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Abstract: Cloud computing and its associated virtualization have already been the most vital ar-
chitectures in the current computer system design. Due to the popularity and progress of cloud
computing in different organizations, performance evaluation of cloud computing is particularly
significant, which helps computer designers make plans for the system’s capacity. This paper aims to
evaluate the performance of a cloud datacenter Bitbrains, using a queueing model only from CPU
utilization data. More precisely, a simple but non-trivial queueing model is used to represent the task
processing of each virtual machine (VM) in the cloud, where the input stream is supposed to follow a
non-homogeneous Poisson process (NHPP). Then, the parameters of arrival streams for each VM in
the cloud are estimated. Furthermore, the superposition of estimated arrivals is applied to represent
the CPU behavior of an integrated virtual platform. Finally, the performance of the integrated virtual
platform is evaluated based on the superposition of the estimations.

Keywords: performance evaluation; CPU utilization; non-homogeneous Poisson process (NHPP)

MSC: 60J27

1. Introduction

With the vigorous growth of big data and large-scale data processing, traditional
computing models can no longer meet daily computing needs [1]. Cloud computing and
its associated virtualization are the most vital architectures for providing cloud services to
users, which have become the standard infrastructure for supporting Internet services [2].
In general, cloud computing has a service-oriented architecture, in which services can
be categorized into IaaS (Infrastructure-as-a-Service), PaaS (Platform-as-a-Service), and
SaaS (Software-as-Service) by the provided layer to clients [3]. Specifically, IaaS provides
essential computing, storage, and networking resources on demand. PaaS allows users
to access hardware and software computing platforms such as virtualized servers and
operating systems over the internet. SaaS provides cloud users access to hosted applications
and other hosted services over the internet. In recent decades, many companies have
attempted to integrate such servers into a virtual server using PaaS architecture to reduce
server management and maintenance costs. For example, Bitbrains is a service provider
specializing in hosted services and business computing for enterprises [4]. Clients include
many banks (ING), credit card operators (ICS), insurers (Aegon), etc. Bitbrains hosts
applications in the solvency domain and examples of its application vendors are Towers
Watson and Algorithmics.

PaaS cloud service providers need to gain insight into the relationship between the
performance of the cloud service platform and the available resources, not only to meet
users’ performance needs but also to fully utilize the infrastructure and resources of the
cloud service platform. For cloud service users, performance evaluation quantitatively
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assesses the various cloud services to ensure that their needs are met. For example, users
can conduct quantitative analysis on the same service provided by different cloud service
providers through performance evaluation and make the best service selection and decision.
Generally, a PaaS cloud computing platform has a vast number of collaborative physical
machines, each of which includes multiple virtual machines (VMs). Additionally, perfor-
mance evaluation of the integrated virtual platform during the design phase of a computer
system can help the computer designer plan the system’s capacity [5]. However, with the
rapid increase in data, every upgrade to software or hardware (e.g., CPU, memory) comes
with high risk and expense [6]. Performance evaluation that evaluates the utility of given
upgrades facilitates cost reduction and construction optimization at a datacenter, while
erroneous analysis leads to ultimately huge losses. Therefore, it is essential to estimate the
system performance from the statistics of existing servers.

Cloud services differ from traditional hosting in three main aspects. First, the cloud
provides service on demand; second, cloud services are elastic because users can use the
services they want at any given time; third, the cloud provider fully manages the cloud
services [7]. Queueing models provide an efficient manner to simulate the behaviors and
evaluate the performance of a cloud datacenter. Queueing theory often models web applica-
tions as queues and VMs as facility (service) nodes [8]. The parameters of queueing models
(e.g., arrivals and service rates) can then be estimated as services arrive in a first-come-first-
served (FCFS) manner [9]. Usually, a queueing model can be standardized as A/B/S/K,
where A and B represent the arrival and service distributions, respectively. S and K are
the number of service nodes and queue capacity, respectively. For example, M/M/1/K
represents that the arrival and service times follow Poisson and exponential distributions,
respectively, and the number of servers and queue length are one and K, respectively. Tasks
sent to the cloud datacenter are usually served within a suitable waiting time and will leave
the queue when the service is over. However, there remain many challenging issues with
queueing models, despite their ability to represent the behavior of cloud datacenters [10].
A cloud center usually has a lot of service nodes. Traditional queueing models rarely
consider the system size. Besides, approximation methods are sensitive and inaccurate to
the probability distribution of arrival and service times. Furthermore, traditional queueing
systems usually observe the inter-arrival times or waiting times to estimate arrival rates for
VMs. In a cloud datacenter, task arrivals and wait times are difficult to monitor and collect.

