
Citation: Yu, H.; Zahidi, I. Tailings

Pond Classification Based on Satellite

Images and Machine Learning: An

Exploration of Microsoft ML.Net.

Mathematics 2023, 11, 517. https://

doi.org/10.3390/math11030517

Academic Editors: Danial

Jahed Armaghani, Hadi Khabbaz,

Manoj Khandelwal, Niaz

Muhammad Shahani and Ramesh

Murlidhar Bhatawdekar

Received: 18 November 2022

Revised: 4 January 2023

Accepted: 17 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Tailings Pond Classification Based on Satellite Images and
Machine Learning: An Exploration of Microsoft ML.Net
Haoxuan Yu and Izni Zahidi *

Civil Engineering Discipline, School of Engineering, Malaysia Campus, Monash University,
Bandar Sunway 47500, Malaysia
* Correspondence: izni.mohdzahidi@monash.edu

Abstract: Mine pollution from mining activities is often widely recognised as a serious threat to
public health, with mine solid waste causing problems such as tailings pond accumulation, which
is considered the biggest hidden danger. The construction of tailings ponds not only causes land
occupation and vegetation damage but also brings about potential environmental pollution, such
as water and dust pollution, posing a health risk to nearby residents. If remote sensing images and
machine learning techniques could be used to determine whether a tailings pond might have potential
pollution and safety hazards, mainly monitoring tailings ponds that may have potential hazards, it
would save a lot of effort in tailings ponds monitoring. Therefore, based on this background, this
paper proposes to classify tailings ponds into two categories according to whether they are potentially
risky or generally safe and to classify tailings ponds with remote sensing satellite images of tailings
ponds using the DDN + ResNet-50 machine learning model based on ML.Net developed by Microsoft.
In the discussion section, the paper introduces the environmental hazards of mine pollution and
proposes the concept of “Healthy Mine” to provide development directions for mining companies
and solutions to mine pollution and public health crises. Finally, we claim this paper serves as a
guide to begin a conversation and to encourage experts, researchers and scholars to engage in the
research field of mine solid waste pollution monitoring, assessment and treatment.

Keywords: mine geology; computational intelligence; remote sensing; environment management

MSC: 68T20

1. Introduction
1.1. Research Background

With the increasing frequency of mining activities worldwide, mine discharge brings
plenty of environmental problems. Among these, mine solid waste discharge is considered
one of the most serious environmental problems, and as mine solid waste has a low reuse
rate compared to other solid waste, tailings ponds generally need to be built to stockpile
mine solid waste [1,2].

There is no doubt that the construction of tailings ponds, while allowing for the
storage of mine solid waste, is not a good thing for the environment and human beings: the
construction of tailings ponds takes up a lot of land and causes damage to vegetation cover,
while the leachate from the ponds can have a serious negative impact on the environment
and public health. There are many cases (as shown in Table 1) which confirm this.

In 2003, Agrawal, A. et al. [3] introduced the world to the environmental impact and
damage caused by solid waste discharge from the non-ferrous metal industry in India, such
as leachate pollution; their research showed that metal recycling of solid waste from the
non-ferrous metals industry would be effective in mitigating environmental pollution, and
Shengo’s [4] review endorsed this practice of recovering metal resources from solid waste.
In 2016, Liu, Y. et al. [5] suggested that solid waste discharges can lead to damage to the
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surface landscape, for example, tailings pond stockpiles, which not only occupy surface
space but also bring a major safety hazard that would result in serious human casualties at
the mine site in the event of a tailings pond failure; in the same year, 2016, Asif, Z. and Chen,
Z. [6] argued that the land occupation of tailings pond stockpiles is indeed a nuisance, and
therefore they advocated the use of mine solid waste for land reclamation.

Table 1. Research cases on the mine solid waste pollution.

Pollution Issue Research Cases Research Area Research Purpose Research Findings

Mine Solid Waste
Pollution (Tailings

Ponds)

Agrawal, A.
et al., 2004 [3]

India: Non-ferrous
metals Industry

To study solid waste pollution
and management in the

non-ferrous metals industry in
India.

The results showed that solid
waste polluted surface water

as well as groundwater,
primarily through leachate,

thus affecting farmland, rivers
and public health.

Additionally, the authors
advocated that mines should
commit to metal recycling of

non-ferrous solid waste, which
would mitigate solid waste

pollution.

Liu, Y. et al.,
2016 [5]

China: Mining
Industry

To study the pollution of
industrial solid waste in

general (mining solid waste in
particular) and to make

recommendations related to
solid waste management based

on the current state of the
resource and environmental

development in China.

