inflation of the variance of the regression parameter estimates.
Ridge regression is widely used in regression model analyses with a large number of
highly correlated independent variables [7–17]. While ridge regression techniques have
widely been used in modelling cross-section data, there have been very few studies and
applications in longitdinal data [18–22].

In this paper, we consider two typical problems name: of multicollinearity among
predictor variables and linear predictor link function in the analysis of longitudinal non-
normal data. For the former, we employ ridge regression and for the later we adopt the
use of B-splines for nonparametric component of the linear predictor in an integrated
approach. We concentrate on the estimation of population averaged model parameters.
For this, we have the marginal mean model specification and account for the possible
dependencies in the longitudinal data in a nonparametric manner through a convenient
working within-subject covariance and employ the generalised estimation equations (GEE)
for estimating the parameters.

In Section 2, we specify the underlying longitudinal model with the nonparametric part
using splines. The estimation and asymptotic properties of the model parameters are also
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presented in Section 2. Simulation studies and an application to acquired immunodeficiency
syndrome data set are in Section 3. We conclude the paper in Section 4.

2. Model and Estimation Procedure
2.1. GPLMs for Longitudinal Data

Suppose we have n subjects and subject i has ni observations denoted by yij (i =
1, . . . , n, j = 1, . . . , ni) for a total of N = ∑n

i=1 ni observations. Also, Xij be a vector of time-
varying covariate. Thus, the total observed data set for the analysis is {(X ij, yij, tij), i =
1, . . . , n, j = 1, . . . , ni}. Further let E(yij) = µij and Var(yij) = φν(µij), where φ is a scale
parameter and ν(.) is a known variance function. We model the longitudinal data with
a GPLM, and specify a marginal model on the first two moments of yij. Especially, the
marginal mean µij is modeled as

ηij = g(µij) = X>ij β + f (tij); µij = g−1(ηij), (1)

where g(.) is a link function for the GLM, β is the regression coefficient vector with
dimension p, and f (.) is an unknown smooth function. We also assume independency
between observations from different subjects. Finally, we assume tij are all scaled into the
interval [0, 1].

Similar to [3,23,24], we approximate the unspecified smooth function by the following
polynomial spline

f (tij) = α0 + α1tij + . . . + αdtd
ij +

Ln

∑
l=1

α(d+1)+l(tij − t(l)i )d
+ = B>(tij)α,

where d is the degree of the polynomial component, Ln is the number of interior knots (rate
of Ln will be specified in Remark 1), t(l)i are knots of the ith subject,

B(tij) =
(

1, tij, . . . , td
ij,
(
tij − t(1)i

)d
+

, . . . ,
(
tij − t(Ln)

i
)d
+

)
is a hn × 1 vector of basis func-

tions, hn is the number of basis functions used to approximate f (tij), hn = d + 1 + Ln,
(a)+ = max(0, a), and αn = (α0, . . . , αd, αd+1, . . . , αd+1+Ln)

> is the spline coefficients vector
of dimension hn. The nonparametric part in the linear prediction part is set as the basis
functions with pseudo-design variables. In this way, the regression model problem in (1)
could be linearised

ηij(θ) = g(µij(θ)) = X>ij β + B(tij)
>α = D>ij θ. (2)

Dij =
(

X>ij , B(tij)
>
)>

is a (p + hn)× 1 design matrix, which combines both the fixed and
spline effects for the jth outcome of the ith subject. The combined regression coeffieicnts
θ = (β>, α>)> has dimension (p + hn)× 1. Let µi = (µi1, . . . , µini )

>, Y i = (yi1, . . . , yini )
>,

where µij = g−1(D>ij θ), and Di = (X>i , B(ti)
>)>. By the linear form of the GPLM in (1),

using the spline approach, any computational algorithm developed for the GLM can be
used for the GPLM.

Remark 1. In spline smoothing, it is important to select the knots efficiently. Concentrating on the
estimation of β, Ref. [3] noticed that knot selection is more important for estimating f (·) rather
than β. Because in most of the studies, the focus is on β and providing sufficient statistical inference,
and one only needs some basic information about f (.). Therefore they particularly used the sample
quantiles of {tij, i = 1, . . . , n; k = 1, . . . , ni} as knots. For instance, with three internal knots, we
take three quartiles of the observed tij. Considering splines of order 4, they applied cubic splines with
the integer part of M1/5, the number of internal knots, where M is the number of distinct values in
tij. Another study, Ref. [25], proposed that the number of distinct knots should increase with sample
size to achieve asymptotic consistency. One must note that having too many knots increases the
variance of estimators. Thus, the number of knots must be appropriately selected. When n goes to ∞,
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the number of knots should increase at n1/(2m+1). Thus, here, we use Ln ≈ n1/(2m+1) with integer
value m as the number of internal knots. We fix m = 2, and choose Ln ≈ n1/5, for asymptotic
consistency. However, it is mainly based on practical experience and a desire for simplicity and is
not an optimal choice. We considered a similar procedure in simulation and real data.