As a solution, our previous work [11] proposed an approach to estimate the arrival
intensity of computer systems only from CPU utilization data. CPU utilization data is
one of the most commonly used statistics to monitor CPU behavior during task execution.
Most operating systems have the function to calculate CPU utilization by default. Besides,
the CPU behavior of an existing server was modeled by an Mt/M/1/K queueing system,
where the arrival stream is according to a non-homogeneous Poisson process (NHPP), and
the service time obeys an exponential distribution. NHPP is the best-known generalization
of the Poisson process in that the arrival intensity is given as a function of time t [12].
Therefore, an NHPP can better approximate the arrival process of the tasks accurately
than a homogeneous Poisson process (HPP) [13]. For the Poisson process, the renewal
process is the partial sum process associated with independent random variables with
an exponential law [14]. An alternative way to avoid the independently and identically
distributed requirement is the Markovian arrival process (MAP) [15].

To reasonably plan the cloud computing platform and improve its performance, we
aim to evaluate the performance of Bitbrains cloud servers in a PaaS architecture in this
paper. More precisely, we use an Mt/M/1/K queueing model to represent the CPU
behavior of each VM, which can dynamically calculate the task arrival rate at different
times. In addition, because the arrivals and waiting times of tasks in computer systems
are difficult to monitor and collect, we estimate the arrival intensity of each VM in the
cloud datacenter from the CPU utilization data. Finally, the performance of the integrated
virtual platform is evaluated by applying the superposition technique of NHPPs. The main
contributions are organized as follows:
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• Performance evaluation of a cloud server: It is non-trivial and significant to evaluate
the performance of a cloud datacenter (i.e., Bitbrains) to meet user performance needs
and make full use of the resources of the PaaS cloud service platform.

• Parameter estimation for a queueing model subject to NHPP arrival using CPU
utilization data: An NHPP is used as the arrival process of the queueing model, which
can dynamically calculate the task arrival rate at different times. Additionally, we use
CPU utilization to estimate the parameters because of the unobservability of the task
arrival process and waiting times of the computer system. CPU utilization is the most
commonly used statistic, but task arrival and service processes are not visible.

• Flexibility and scalability for performance evaluation: any queuing model based on
utilization data can be solved using our approach. In addition, our model can be com-
bined with distributed computing to further improve the capability of performance
evaluation.

The remainder of the paper is as follows. The related research works are reviewed
in Section 2. In Section 3, the cloud datacenter system (i.e., Bitbrains) is first introduced
in detail. Then, the EM algorithm-based parameter estimation method is proposed. In
Section 4, we first estimate the parameters (i.e., arrival intensity function) of the Mt/M/1/K
queueing model. Then, we evaluate the performance of the Bitbrains using only CPU
utilization data. Finally, the paper is concluded in Section 5.

2. Literature Review

In recent years, data has exploded with the rapid growth of computers and the Internet.
As one of the solutions to cope with the era of big data, cloud computing has gained wide
attention and application. It is an extremely worthwhile task to evaluate the performance
of cloud computing platforms. For cloud computing platform designers, performance
evaluation can help them decide the size of system memory, the number of CPUs, etc. For
cloud computing providers, performance evaluation can help them allocate facilities and
resources appropriately. For users, it can help them choose the right provider.

2.1. Queueing Models as Solutions

However, only a small part of the work involves the performance evaluation of
cloud computing data centers, and many researchers prefer to evaluate the performance
evaluation of cloud computing centers using queuing models [16–20]. Moreover, most
of the literature estimates the parameters of the queuing model by collecting data such
as queue lengths or waiting times. For example, Thiruvaiyaru et al. [16] collected queue
length data and estimated parameters from an M/M/1 queueing model. Ross et al. [19]
collected queue length data at successive time points and estimated the parameters of
an M/M/c queuing system. Then, they generated density-dependent transition rates for
Markov processes by placing the arrival rates in the same order as the number of servers.
Liu et al. [20] calculated the queue lengths using the number of vehicles in the queueing
system and proposed a real-time length estimation method through the probed vehicles.
Unlike queue length data, waiting time data is another commonly used data that can
be used to estimate the parameters of queueing models. Waiting times contain partial
information about inter-arrivals and service times. Basawa et al. [17] collected waiting
times of n successive customers from M/M/1 and M/Ek/1, respectively. Fischer et al. [18]
used the Laplace transform method to approximate the distribution of waiting times and
then estimated the parameters of an M/G/1 queueing model. For performance evaluation
of cloud computing systems, Khazaei et al. [10] modeled a cloud center as an M/G/m/m
queuing system. They used a combination of a transformation-based analytical model and
an embedded Markov chain model to obtain a complete probability distribution of response
times and the number of tasks. Finally, they evaluated the performance of the system.