The authors suggested that the
problem of land occupation by

solid waste (tailings pond
stockpiling) from mines is very
serious, especially in China; at
the same time, tailings ponds
are a major safety hazard that

would result in serious human
casualties at the mine site in
the event of a tailings pond

failure.

Asif, Z. et al.,
2016 [6]

North America:
Mining Industry

To discuss the challenges of
environmental management,

particularly solid waste
management, in the North
American mining industry.

The author highlighted the
hazards of land occupation

from tailings pond
accumulation, and the author

recommended the use of
non-hazardous mine solid
waste for land reclamation.

Shengo, L. M.
2021 [4]

Democratic
Republic of the
Congo: Mining

Industry

In order to explore the
environmental issues related to

the management of mineral
waste in the mining industry
in the Democratic Republic of

the Congo.

The recycling and reuse of
non-ferrous solid waste were
very important, not only to

mitigate the problem of solid
waste pollution but also to

bring potential resource value.

In addition to the potential environmental pollution and health risks associated with
tailings ponds, they are also a potential source of danger and can lead to potential safety
incidents. If a tailings pond were to fail, it would be a huge disaster for the environment
and the people living in the vicinity of the mine. In Brazil, serious tailings pond failures
occurred in 2015 and 2019 [7], causing massive damage to homes and vehicles. In China, a
tailings pond failure accident occurred in 2008 in Xiangfen Country, Shanxi, resulting in a
large number of casualties and environmental damage [8,9].

Since 2010, the safety and environmental pollution hazards of tailings ponds have re-
ceived increasing attention from researchers [10,11]. Based on the Google Scholar database
(https://scholar.google.com; accessed on 14 November 2022), using “tailings ponds and
safety” and “tailings ponds and environment” as the keywords, the number of studies

https://scholar.google.com
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related to both keywords for each three-year period from 2010 to 2020 was found, as shown
in Figure 1. The number of related literature results in the last 10 years clearly has an
upward trend, showing that the safety and environmental pollution hazards of tailings
ponds are receiving the public’s increasing attention.
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environment”.

1.2. Research Purpose and Significance

Monitoring and management of tailings ponds are particularly important in order
to avoid environmental pollution and safety accidents in tailings ponds [12]. However,
monitoring tailings ponds is often very time-consuming and labour-intensive [13]; if remote
sensing images and machine learning could be used to determine whether a tailings pond
might have potential pollution and safety hazards and then mainly monitoring tailings
ponds that may have potential hazards, it would save a lot of effort in tailings ponds
monitoring [14,15].

As a result, this paper divides tailings ponds into two categories according to whether
they are potentially risky: 1# Tailings Pond, which has potential environmental and safety
hazards, and 2# Tailings Pond which has no obvious potential environmental and safety
hazards. Combining the remote sensing images (satellite maps) with the results of the
field surveys (as shown in Figure 2): it defines that 1# Tailings Pond is an unclosed tailings
pond that has significant surface water leaching, thus posing a potential contamination
and safety hazard (as shown in Figure 2A); it defines that 2# Tailings Pond is generally a
closed (almost closed) tailings pond or a dry stockpile pond with no significant surface
water leaching, which may show signs of land reclamation and can generally be considered
to have no obvious potential environmental and safety hazards (as shown in Figure 2B).

Based on the features of the two categories of tailings ponds, this paper planned to
implement the image identification and classification function of tailings ponds by building
a machine learning model via ML.Net developed by Microsoft [16]. At the same time, this
paper planned to explore the accuracy of the ML.Net machine learning framework and its
machine learning model in classifying and identifying the two types of tailings ponds with
different characteristics, providing a starting point for future remote sensing techniques to
monitor tailings pond risk and pollution.
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2. Materials and Methods
2.1. Machine Learning Model

The training environment used was local training on a computer using a CPU (Intel
Core i7-9750H; Memory: 16 GB). Additionally, the study was carried out on Visual Studio
2022 Professional, based on ML.Net developed by Microsoft [17]:

ML.Net is a machine learning framework developed by Microsoft for the new “.Net”
platform and provides a low-code development tool called “Model Builder”, an intuitive
graphical Visual Studio extension for generating, training and deploying custom machine
learning models [18]. Therefore, for “.Net” platform developers, using the ML.Net machine
learning framework is an excellent choice in terms of ease of use, performance and accu-
racy [19]. The ML.Net machine learning framework uses a DNN (Deep Neural Network)
and Resnet-50 model (DNN + Resnet-50) to implement image classification functions so
the study was based on DNN and the ResNet-50 model to categorise two types of tailings
ponds with different features:

ResNet-50 is a residual network that uses a shortcut connection to connect the inputs
directly to the outputs (as shown in Figure 3A), which effectively solves the problem of
performance degradation due to the deepening of the network as the shortcut connection
does not increase the amount of computation [20].