2.2. Ridge Generalized Estimating Equation (RGEE)

In most applications of GPLMs, the primary research interest is to make statistical
inferences on the regression coefficient θ, along with and understanding of basic features
of f (t). For the ridge GEE procedure for β, we briefly review the GEE method. For the
estimating equation of θ, we have

n−1
n

∑
i=1

∂µij(θ)

∂θ>
V−1

i (Y i − µi) = 0, (3)

where V i is a covariance matrix of Y i. For most applications, the actual intracluster co-
variance is regularly unknown. We take the working correlation matrix as R(τ) : V i =

A1/2
i (θ)R(τ)A1/2

i (θ), with the finite-dimensional parameter τ. Some commonly used
working correlation structures include independence, autocorrelation (AR)-1, equally corre-
lated (also called compound symmetry), or unstructured correlation. For a given working
correlation structure, τ can be estimated using the residual-based moment method. Here,
similar to [26], the marginal density of Yij follows a canonical exponential family. Conse-
quently, µij(θ) = a(θij) and σ2

ij(θ) = φa
′
(θij), where θij = D>ij θ, for a differentiable function

a() and a scaling constant φ. Assume R̂ is the estimated working correlation matrix. Then,
(3) simplifies to

1
n

n

∑
i=1

D>i A1/2
i (β)R̂

−1
A−1/2

i (θ)
(
Y i − µi(θ)

)
= 0. (4)

We formally define the GEE estimator as the solution β̂ of the above-estimating equations.
For ease of exposition, we assume φ = 1 in the rest of the article.

To account for multicollinearity in longitudinal data, we use the ridge GEE in the
GPLM in (1) for parameter estimation. We do this by adding a shrinkage term λβ>β to the
objective function for handling correlated predictors. The ridge GEE has form

U(θ) = S(θ)− λβ, (5)

where

S(θ) =
1
n

n

∑
i=1

D>i A1/2
i (θ)R̂

−1
A−1/2

i (θ)
(
Y i − µi(θ)

)
, (6)

are the estimating functions defining the GEE. Here, λ is the tuning parameter that deter-
mines the shrinkage amount. The RGEE estimator β̂R is the solution to U(θ) = 0. We use
the Newton–Raphson algorithm along with (6) to get the following iterative algorithm

θ̂
k+1

= θ̂
k
+
[

H(θ̂
k
) + nλE(θ̂

k
)
]−1
×
[
S(θ̂

k
)− nλE(θ̂

(k
)θ̂

k
)
]
.

Here, H(θ̂
k
) = n−1 ∑n

i=1 D>i A1/2
i (θ)R̂

−1
A−1/2

i (θ)Di, E(θ̂
k
) = diag

{
1p, 0Nk

}
. Further, 1p

and 0Nk represent a vector of 1 with dimension p, and a zero vector of dimension Nk,
respectively. The suggested estimation approach can be implemented step by step, and
the detailed computation procedure can be summarized in Algorithm 1, describing the
combination of ridge regression into the Newton–Raphson iterative algorithm of GEE.
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With prespecified λ and initial value β, the above algorithm is repeated to update β̂
k+1

untill convergence.

Algorithm 1 Monte Carlo Newton–Raphson (MCNR) algorithm

Step 1. Approximate each predictor trajectory f (tij), by regression splines technique where de-
scribed in Section 2.1. The smoothed predictor trajectories are then denoted as f (tij) = π(tij)

>α.
Step 2. Set k = 0. Choose initial values for parameter space θ0 = (β0>, α0>)> and correlation
parameter τ0 where determine covariance matrix V0

i = A1/2
i (θ0)R(τ0)A1/2

i (θ0). Use these
values to find the RGEE estimates of θ. Specially,

(a) Compute θ(k+1) from the expression

θk+1 = θk +
[

H(θk) + nλE(θk)
]−1
×
[
S(θk)− nλE(θ(k)θk)

]
,

where

Hn
(
θk) = n−1

n

∑
i=1

D>i A
1
2
i (θ

k)R−1(τk)A
1
2
i (θ

k)Di,

Sn
(
θk) =

n

∑
i=1

D>i A
1
2
i (θ

k)R̂
−1

(τk)A−
1
2

i (θk))
(
yi − µi(θ

k)
)
.