However, for observable queuing systems, the collection of queue lengths and waiting
times consumes much time. For non-observable queuing, data such as queue lengths and
waiting times, which can visually reflect queue information, are difficult to collect. For
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example, the arrival time, time interval, and waiting time of two successive tasks are not
observable in a cloud computing system.

CPU utilization data is one of the most common statistics used to monitor CPU
behavior during task execution. Most operating systems have the function to calculate CPU
utilization by default. However, unlike queue lengths and waiting times, CPU utilization
is utilization data. In other words, CPU monitoring is not continuous but at certain time
intervals. Therefore, CPU utilization data belongs to incomplete data, which increases the
difficulty of the parameter estimation of a queueing model. Moreover, the utilization data
does not reflect the queue information intuitively like the queue lengths but reflects its
information implicitly. For example, a high CPU utilization indicates that many tasks are
waiting to be processed in a queue or that the current task is taking a long time to process.
Therefore, it is more challenging to estimate parameters and evaluate performance from
CPU utilization data. To the best of our knowledge, there are no other papers on queueing
parameter evaluation based on utilization data other than our proposed [11,15].

2.2. Non-Homogeneous Poisson Process

Most works prefer to assume the arrival process of tasks as a homogeneous Pois-
son process (HPP) with a constant arrival rate. However, a Poisson arrival process is
not a good choice in practice. For example, cloud computing datacenter visits are gen-
erally characterized by higher working hours than evenings and higher weekdays than
weekends. The arrival process of tasks usually varies dynamically with time, i.e., it is a
non-homogeneous Poisson process (NHPP) [12]. In general, queuing systems based on
NHPP arrivals are more difficult to estimate parameters than HPP-based systems. Rothkopf
and Oren [21] proposed an approximate method to estimate a dynamically varying arrival
process of a queuing system. Heyman and Whitt [22] modeled an Mt/G/c queuing system
to deal with the non-simultaneous arrival process of asymptotic behavior. They defined
an intensity function λ(t) to represent the time-varying Poisson arrival rate. In addition,
Green et al. [23] evaluated the performance of a queuing system with the NHPP arrival
process and exponential service times. Pant et al. [24] assumed a Mt/M/1 queuing system
in which customers arrive at the system with a sinusoidal arrival intensity function λ(t).

2.3. Parameter Estimation of Queueing Models

The maximum likelihood estimates (MLE) is the most commonly used estimation
method of queueing models [25–27]. Wang et al. [26] proposed an M/M/R/N queueing
model, which had R multiple severs in the queue. They estimated the HPP arrival rate
and service time to obey the exponential distribution using MLE. Amit et al. [27] collected
the number of customers in an M/M/1 queueing system, and then estimated the traffic
intensity by MLE. We have stated above that CPU utilization data is different from ob-
servable data and belongs to incomplete data. Therefore, a statistical inference technique
for evaluating the performance of incomplete data is required. Expectation maximization
(EM) [28] is a useful algorithm that can iteratively compute partial data with MLE. The EM
algorithm is powerful for stochastic models with multiple parameters. An EM algorithm
generally has two steps (i.e., the expectation step and the maximization step, respectively).
MLE iteratively computes the expectation step and the maximization step iteratively and
then stops iterating until the loss function converges. Wu [29] verified the convergence
of the EM algorithm theoretically. They proposed that the MLE of the EM sequence can
converge to a unique value in the case that the likelihood function is unimodal and differen-
tiable. Rydén [30] estimated the parameters of a queueing model with Markov Modulated
Poisson Process (MMPP) using MLE via an EM algorithm. Similarly, Basawa et al. [31]
estimated the parameters of an GI/G/1 queueing system using an EM algorithm from
waiting times. Okamura et al. [32] defined group data and tried to estimate arrival and
processing rates of a queueing system with an Markovian arrival process (MAP) using an
EM algorithm-based approach.
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In this paper, we propose a novel statistical inference technique for incomplete data to
evaluate the performance of cloud datacenters. Empirically, the task arrival process in a
datacenter often exhibits a cyclical and recurring nature. The cycle of this process can be in
the form of a day, a week, a year or other units. For example, datacenter access is greater
during business hours than early mornings and evenings. Weekday accesses will also be
larger than weekend accesses. Therefore, we model each virtual machine (VM) of a cloud
datacenter as an Mt/M/1/K queueing system. An NHPP can better represent this cyclic
characteristic. Then, we estimate parameters only from CPU utilization data using the EM
algorithm. In a cloud datacenter, CPU utilization is the most commonly used statistic to
monitor the behavior of each VM. Because any computer operating system can calculate
CPU utilization by default, we do not need to spend time collecting information such as
queue length and waiting times in the queuing system.