In essence, the idea of residual network learning can be understood as a block, which
can be defined by Equation (1) [21], where y represents the output, F(x, {Wi}) represents
the residual component and x represents the sample:

y = F(x, {Wi}) + x. (1)

As a result, the ResNet-50 residual network is well suited for feature extraction of the
data sets [22]. Additionally, regarding structure, the ResNet-50 network is divided into six
parts, of which Stage 1 is the input module, consisting of Conv and Max Pool, Stage 2 to
Stage 5 are the residual modules, containing both Conv Block and Identity Block, and Stage
6 is the output module [22,23]. The structure of ResNet-50 is shown in Figure 3B.

tianditu.gov.cn
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2.2. Training Set and Test Set

The data chosen for the study were satellite images of tailings ponds within China
from Geovis (http://www.geovis.com.cn/ (accessed on 10 November 2022) and Tianditu
(https://www.tianditu.gov.cn/ (accessed on 10 November 2022), with a total of 30 sets
of both the 1# tailings pond (15 sets) and the 2# tailings pond (15 sets). The two different
categories of data in the training set have their own distinctive features: the data in the
category 1# Tailings Pond are all unclosed tailings ponds, with significant surface water
leaching on the satellite images; the data in the category 2# Tailings Pond are generally
closed (or almost closed) tailings ponds or dry storage tailings ponds, with no significant
surface water leaching on the satellite images and signs of land reclamation. For data set
details, please refer to http://dx.doi.org/10.13140/RG.2.2.26494.87367 (accessed on 10
November 2022).

2.3. Validation Methods

To further validate the accuracy of the image recognition and classification function of
the ML.NET machine learning framework [24,25], the cross-validation method was chosen
to randomly disrupt the data from training sets and the test sets, re-train the new training
sets with DDN + ResNet-50 machine learning framework, test with the new test sets and
repeat another 19 times (total 20 times) to find the mean value of the accuracy as an estimate
of the accuracy [26]. The entire study process is shown in Figure 4.

After training, the accuracy was tested with the test sets in the intuitive graphical
Visual Studio extension module of ML.Net. If the model determines that a satellite image
of a tailings pond has a greater than 50% probability of belonging to its original category,
then the model is considered to have correctly identified and categorised the tailings pond
for this time (as shown in Figure 5).

http://www.geovis.com.cn/
https://www.tianditu.gov.cn/
http://dx.doi.org/10.13140/RG.2.2.26494.87367
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3. Results and Discussion
3.1. Test Accuracy

According to Figure 4, each dataset of the 1# Tailings Pond and 2# Tailings Pond
was randomly divided into a training set (10 sets of data) and a test set (5 sets of data),
respectively, and each training set was trained by the built DDN + ResNet-50 machine
learning model. The model was then tested through the intuitive graphical Visual Studio
extension module of ML.Net using the test set according to Figure 5. The whole process
was repeated a total of 20 times.

After 20 times cross-validation, the DDN + ResNet-50 network model was found to
perform well for the identification and classification of satellite images of tailings ponds,
with an average test accuracy of 83.5%: 84% for the 1# Tailings Pond and 83% for the
2# Tailings Pond. The test accuracy data for the 20 times cross-validation are shown in
Figure 6.
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3.2. Analysis

The results show that the test accuracy of identification and classification of satellite
images of tailings ponds based on the DDN + ResNet-50 machine learning model can reach
83.5%; however, in the cross-validation, the identification accuracy of test sets under differ-
ent training sets has a relatively large difference. For example, as shown in Figure 6: in the
1st, 2nd, 7th, 10th, 13th, 14th, 16th and 17th time of the cross-validation, the identification
accuracy of both categories reached 100%; however, in the 4th, 8th, 11th and 20th time of
the cross-validation, the identification accuracy for both categories was lower, with a low
identification rate of 40% for the 1# Tailings Pond and a low identification rate of 60% for
the 2# Tailings Pond.

This may occur because of the presence of data with insignificant features in the
dataset, resulting in insufficient generalisation of the model [27]. For example, in Figure 7,
Tailings Pond A below has no significant surface water leaching compared to Tailings
Pond B, although it belongs to the category of the 1# Tailings Pond. However, cross-
validation solved this problem well; as the number of cross-validation times increased, the
test accuracy reached closer to the true value.
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Therefore, if further validation and improvement of the accuracy of machine learning
models are required, the following measures are worth considering.

• Using the cross-validation method, the total data set is split and combined into differ-
ent training and testing sets, with the training set being used to train the model and the
testing set being used to evaluate how well the model identifies and categorises, which
further reflects the accuracy of the model [28]. S-fold cross-validation is a common
form of cross-validation in which the total data set is randomly divided into S mutually
exclusive subsets of equal size, and each time S-1 copies are randomly selected as the
training set and the remaining 1 copy as the test set [29]. When the round is completed,
S-1 copies are randomly selected again to train the data [30].