(b) Compute V k+1
i by A1/2

i (θk+1)R(τk+1)A1/2
i (θk+1) where τk+1 For a given working corre-

lation structure, τ can be estimated using the residual-based moment method according to
the prespecified working correlation structure. For more details refer to

(c) Set k = k + 1.

Step 3. Go to step 2 until convergence is achieved. Choose θk+1 and V k+1
i to be the RGEE

estimates of θ and V i.

It is critical to choose a suitable value of tuning parameter λ to achieve satisfactory
performance of the selection procedure. Many authors have introduced many methods for
choosing an optimal tuning parameter within a given set of candidates. Traditional model
selection criteria, such as AIC and BIC, have several limitations. The generalized cross
validation (GCV) suggested by [27], later [28] proposed a Bayesian information criterion
(BIC). How to choose λ for high-dimensional data discussed by [29]. They proposed a
modified BIC. Further [30] extended the BIC information criterion. For the selection of the
tuning parameter λ, here, we apply the suggested GCV of [27], given by

GCVλ =
1
n RSS(λn)(

1− 1
n d(λn)

)2 ,

where

RSS(λ) =
1
n

n

∑
i=1

(
yi − µi(θ̂)

)>V̂
−1
i
(
yi − µi(θ̂)

)
,

is the residual sum of squares, and effective number is equal to

d(λ) = tr
[{

H
(
θ̂) + nE(θ̂)

}−1
× Hn

(
θ̂)
]
.

The optimal parameter denoted by λopt is the minimizer of the GCVλ. In practical im-
plementation, one can use PGEE package of R software, where function CVfit computes
cross-validated tuning parameter value for longitudinal data. In numerical studies of the
current paper, we used R codes similarly to compute λopt.
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2.3. Asymptotics

We now discuss the asymptotic properties of the estimators β and f (.) for the ridge
GEE. Assuming (A.1)–(A.4) in Appendix A, the following theorems state the large sample
property for f (.) and β, respectively. For the proofs, refer to Appendix A.

Theorem 1. For kn = n1/(2m+1) we have

N−1 ∑
i,j

(
f̂ (tij)− f (tij)

)2
= Op(n−ν),

where ∑i,j = ∑n
i=1 ∑ni

j=1 and ν = 2m/(2m + 1).

Theorem 2. Under the named regularity Conditions (A.1)–(A.4),
√

n
(

β̂− β + b(β)
)

has the
asymptotic p-variate normal distribution with the zero-vector mean and covariate matrix V , where

b(β) = −λH−1(β)β,
V = R

′
(λ)H−1(β)R(λ),

H(β) = n−1
n

∑
i=1

X>i A1/2
i (β)R̂

−1
A−1/2

i (β)X i,

R(λ) =
(
1p + λH−1(β)

)−1.

3. Numerical Analyses
3.1. Simulations

Here, we assess the performance of the GEE compared to its counterpart, the ridge GEE,
for multiple correlated predictor variables. We generate the explanatory variables using

xik = (1− γ2)
1
2 ωik + γ2ωip, i = 1, . . . , n = 100, k = 1, . . . , p− 1, p = 5, (7)

where ωik are assumed to be independent and generated from a normal distribution
with zero mean and unit variance. The parameter γ reflects the correlation such that
any two explanatory variables correlate equally to γ2. We generality, we consider γ ∈
{0.70, 0.80, 0.90, 0.99}. The nonparametric part of (1) has form f (tij) = 2sin(2πtij). In the
entire process, ni = 4 for each subject i and use the following GPLM for simulation

yij = xi,1,jβ1 + xi,2,jβ2 + xi,3,jβ3 + xi,4,jβ4 + xi,5,jβ5 + f (tij) + εij. (8)

We set the true β as βT = (0.5, 1, 1.5, 2, 0.1, 0.2). We generate tij from the uniform dis-
tribution over (0, 1). The εij is generated from a normal distribution with zero mean, a
common marginal variance σ2 = 1. Moreover, the correlation structure is AR(1), i.e.,
corr(εis, εit) = ρ|t−s| for s 6= t, ρ = 0.9. Each simulated data set is fitted separately by the
GEE approach of [26] and our ridge GEE using Algorithm 1. Then, 200 replications are run
for each combination of ρ and γ.