3. Methodology

In this section, we first briefly introduce the Bitbrains cloud datacenter. The system
behavior can be modeled by an Mt/M/1/K queueing model. Then, we define utilization
data formally and approximate the NHPP to a series of HPPs. Finally, the details of the
MLE optimization method based on an EM algorithm are described.

3.1. Bitbrains Cloud Datacenter

Bitbrains is a service provider that specializes in managed hosting and business
computation for enterprises [33]. One of the typical applications of Bitbrains is for financial
reporting, which is used predominately at the end of financial quarters. The workloads
of Bitbrains are master-worker models, where the workers are used to calculate Monte
Carlo simulations [34]. For example, a customer would request a cluster of computing
nodes to run such simulations. The request is accompanied by the requirements as follows.
First, data transmission between the customer and the datacenter through a secure channel,
computing nodes rented as VM in the datacenter to provide predictable performance, and
high availability for running critical business simulations.

Bitbrains uses the standard VMware provisioning mechanisms to manage computing
resources, such as dynamic resource scheduling and storage dynamic resource scheduling.
In general, Bitbrains consist of three types of VMs: management servers, application servers,
and computing nodes. The management servers can be used for the daily operation of
customer environments. Application servers are used as database servers, web servers,
and head nodes. Computing nodes are mainly used to compute and simulate financial risk
assessment. CPU utilization data of Bitbrains used in this work were collected between
August and September 2013 two traces, which are described in Table 1.

Table 1. Workload traces of the Bitbrains cloud datacenter.

Name of Trace #VMs Period of Data Collection Storage
Technology

Memory Size
(GB) Cores

fastStorage 1250 1 month SAN 17,729 4057
Rnd 500 3 months NAS and SAN 5485 1444

Total 1750 23,214 5501

3.2. Collection of CPU Utilization Data

CPU utilization is the most commonly used statistic to monitor the behavior of each
VM in the cloud datacenter Bitbrains. We define CPU utilization in each time interval of
each VM in the cloud datacenter Bitbrains as ∆t. CPU utilization can be considered as the
ratio of the busy time to the total time of one monitoring. The busy time is given by the
cumulative time in which the server is processing a task. For each fixed time interval, a
computer system or VM calculates the time fraction as utilization. Parameter estimation
from utilization data is more challenging than other related work. Based on the behavior of
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the CPU utilization data, we assume that the utilization within a time interval consists of an
unobserved time and a successive observed time, respectively. Furthermore, since the CPU
cannot be monitored during an unobserved period, we can only collect CPU utilization
data during an observed period. For the CPU, each observation period is short (only a few
milliseconds), so there is at most one change from busy to idle or idle to busy during each
observation period. Formally, let tu and to be the lengths of the unobserved and observed
periods of each time interval, respectively. Bt and It are the lengths of busy and idle times
in time slot t. According to the above assumptions, CPU utilization for one-time interval
tu + to can be defined as follows:

u = Bto /(Bto + Ito ), (1)

where u indicates the CPU utilization for one-time interval, Bto and Ito represent the lengths
of busy and idle times in t, respectively, and to � tu.

3.3. System Behavior as the Mt/M/1/K Queueing Model

First, users send the task requests that need to process by Bitbrains. Then, Bitbrains
allocates computing resources for each task. Note that user tasks are independent of each
other. When the CPU of the VM is idle, the first assigned task can be sent directly to the
CPU for processing, or it needs to wait in the buffer of size K. For the VM with a buffer size
of K, the arriving tasks that exceed K cannot enter the buffer for processing. Additionally,
the waited tasks in the buffer will be processed by the CPU. The served task will leave the
VM once finished.