• Expanding the dataset to allow the model to be more aware of the features of the data
in the training set can improve the accuracy of the model. Among the ways to expand
the dataset may be finding more relevant data, as well as data augmentation [31,32].

3.3. Optimisation

In order to further validate the accuracy of the image recognition and classification
functions of the ML.NET machine learning framework and to optimise the original method
of cross-validation, in this part, the three-fold cross-validation method was chosen to
be used by randomly dividing the total data set into three equally sized sets, randomly
selecting two each time as the training set and the remaining one as the test set, and
the cycle was repeated three times to determine the accuracy mean value as the accuracy
estimate. The three-fold cross-validation method was also repeated three times by randomly
disrupting the data inside the A/B/C/D/E/F sets three times, as shown in Figure 8.

After three times three-fold cross-validation, the DDN + ResNet-50 network model
was still found to perform well for the identification and classification of satellite images
of tailings ponds, with an average test accuracy of 87.8%: 88.9% for the 1# Tailings Pond
and 86.7% for the 2# Tailings Pond. The test accuracy data for the three times three-fold
cross-validation are shown in Figure 9.

We then explored further and improved the accuracy of the ML.NET machine learning
framework and its DNN + Resnet-50 model for the identification and classification of
tailings ponds by expanding the dataset (training set and test set). The data for the new
dataset were satellite images of tailings ponds within China, Australia and Malaysia
from Geovis (http://www.geovis.com.cn/ (accessed on 10 November 2022), Tianditu
(https://www.tianditu.gov.cn/ (accessed on 10 November 2022) and Google Earth (https:
//earth.google.com/ (accessed on 10 November 2022), with a total of 42 sets of both the 1#

geovis.com.cn
http://www.geovis.com.cn/
https://www.tianditu.gov.cn/
https://earth.google.com/
https://earth.google.com/
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tailings pond (21 sets) and 2# tailings pond (21 sets). For data set details, please refer to
http://dx.doi.org/10.13140/RG.2.2.27124.01928 (accessed on 10 November 2022).
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The new dataset likewise underwent three times three-fold cross-validation (as shown
in Figure 8). The DDN + ResNet-50 network model was still found to perform well for the
identification and classification of satellite images of tailings ponds, with an average test
accuracy of 87.3%: 90.5% for the 1# Tailings Pond and 84.1% for the 2# Tailings Pond. The
test accuracy data for the three times three-fold cross-validation are shown in Figure 10.

http://dx.doi.org/10.13140/RG.2.2.27124.01928
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The results showed that the ML.Net machine learning framework and its DDN +
ResNet-50 machine learning model performed very well in the recognition and classifica-
tion of satellite images of tailings ponds, with accuracies above 80% for all three validations
(including the validation after expanding the database). However, the identification ac-
curacy for the 2# Tailings Ponds was slightly lower than that for the 1# Tailings Ponds
in all three validations. This may be due to the fact that the 2# Tailings Pond is not well
characterised, which is exactly the case: some 2# Tailings Ponds, which are about to be
closed or have just been closed, are not very different from 1# Tailings Ponds; while some
2# Tailings Ponds, which has been closed for some time, generally already show signs of
extensive land reclamation, which are all different. This problem may need to be solved in
the future by other methods, but there is no doubt that ML.Net has done an excellent job of
identifying and classifying tailings ponds.

4. Discussion: Research Implications and Other Types of Mine Pollution

The monitoring and management of tailings ponds are particularly important in order
to avoid environmental pollution and safety accidents in tailings ponds. However, monitor-
ing tailings ponds is often very time-consuming and labour-intensive. This paper explored
the accuracy of the ML.Net machine learning framework and its machine learning model
in classifying and identifying the two types of tailings ponds with different characteristics,
providing a starting point for future remote sensing techniques to monitor tailings pond
risk and pollution [33,34].

It is also important to introduce the public to the severity of the current worldwide
mine pollution and its hazards to the environment and public health because, in addition
to mine solid waste pollution, mine wastewater and mine dust are also serious threats to
the environment and the health of residents [35,36]: Mine wastewater pollution causes
serious environmental problems (e.g., heavy metal pollution) to rivers, agricultural soils,
the surrounding environment and drinking water for people living nearby; mine dust
pollution can affect the safety of mining production and can also have a negative impact
on the health of miners, for example by causing them to suffer from occupational diseases
such as pneumoconiosis [37].