To assess the behavior of both estimators encountering misspecified correlation struc-
tures, we conduct a comparison between β̂GEE and β̂RGEE. We test the exchangeable
working correlation structure (GEE-I) or (RGEE-I) when the true correlation structure is
AR(1), (GEE-C), or (RGEE-C). For each of the estimators, we measure the accuracy in
estimation using the mean squared error (MSE) given by MSE = (β̂− β)>(β̂− β). We
recall the tuning parameter λ was obtained using the GCV, where λopt was the minimizer
of the GCVλ. Alternatively, one can use the ridge trace to find λopt. Figure 1 illustrates the
ridge trace for the first generated random sample. As can be seen, the minimizer occurs
at K = 0.05, which is the same value as the minimizer of GCV. The simulation results for
MSE are presented in the latest column of Table 1. Table 1 reports the empirical biases and
standard deviations (SDs) of the estimated β from the GEE and RGEE methods. We can
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take the following observations: Our proposed RGEE has a superior performance in the
MSE criterion. For misspecified correlation structures, the RGEE outperforms. However, it
has more bias and offers a smaller SD in most cases compared to the GEE. By increasing
the correlation among predictors, the increase in RGEE MSE is lesser than the GEE for all
considered criteria. The conclusion is evident at the extreme level of correlation γ = 0.99.
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Figure 1. The ridge trace plot, for the first simulated data.

Table 1. Estimated regression coefficients for the important variables; bias (SD) based on 200 replications.

Methods Parameters γ = 0.70 γ = 0.80 γ = 0.90 γ = 0.99

RGEE-C β1 0.028(0.032) 0.033(0.038) 0.046(0.052) 0.141(0.142)
β2 0.024(0.027) 0.029(0.032) 0.039(0.044) 0.122(0.126)
β3 0.056(0.027) 0.067(0.032) 0.092(0.044) 0.284(0.127)
β4 0.055(0.029) 0.066(0.035) 0.090(0.048) 0.279(0.137)
β5 0.080(0.035) 0.097(0.045) 0.137(0.068) 0.446(0.209)

MSE 0.243 0.291 0.404 1.271

RGEE-I β1 0.041(0.033) 0.049(0.039) 0.068(0.053) 0.209(0.150)
β2 0.057(0.029) 0.068(0.034) 0.093(0.047) 0.289(0.137)
β3 0.055(0.029) 0.065(0.034) 0.090(0.047) 0.278(0.137)
β4 0.061(0.031) 0.073(0.037) 0.101(0.051) 0.311(0.146)
β5 0.070(0.037) 0.076(0.048) 0.092(0.073) 0.249(0.236)

MSE 0.284 0.331 0.444 1.335

GEE-C β1 0.027(0.055) 0.033(0.066) 0.045(0.090) 0.129(0.279)
β2 0.024(0.044) 0.028(0.052) 0.039(0.072) 0.113(0.223)
β3 0.058(0.051) 0.069(0.061) 0.096(0.084) 0.308(0.259)
β4 0.055(0.050) 0.065(0.060) 0.089(0.082) 0.244(0.254)
β5 0.082(0.053) 0.100(0.068) 0.143(0.103) 0.449(0.391)

MSE 0.246 0.295 0.411 1.243

GEE-I β1 0.040(0.057) 0.048(0.068) 0.065(0.094) 0.184(0.289)
β2 0.055(0.048) 0.065(0.057) 0.088(0.078) 0.237(0.242)
β3 0.057(0.052) 0.069(0.062) 0.096(0.085) 0.320(0.262)
β4 0.061(0.056) 0.072(0.067) 0.099(0.092) 0.271(0.284)
β5 0.072(0.055) 0.079(0.071) 0.099(0.110) 0.262(0.423)

MSE 0.286 0.333 0.447 1.275

3.2. AIDS Data Analysis

For illustration, in this section, the proposed model is used to analyze the CD4 cell data.
From the number of 369 patients, 2376 CD4 measurements are recorded. The population’s
average time course of CD4 decay is regressed on the following covariates: packs per day
for an indication of smoking; binary variable recreational drug use; SEXP as an indication
of the number of sexual partners; and depression symptoms as measured by the CESD
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scale (larger values indicate increased depressive symptoms). Similar to most literature, we
take the square root of CD4 numbers. For the reason of the latter transformation, the reader
is referred to [31,32]. For the correlation structure, we follow the approach of [31] and fit
the compound symmetry covariance, where ρ = 0.509. We then used our proposed RGEE
compared with the GEE for parameter estimation. We computed the standard errors (SDs)
calculated using the bootstrap method. Table 2 provides the parameter estimates. From the
result of this table, our proposed RGEE gives effectively smaller SD values compared to
the GEE.

Table 2. Regression coefficient estimates (SD) in the analysis of the CD4 data.