Therefore, the system behavior of Bitbrains can be represented by the queueing model:
web applications are often modeled as queues, and VMs are modeled as service nodes. We
assume that the arrivals obey an NHPP with the intensity function is λ(t). Service time is
according to exponential distribution whose rate is µ. As shown in Figure 1, the system can
be modeled by an Mt/M/1/K queueing model.

Figure 1. An Mt/M/1/K queueing model.

In queueing theory, we usually use a continuous time Markov chain (CTMC) to
formalize the behavior of a queueing model. For the Mt/M/1/K queueing model, the
infinitesimal generator matrix of the CTMC can be expressed as follows:

Q(t) =


−λ(t) λ(t)

µ −(µ + λ(t)) λ(t)
. . . . . .

µ −µ

 (2)

3.4. Approximate NHPP as a Series of HPPs

The time dynamics λ(t) of an NHPP, often called time intensity, is a function of time t,
which is hardly estimated. Usually, the arrival process of an NHPP can be regarded as a
series of independent HPPs. To simplify the model and estimation, the intensity function
λ(t) of an NHPP can be approximated by a series of HPPs. Specifically, assume that the
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total time for utilization data collection is T. T can be divided into n (n ≥ 1) same periods,
and each divided time interval can be represented by ∆t. In practice, a large value of n is
chosen. The n HPPs can be approximated as an NHPP with the intensity of λ(t). At the
ith (1 ≤ i ≤ n) time interval, the arrival tasks obey the HPP with the arrival rate being a
constant of λi. The approximated piecewise constant function of NHPP is shown as

λ(t) =


λ1 (0 ≤ t ≤ ∆t)
λ2 (∆t < t ≤ 2∆t)
...

...
λn ((n− 1)∆t < t ≤ T)

(3)

3.5. Parameter Estimation of the Mt/M/1/K Queueing Model

According to Equation (3), the infinitesimal generator matrix of Equation (2) can be
modified to n independent infinitesimal generator matrices, and the ith matrix can be
denoted by Qi (1 ≤ i ≤ n). Q0

i is defined as the ith infinitesimal generator matrix with CPU
states that transfer from idle to idle or from busy to busy. Q0

i is denoted by

Q0
i =


−λi

−(µ + λi) λi
. . . . . .

µ −µ

. (4)

Similarly, Q1
i is defined as the ith infinitesimal generator matrix with CPU states that

transfer from idle to busy or from busy to idle. Q0
i is represented as follows.

Q1
i =


λi

µ

O

, (5)

where O is zero matrix and,

Qi = Q0
i + Q1

i . (6)

Define utilization as D = (D1,D2, . . . ,Dn). The utilization data in i-th period ∆t is
defined asDi = (u1

i , u2
i , . . . , uk

i ), 0 ≤ uj
i ≤ 1. Then the likelihood function can be formulated

from utilization data by using MLE, as shown below:

L(λ1, · · · , λn;D) = pL1(λ1;D1) · · ·Ln(λn;Dn)1, (7)

Li(λi;Di) = Li(u1
i ) · · · Li(uk

i ), (8)

With Equations (4)–(6), the items of Equation (8) can be expressed as

Li(u) = exp(Qitu)Λ0 exp(Q0
i (1− u)to)Q1

i exp(Q0
i uto)

+ exp(Qitu)Λ1 exp(Q0
i uto)Q1

i exp(Q0
i (1− u)to),

if 0 < u < 1, (9)

Li(u) = exp(Qitu)Λ0 exp(Q0
i to), if u = 0, (10)

Li(u) = exp(Qitu)Λ1 exp(Q0
i to), if u = 1, (11)
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where p is the initial probability vector. Also Λ0 and Λ1 are (K + 1)-by-(K + 1) block
matrices;

Λ0 =


1

0
. . .

0

, Λ1 =


0

1
. . .

1

. (12)

3.6. EM Algorithm for CPU Utilization Data

An EM algorithm is an effective machine learning algorithm that can be used for
parameter estimation of queueing models with incomplete data. We have stated that CPU
utilization data belongs to incomplete data and assumed that the utilization within a time
interval consists of an unobserved time and a successive observed time, respectively. Since
data could be collected only during observed time, we try to use the EM algorithm to
estimate the parameters. An EM algorithm aims to find the MLE for the Mt/M/1/K
queueing model from incomplete observation. The two steps of an EM algorithm is
demonstrated as follows:

• Expectation step: The expected log-likelihood function is calculated using the posterior
probabilities of the hidden variables. The equation is calculated as follows:

E[log p(D,U ; θ
′
)], (13)

where D and U are the observed and missing data in an unobserved time interval,
respectively. The θ

′
is a vector of parameters to be estimated.