With the introduction of “Sustainable Development” [38] and “One Health” [39],
issues related to mine pollution, environmental damage and public health are receiving
increasingly widespread attention worldwide that more and more people are becoming
aware of the negative health effects of mine pollution and they are trying to take precautions,
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while researchers are noticing the ecological and public health risks posed by mine pollution,
so more and more research related to mine pollution, environmental damage and public
health is being carried out. Additionally, many experts in the field of environmental
engineering and public health have proposed measures based on their research expertise to
address the problems associated with environmental pollution and health crises in mining;
they have mostly focused their research on their own single area of study. For example,
Li, S. et al. [40,41] have been working on Green Mine Construction and the elimination of
mine pollution, but their research has remained focused on improving mining methods and
thus mitigating mine pollution, without taking into account emissions pollution and the
impact of emissions on public health; furthermore, Sahu, K et al. [42,43] were among the
first researchers to propose the reuse of metal mine solid waste for metal resource recovery
as well as to mitigate mine solid waste pollution, but their research was limited to chemical
recovery processes, and no further research or discussion of mine pollution or public health
threats was undertaken [44,45].

Consequently, in the discussion, we propose the concept of a “Healthy Mine” to
provide a direction for development and solutions to the mine pollution and public health
crises for mining companies to follow and to raise public awareness of mine pollution.

We define a “Healthy Mine” as a mine that actively addresses and mitigates the impact
of mine environmental pollution from the mine discharge (water, solid and dust) on the
ecological environment, residents’ health and the occupational health of miners through
company management, pollution treatment technologies and employee education in the
process of resource development. We advocate all existing mines in the world today should
be moving in this direction so that environmental pollution problems and public health
crises can be well alleviated.

By definition, a mine is considered a “Healthy Mine” if it meets the following basic
conditions: (A) Wastewater and Leachate Treatment: the wastewater and leachate gen-
erating from mine solid waste should be treated, so the mine should actively introduce
wastewater treatment technology, and the quality of discharged wastewater and leachate
should meet the emission standard; (B) “Healthcare”: the mine should ensure that the
surrounding population is not affected by pollution from the mine wastewater pollution
and the leachate pollution; (C) Solid Waste Management: the mine should have strict
management of solid waste discharge sites, and actively implement the land reclamation;
(D) Solid Waste Recycle: the mine should be active in the reuse of mine solids, for example
in the preparation of construction (or backfill) materials; (E) Dust Control: the mine should
actively introduce dust control measure, such as spraying covering agents on the surface of
dusty materials; (F) Company Management and Employee Education: the mine should
make regulations to strictly manage pollution and discharge control during the mining
process, and also strengthen health education for mine employees, for example by strictly
requiring them to wear dust filtering masks during mining operations. Thus, the concept
diagram of the “Healthy Mine” is as follows in Figure 11:
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5. Conclusions

As the construction of tailings ponds is a potential environmental and safety hazard,
their monitoring is very necessary. Against this background, this paper proposes to classify
tailings ponds into two categories according to whether they are potentially risky or
generally safe and to classify tailings ponds’ remote sensing satellite images using DDN +
ResNet-50 machine learning model based on ML.Net developed by Microsoft. Meanwhile,
this paper also explored the accuracy of the ML.Net machine learning framework and
its machine learning model in classifying tailings pond types according to the different
characteristics of the 1# Tailings Pond and 2# Tailings Pond.

The conclusions we have drawn are as follows:

• ResNet-50 is a residual network that uses a shortcut connection to connect the inputs
directly to the outputs. Its classification is more accurate, solves the problem of deep
network degradation and is well suited to studying the identification and classification
of tailings ponds’ satellite images.

• DDN + ResNet-50 was found to perform well in the identification and classification
of satellite images of tailings ponds. The ML.Net machine learning framework and
its model achieved an accuracy of 83.5% for the identification and classification of
tailings ponds in the case of 20 times cross-validation, achieved an accuracy of 87.8%
for the identification and classification of tailings ponds in the case of three-fold cross-
validation and achieved an accuracy of 87.3% for the identification and classification
of tailings ponds in the case of three-fold cross-validation after expanding the dataset.

• In this study, the identification accuracy of the 2# Tailings Ponds was slightly lower
than that of the 1# Tailings Ponds. This may be due to the fact that the characteristics
of 2# Tailings Ponds are not obvious on the satellite maps: some 2# Tailings Ponds that
are about to be closed or have just been closed do not differ much from 1# Tailings
Ponds on the satellite maps, while some 2# Tailings Ponds that have been closed for
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some time generally already show signs of extensive land reclamation on the satellite
maps, which are different from each other.

In a nutshell, we claim that this research serves as a guide to starting a conversation,
and we hope more and more experts, researchers and scholars will be interested and engage
in research in this field of mine pollution assessment using remote sensing technologies
and machine learning models.