Coefficients
Methods

Coefficients
Methods

RGEE GEE RGEE GEE

AGE 3.987 (0.006) 4.298 (0.009) AGE*CESD −0.268 (0.008) −0.262 (0.001)
SMOKE 32.780 (0.053) 32.916 (0.062) SMOKE*DRUG −16.204 (0.046) −16.221 (0.055)
DRUG 17.949 (0.066) 18.254 (0.075) SMOKE*SEXP 4.051 (0.002) 4.057 (0.005)
SEXP 2.801 (0.009) 2.797 (0.013) SMOKE*CESD −0.268 (0.003) −0.251 (0.002)
CESD −3.077 (0.002) −3.077 (0.005) DRUG*SEXP −1.205 (0.005) −1.292 (0.013)

AGE*SMOKE 0.039 (0.002) −0.007 (0.003) DRUG*CESD 0.274 (0.003) 0.273 (0.005)
AGE*DRUG −1.006 (0.003) −1.017 (0.009) SEXP*CESD 0.033 (0.008) 0.026 (0.001)
AGE*SEXP −0.565 (0.003) −0.596 (0.001)

4. Concluding Remarks and Discussion

We considered a generalized partially linear model (GPLM) and ridge regression to
tackle the problems of multicollinearity and non-linearity in the relationship between the
mean response and covariates in the longitudinal data analysis. The generalized estimation
Equation (GEE) methods were used to estimate parameters in our proposed model. Using
simulation studies, our methods resulted in smaller biases for estimating parameters than
could have been obtained in a standard GEE. The performance of our proposed method
decreased with increased dependencies between the model predictors. We also applied our
model to a specific data set on AIDS data analysis.
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Appendix A

To study the asymptotic properties of RGEE estimators, the following regularity
conditions are required.

(A.1) Number of observations over time (ni) is a bounded sequence of positive integers,
and the distinct values of tij form a quasi-uniform sequence that grows dense on [0, 1],
and the kth derivative of f (tij) is bounded for some k ≥ 2;
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(A.2) The covariates X ij, 1 ≤ i ≤ n, 1 ≤ j ≤ m are uniformly bounded;

(A.3) The unknown parameter β belongs to a compact subset B ⊆ Rp, the true parameter
value lies in the interior of B;

(A.4) There exist two positive constants, b1 and b2, such that

b1 ≤ λmin

(
n−1

n

∑
i=1

X>i X i

)
≤ λmax

(
n−1

n

∑
i=1

X>i X i

)
≤ b2,

where λmin(resp. λmax) denotes the minimum (resp. maximum) eigenvalue of a
matrix.

To verify Theorem 1, we need the following lemma.

Lemma A1. Under Condition (A.1), there exists a constant C depending only on kn such that

sup
t∈[0,1]

| f (t)− π(t)α| ≤ Ck−m
n .

The proof of this lemma follows readily from Theorem 12.7 of Schumaker [33].

Proof of Theorem 1. By Lemma A1, we approximate f (tij) by π(t)α, then by choosing
kn ≈ n1/(2m+1) we have(

f̂ (t)− f (t)
)2

= | f̂ (t)− f (t)|| f̂ (t)− f (t)|
≤ sup

t∈[0,1]
| f̂ (t)− f (t)| sup

t∈[0,1]
| f̂ (t)− f (t)|

≤ Ck−m
n Ck−m

n = C2n−2m/(2m+1) = Op(n−2m/(2m+1)),

which proves Theorem 1.

Proof of Theorem 2. To proof Theorem 2 define the linear operator R(λ) =
(
1p +λH−1(β)

)−1.
It is straightforward to calculate that the ridge estimator β̂RGEE can be expressed as R(λ)β̂GEE
where β̂GEE is ordinary GEE estimator. The expectation of the ridge estimator can be expressed as

E
(

β̂RGEE
)
= E

(
R(λ)β̂GEE

)
= β− λH−1(β)β.

Clearly, E
(

β̂RGEE − β
)
= −λH−1(β)β 6= 0 for any λ > 0. Hence, the ridge estimator is

biased with −λH−1(β)β = b(β). The variance of the RGEE estimator is straightforwardly
obtained when exploiting its linearly relation with the GEE estimator. Then,

Var
(

β̂RGEE
)
= Var

(
R(λ)β̂GEE

)
= R

′
(λ)Var

(
β̂GEE

)
R(λ) = R

′
(λ)H−1(β)R(λ),

where R
′
(λ)H−1(β)R(λ) = V . Combining the expectation and variance terms, the proof

is complete.
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