• Maximization step: The parameter θ is updated by maximizing the expected log-
likelihood function found in the expectation step. The equation is shown below:

θ = arg max E[log p(D,U ; θ
′
)], (14)

Then, the parameter estimates from the maximization step are used as the initial parameters
in the next expectation step to determine the distribution of the latent variables. Finally,
the optimal parameters can be obtained by iterating these two steps several epochs until
convergence. The EM algorithm can represent the arrival rate λi,j by

λi,j =
E[Ni,j]

E[Si]
=

E[NU
i,j + NO

i,j | D]
E[SU

i + SO
i | D]

, (15)

where λi,j is the arrival rate from i state to j state, Ni,j is the number of transition from state
i to state j, Si is the sojourn time in state i, NU

i,j is the number of transition from state i to

state j at unobserved time period, NO
i,j is the number of transition from state i to state j at

observed time period, SU
i is the sojourn time in state i at unobserved period and SO

i is the
sojourn time in state i at observed period.

3.7. The Number of Time Intervals

n is is the total number of the divided time intervals in data collection time of T. n
is a hyperparameter of the proposed approach. Different n determines different models.
If n is too small, the estimated intensity function does not reflect the non-homogeneity
property. For example, n = 1 means that the NHPP is simplified to an HPP, while if n
is too large, the estimated intensity function overreacts to small fluctuations, resulting in
an overfitting phenomenon. To choose an appropriate n, we use the Akaike Information
Criterion (AIC) [35] to quantify the goodness of the models. Note that a smaller AIC
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indicates a better fit of the model. Therefore, we choose the n when the AIC takes the
minimum value. The formula is shown as follows:

AIC = −2LLF + 2(] of parameters), (16)

where LLF denotes the maximum value of the log-likelihood function.

3.8. Superposition of Arrival Intensities

In the PaaS environment, the cloud server of Bitbrains provides computer platforms
(e.g., CPUs) as a service by using a hardware virtualization technique. Therefore, the arrival
process for the non-virtual CPU can be estimated by a superposition of the arrival process
of virtual servers. Formally, define λi(t)(i = 1, . . . , m) as the arrival intensity of NHPP for
the i-th virtualized platform. Since the CPU task arrival processes for virtualized platforms
can be regarded as independent stochastic processes, the CPU task arrival process in the
PaaS is given by

λall(t) =
m

∑
i=1

λi(t). (17)

The procedure for the parameter estimation of the Mt/M/1/K is summarized as in
Algorithm 1.

Algorithm 1 Parameter estimation procedure for the Mt/M/1/K model

Step 1: Divide the total time interval [0, T] into n fixed periods:

0 = t0 < t1 < · < tn = T; ti = i∆t

Step 2: Approximate λ(t) as a piecewise intensity function:

λ(t) ≈ λi, (ti−1 < t ≤ ti)

Step 3: Determine parameters by maximizing the LLF:

(λ̂1, . . . , λ̂n) = arg max
λ1,...,λn

log L(λ1, . . . , λn;D)

Step 4: Select the optimal model by minimizing AIC:

AIC = −2(log-likelihood− n)

Step 5: Evaluate performance of the cloud datacenter (e.g., average response time).

Finally, we evaluate the performance of the integrated platform by using the estimated
parameters, such as the arrival intensity and service rate.

4. Results

We randomly select five VMs from the Rnd trace of Bitbrains and estimate their arrival
intensities of Mt/M/1/K queueing model from CPU utilization data. Then, we evaluate
the average response time of the superposed platform. The service rate of the exponential
distribution is set as µ = 3. Buffer size of the Mt/M/1/K queueing model is set as K = 20.
Because Bitbrains monitors CPU utilization every 0.3 s, we fix the unobserved and observed
time length to tu = 0.29 s and to = 0.01 s, respectively.

Figure 2 demonstrates CPU utilization data collected from five VMs. The CPU uti-
lization collected from VM 1, VM 2, and VM 3 is dense. Their CPU utilization values vary
drastically in the interval [0, 0.2], [0, 0.02], and [0, 0.1]. Compared with VM 1, VM 2, and
VM 3, the CPU utilization data collected from VM 4 and VM 5 are more sparse, with their
utilization data varying in the interval [0, 0.1]. Moreover, the five sets of data seem to have
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a certain periodicity, which is one of the reasons we choose the NHPP as the arrival stream
of Bitbrains.