Author Contributions: Conceptualisation: H.Y.; methodology: H.Y.; writing—original draft prepara-
tion: H.Y.; writing—review and editing: H.Y. and I.Z.; supervision: I.Z.; project administration: I.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data will be made available on request.

Acknowledgments: First, the authors would like to thank the Graduate Research Excellence Scholar-
ship (GRES) from Monash University. Second, the authors express their gratitude to the experts in
the research field of mine pollution and public health for their effort.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Small, C.C.; Cho, S.; Hashisho, Z.; Ulrich, A.C. Emissions from oil sands tailings ponds: Review of tailings pond parameters and

emission estimates. J. Pet. Sci. Eng. 2015, 127, 490–501. [CrossRef]
2. Liu, J.; Liu, R.; Zhang, Z.; Cai, Y.; Zhang, L. A Bayesian Network-based risk dynamic simulation model for accidental water

pollution discharge of mine tailings ponds at watershed-scale. J. Environ. Manag. 2019, 246, 821–831. [CrossRef]
3. Agrawal, A.; Sahu, K.K.; Pandey, B.D. Solid waste management in non-ferrous industries in India. Resour. Conserv. Recycl. 2004,

42, 99–120. [CrossRef]
4. Shengo, L.M. Review of practices in the managements of mineral wastes: The case of waste rocks and mine tailings. Water Air Soil

Pollut. 2021, 232, 273. [CrossRef]
5. Liu, Y.; Guo, D.; Dong, L.; Xu, Y.; Liu, J. Pollution status and environmental sound management (ESM) trends on typical general

industrial solid waste. Procedia Environ. Sci. 2016, 31, 615–620. [CrossRef]
6. Asif, Z.; Chen, Z. Environmental management in North American mining sector. Environ. Sci. Pollut. Res. 2016, 23, 167–179.

[CrossRef] [PubMed]
7. Porsani, J.L.; Jesus, F.A.N.D.; Stangari, M.C. GPR survey on an iron mining area after the collapse of the tailings dam I at the

Córrego do Feijão mine in Brumadinho-MG, Brazil. Remote Sens. 2019, 11, 860. [CrossRef]
8. Shen, L.; Luo, S.; Zeng, X.; Wang, H. Review on anti-seepage technology development of tailings pond in China. Procedia Eng.

2011, 26, 1803–1809. [CrossRef]
9. Wei, Z.; Yin, G.; Wang, J.G.; Wan, L.; Li, G. Design, construction and management of tailings storage facilities for surface disposal

in China: Case studies of failures. Waste Manag. Res. 2013, 31, 106–112. [CrossRef]
10. Wang, T.; Zhou, Y.; Lv, Q.; Zhu, Y.; Jiang, C. A safety assessment of the new Xiangyun phosphogypsum tailings pond. Miner. Eng.

2011, 24, 1084–1090. [CrossRef]
11. Fennell, J.; Arciszewski, T.J. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in

northeastern Alberta. Sci. Total Environ. 2019, 686, 968–985. [CrossRef] [PubMed]
12. Che, D.; Liang, A.; Li, X.; Ma, B. Remote sensing assessment of safety risk of iron tailings pond based on runoff coefficient. Sensors

2018, 18, 4373. [CrossRef] [PubMed]
13. Zhang, L.; Huang, Y.; Wu, X.; Skibniewski, M.J. Risk-based estimate for operational safety in complex projects under uncertainty.

Appl. Soft Comput. 2017, 54, 108–120. [CrossRef]
14. Lyu, J.; Hu, Y.; Ren, S.; Yao, Y.; Ding, D.; Guan, Q.; Tao, L. Extracting the tailings ponds from high spatial resolution remote

sensing images by integrating a deep learning-based model. Remote Sens. 2021, 13, 743. [CrossRef]
15. Yan, D.; Zhang, H.; Li, G.; Li, X.; Lei, H.; Lu, K.; Zhang, L.; Zhu, F. Improved Method to Detect the Tailings Ponds from

Multispectral Remote Sensing Images Based on Faster R-CNN and Transfer Learning. Remote Sens. 2021, 14, 103. [CrossRef]
16. Ahmed, Z.; Amizadeh, S.; Bilenko, M.; Carr, R.; Chin, W.S.; Dekel, Y.; Dupre, X.; Eksarevskiy, V.; Filipi, S.; Finley, T.; et al. Machine

learning at Microsoft with ML. NET. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp.
2448–2458.

17. Capellman, J. Hands-On Machine Learning with ML. NET: Getting Started with Microsoft ML; NET to implement popular machine
learning algorithms in C; Packt Publishing Ltd.: Birmingham, UK, 2020.

18. Magdin, M.; Benc, J.; Koprda, Š.; Balogh, Z.; Tuček, D. Comparison of Multilayer Neural Network Models in Terms of Success of
Classifications Based on EmguCV, ML. NET and Tensorflow. Net. Appl. Sci. 2022, 12, 3730. [CrossRef]

http://doi.org/10.1016/j.petrol.2014.11.020
http://doi.org/10.1016/j.jenvman.2019.06.060
http://doi.org/10.1016/j.resconrec.2003.10.004
http://doi.org/10.1007/s11270-021-05198-w
http://doi.org/10.1016/j.proenv.2016.02.111
http://doi.org/10.1007/s11356-015-5651-8
http://www.ncbi.nlm.nih.gov/pubmed/26527335
http://doi.org/10.3390/rs11070860
http://doi.org/10.1016/j.proeng.2011.11.2370
http://doi.org/10.1177/0734242X12462281
http://doi.org/10.1016/j.mineng.2011.05.013
http://doi.org/10.1016/j.scitotenv.2019.05.407
http://www.ncbi.nlm.nih.gov/pubmed/31200313
http://doi.org/10.3390/s18124373
http://www.ncbi.nlm.nih.gov/pubmed/30544894
http://doi.org/10.1016/j.asoc.2017.01.020
http://doi.org/10.3390/rs13040743
http://doi.org/10.3390/rs14010103
http://doi.org/10.3390/app12083730


Mathematics 2023, 11, 517 14 of 14

19. Alexan, A.; Alexan, A.; Stefan, O. Soc based iot sensor network hub for activity recognition using ml. net framework. In 2020 IEEE
26th International Symposium for Design and Technology in Electronic Packaging (SIITME); IEEE: Pitesti, Romania, 2020; pp. 184–187.

20. Wen, L.; Li, X.; Gao, L. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl.
2020, 32, 6111–6124. [CrossRef]

21. Wu, Z.; Nagarajan, T.; Kumar, A.; Rennie, S.; Davis, L.S.; Grauman, K.; Feris, R. Blockdrop: Dynamic inference paths in residual
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018; pp. 8817–8826.

22. Bin, L.; Lima, D. Facial expression recognition via ResNet-50. Int. J. Cogn. Comput. Eng. 2021, 2, 57–64.
23. Yu, H.; Zhao, C.; Li, S.; Wang, Z.; Zhang, Y. Pre-Work for the Birth of Driver-Less Scraper (LHD) in the Underground Mine: The

Path Tracking Control Based on an LQR Controller and Algorithms Comparison. Sensors 2021, 21, 7839. [CrossRef]
24. Li, X.X.; Li, D.; Ren, W.X.; Zhang, J.S. Loosening Identification of Multi-Bolt Connections Based on Wavelet Transform and

ResNet-50 Convolutional Neural Network. Sensors 2020, 22, 6825. [CrossRef]
25. Alexan, A.; Alexan, A.; Oniga, S, . Smartwatch activity recognition feature comparison using ML. net. In Proceedings of the 2022

IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19–21 May 2022;
pp. 1–6.

26. Rajpal, S.; Lakhyani, N.; Singh, A.K.; Kohli, R.; Kumar, N. Using handpicked features in conjunction with ResNet-50 for improved
detection of COVID-19 from chest X.-ray images. Chaos Solitons Fractals 2021, 145, 110749. [CrossRef] [PubMed]

27. Du, J.; Chen, Q.; Peng, Y.; Xiang, Y.; Tao, C.; Lu, Z. ML-Net: Multi-label classification of biomedical texts with deep neural
networks. J. Am. Med. Inform. Assoc. 2019, 26, 1279–1285. [CrossRef] [PubMed]

28. Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of sampling and cross-validation tuning strategies for regional-scale
machine learning classification. Remote Sens. 2019, 11, 185. [CrossRef]

29. Ping, X.; Yang, F.; Zhang, H.; Zhang, J.; Zhang, W.; Song, G. Introducing machine learning and hybrid algorithm for prediction
and optimization of multistage centrifugal pump in an ORC system. Energy 2021, 222, 120007. [CrossRef]

30. Vu, H.L.; Ng, K.T.W.; Richter, A.; An, C. Analysis of input set characteristics and variances on k-fold cross validation for a
Recurrent Neural Network model on waste disposal rate estimation. J. Environ. Manag. 2022, 311, 114869. [CrossRef]

31. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
32. Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on

Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008.
33. Ghanizadeh, A.R.; Delaram, A.; Fakharian, P.; Armaghani, D.J. Developing Predictive Models of Collapse Settlement and