(a) CPU utilization data collected from VM 1. (b) CPU utilization data collected from VM 2.

(c) CPU utilization data collected from VM 3. (d) CPU utilization data collected from VM 4.

(e) CPU utilization data collected from VM 5.

Figure 2. CPU utilization data collected from five VMs, named VM 1 to VM 5.

4.1. Results of Parameter Estimation

To get the optimal value of n, the AIC values are calculated. Table 2 exhibits the AIC
values, where n = 1, 2, . . . , 20 for the five VMs. From the table, the optimal number of the
time intervals of the five VMs can be obtained when the values of AIC are the smallest (i.e.,
7448.08 for VM 1, 4428.04 for VM 2, 7953.98 for VM 3, 886.04 for VM 4, and 7957.62 for VM
5). The optimal number of the n are n1 = 1, n2 = 1, n3 = 1, n4 = 19, and n5 = 1 for the five
VMs. The five estimated intensity functions are demonstrated in Figure 3.
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Table 2. AIC values of the NHPP models with n = 1, 2, . . . , 20 for the five VMs.

n
VM 1 VM 2 VM 3 VM 4 VM 5

LLF AIC LLF AIC LLF AIC LLF AIC LLF AIC
1 3723.04 7448.08 2213.02 4428.04 3975.99 7953.98 −592.64 1187.28 3977.81 7957.62
2 3724.93 7453.86 2258.62 4521.24 3975.99 7955.98 −568.31 1140.62 3977.81 7959.62
3 3727.64 7461.28 2252.30 4510.60 3976.78 7959.56 −543.53 1093.06 3978.60 7963.20
4 3728.80 7465.60 2259.45 4526.90 3975.99 7959.98 −511.13 1030.26 3977.81 7963.62
5 3730.77 7471.54 2259.37 4528.74 3975.99 7961.98 −490.91 991.82 3977.81 7965.62
6 3731.20 7474.40 2258.76 4529.52 3974.40 7960.80 −493.50 999.00 3976.22 7964.44
7 3733.26 7480.52 2260.99 4535.98 3974.40 7962.80 −498.08 1010.2 3976.22 7966.44
8 3736.95 7489.90 2261.39 4538.78 3975.99 7967.98 −510.05 1036.1 3977.81 7971.62
9 3735.16 7488.32 2261.14 4540.28 3972.01 7962.02 −498.33 1014.7 3973.83 7965.66
10 3741.32 7502.64 2262.18 4544.36 3975.99 7971.98 −450.52 921.04 3977.81 7975.62
11 3741.63 7505.26 2270.92 4563.84 3979.96 7981.92 −440.00 902.00 3981.78 7985.56
12 3728.69 7481.38 2256.75 4537.50 3969.62 7963.24 −440.40 904.80 3971.44 7966.88
13 3727.72 7481.44 2262.06 4550.12 3969.62 7965.24 −457.46 940.92 3971.44 7968.88
14 3733.88 7495.76 2261.93 4551.86 3974.40 7976.80 −463.62 955.24 3976.22 7980.44
15 3735.56 7501.12 2263.24 4556.48 3972.01 7974.02 −456.38 942.76 3973.83 7977.66
16 3740.05 7512.10 2258.22 4548.44 3969.62 7971.24 −458.24 948.48 3971.44 7974.88
17 3749.15 7532.30 2265.31 4564.62 3974.40 7982.80 −432.36 898.72 3976.22 7986.44
18 3755.99 7547.98 2268.34 4572.68 3979.17 7994.34 −440.88 917.76 3980.99 7997.98
19 3753.52 7545.04 2263.81 4565.62 3973.60 7985.20 −424.02 886.04 −3975.42 7988.84
20 3759.30 7558.60 2266.39 4572.78 3975.99 7991.98 −429.57 899.14 3977.81 7995.62

Figure 3. Estimated intensities of the VMs.

From Figure 3, we can find that the task arrival rates for VM1, VM2, VM3, and VM5
are 3.60, 3.08, 3.72, and 0.43. In other words, the four VMs obey four HPPs, not the NHPPs.
Furthermore, since the AIC of VM 4 is smallest when n = 19, the NHPP arrivals of VM 4
can be approximated as 19 HPPs with different arrival rates, and the arrival rate is reached
to the maximum in the 17th time interval. In summary, the estimated arrival rate from
the CPU utilization of VM 3 is the largest and the arrival process obeys an HPP, while the
estimated arrival rate from VM 4 is the smallest and the arrival obeys an NHPP.