Coefficient of Stress Release of Sandy-Gravel Soil via Evolutionary Polynomial Regression. Appl. Sci. 2022, 12, 9986. [CrossRef]
34. Wang, Y.; Zhao, Y.; Xu, S. Application of VNIR and machine learning technologies to predict heavy metals in soil and pollution

indices in mining areas. J. Soils Sediments 2022, 22, 2777–2791. [CrossRef]
35. Skentou, A.D.; Bardhan, A.; Mamou, A.; Lemonis, M.E.; Kumar, G.; Samui, P.; Armaghani, D.J.; Asteris, P.G. Closed-Form

Equation for Estimating Unconfined Compressive Strength of Granite from Three Non-destructive Tests Using Soft Computing
Models. Rock Mech. Rock Eng. 2022, 1–28. [CrossRef]

36. Indraratna, B.; Armaghani, D.J.; Correia, A.G.; Hunt, H.; Ngo, T. Prediction of resilient modulus of ballast under cyclic loading
using machine learning techniques. Transp. Geotech. 2022, 38, 100895. [CrossRef]

37. Cavaleri, L.; Barkhordari, M.S.; Repapis, C.C.; Armaghani, D.J.; Ulrikh, D.V.; Asteris, P.G. Convolution-based ensemble learning
algorithms to estimate the bond strength of the corroded reinforced concrete. Constr. Build. Mater. 2022, 359, 129504. [CrossRef]

38. Pindór, T.; Preisner, L. Coal Sector Restructuring due to Sustainable Development. People 2000, 1990, 2005–2006.
39. Frank, D. One world, one health, one medicine. Can. Vet. J. 2008, 49, 1063. Available online: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC2572090/ (accessed on 10 November 2022). [PubMed]
40. Li, S.; Yu, L.; Jiang, W.; Yu, H.; Wang, X. The Recent Progress China Has Made in Green Mine Construction, Part I: Mining

Groundwater Pollution and Sustainable Mining. Int. J. Environ. Res. Public Health 2022, 19, 5673. [CrossRef]
41. Yu, H.; Li, S.; Yu, L.; Wang, X. The Recent Progress China Has Made in Green Mine Construction, Part II: Typical Examples of

Green Mines. Int. J. Environ. Res. Public Health 2022, 19, 8166. [CrossRef]
42. Agrawal, A.; Kumari, S.; Sahu, K.K. Iron and copper recovery/removal from industrial wastes: A review. Ind. Eng. Chem. Res.

2009, 48, 6145–6161. [CrossRef]
43. Agrawal, A.; Sahu, K.K. Problems, prospects and current trends of copper recycling in India: An overview. Resour. Conserv. Recycl.

2010, 54, 401–416. [CrossRef]
44. Haoxuan, Y.; Zahidi, I. Environmental hazards posed by mine dust, and monitoring method of mine dust pollution using remote

sensing technologies: An overview. Sci. Total Environ. 2022, 161135. [CrossRef]
45. Haoxuan, Y.; Zahidi, I. Spatial and temporal variation of vegetation cover in the main mining area of Qibaoshan Town, China:

Potential impacts from mining damage, solid waste discharge and land reclamation. Sci. Total Environ. 2023, 859, 160392.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00521-019-04097-w
http://doi.org/10.3390/s21237839
http://doi.org/10.3390/s22186825
http://doi.org/10.1016/j.chaos.2021.110749
http://www.ncbi.nlm.nih.gov/pubmed/33589854
http://doi.org/10.1093/jamia/ocz085
http://www.ncbi.nlm.nih.gov/pubmed/31233120
http://doi.org/10.3390/rs11020185
http://doi.org/10.1016/j.energy.2021.120007
http://doi.org/10.1016/j.jenvman.2022.114869
http://doi.org/10.1186/s40537-019-0197-0
http://doi.org/10.3390/app12199986
http://doi.org/10.1007/s11368-022-03263-3
http://doi.org/10.1007/s00603-022-03046-9
http://doi.org/10.1016/j.trgeo.2022.100895
http://doi.org/10.1016/j.conbuildmat.2022.129504
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572090/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572090/
http://www.ncbi.nlm.nih.gov/pubmed/19183729
http://doi.org/10.3390/ijerph19095673
http://doi.org/10.3390/ijerph19138166
http://doi.org/10.1021/ie900135u
http://doi.org/10.1016/j.resconrec.2009.09.005
http://doi.org/10.1016/j.scitotenv

	Introduction 
	Research Background 
	Research Purpose and Significance 

	Materials and Methods 
	Machine Learning Model 
	Training Set and Test Set 
	Validation Methods 

	Results and Discussion 
	Test Accuracy 
	Analysis 
	Optimisation 

	Discussion: Research Implications and Other Types of Mine Pollution 
	Conclusions 
	References