4.2. Results of Performance Evaluation

Finally, we evaluate performance in the scenario of the integrated systems using the
estimated arrival rates and intensity function. According to Equation (17), we can calculate
the integrated arrival intensity function λall(t). Using λall(t), we can simulate arrival
streams whose arrival intensity obeys λall(t). Thus, we can get the arrival time of each
task in the arrival stream. Then, by simulating processing times that obey an exponential
distribution, we can similarly simulate the CPU processing time for each task. Finally,
using the arrival time and processing time, we can calculate the average response time of
the arrival stream. The algorithm is shown in Algorithm 2.
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Algorithm 2 Performance evaluation for the Mt/M/1/K model

Step 1: Calculate the intensity function λall(t) of the integrated system, which obeys NHPP
according to Equation (17):

λall(t) =
m

∑
i=1

λi(t).

Step 2: Simulate the arrival times (tarr) whose arrival intensity obeys λall(t):

Simulated arrival times: t1
arr, t2

arr, · · · , t1000
arr .

Step 3: Simulate the service time (tser) for an exponential distribution with service rate µ:

Simulated service times: t1
ser, t2

ser, · · · , t1000
ser .

Step 4: Calculate the average response time (Tres).

Table 3 shows an example of the calculation of response times. During the processing
of the first arrival (P1), P2 has to wait for 8 ms before it can be processed. In addition, the
arrival time of P2 is 1 ms. Therefore, the response time of P2 is 8− 1 = 7 ms. Similarly, the
arrival of P3 has to keep waiting until P1 and P2 are served (i.e., after 8 + 7 = 15 ms). Since
the arrival time of P3 is 2 ms, the response time of P3 is 15− 2 = 13 ms.

Table 3. An example of the calculation of response times.

Process Arrival Time (tarr) Service Time (tser) Response Time (tres)

P1 0 ms 8 ms 0 ms
P2 1 ms 7 ms 7 ms
P3 2 ms 10 ms 13 ms

We conduct ten loops and calculate the average response times. The average response
times of the superposition of the five VMs are evaluated by changing the service rate from
µ = 10 to µ = 30. The results are given in Table 4. Furthermore, to make the response times
more intuitive, we make the the results of Table 4 into Figure 4.

Table 4. Average response times of the Mt/M/1/K queueing model.

Service Rate µ Tres(s) Service Rate µ Tres(s)

11 12.680 21 0.196
12 8.127 22 0.168
13 4.904 23 0.150
14 3.057 24 0.156
15 1.687 25 0.116
16 0.815 26 0.113
17 0.621 27 0.103
18 0.554 28 0.105
19 0.311 29 0.089
20 0.354 30 0.085



Mathematics 2023, 11, 513 13 of 16

Figure 4. Varation curve of the average response times with service rate µ.

When the service rate is small (µ ≤ 15), the average response times of the integrated
system tend to be very large (Tres ≥ 1.687 s). With the increase of service rate (µ ≥ 16), the
effect of µ on the average response times becomes smaller. In other words, as a designer of a
cloud computing platform, at least 16 CPUs need to be designed to meet user requirements.
As a cloud computing provider, 16 CPUs are good enough to provide cloud computing
services. Therefore, 16 CPUs can be allocated to all users in the interval of [0, T]. As a user of
a cloud computing, we can choose an appropriate number of CPUs to balance performance
and cost.

5. Conclusions

In this paper, we have modeled the behavior of five VMs of Bitbrains by using an
Mt/M/1/K queueing model. In particular, the model parameters were estimated by ap-
proximating an NHPP using a series of discrete HPPs and the MLE with EM algorithm. The
performance of the integrated virtual platform was evaluated based on the superposition
of the estimations of five VMs.

However, our proposed approach have a main limitation. In general, a cloud data
center contains a large number of physical machines and virtual machines. For each
virtual machine, the arrival and service rates of the tasks can be calculated independently.
Therefore, the parameters of each virtual machine can be estimated in a distributed manner.
However, due to hardware limitations, we cannot compute the parameters of each virtual
machine. In this paper, we estimated the parameters for five VMs.

In the future, we would like to address the above limitation first. We would like to
evaluate all the arrival processes of the VMs in Bitbrians in a distributed manner offline.
Due to the fundamental weaknesses of an EM algorithm, the iterative convergence process
is time-consuming. Therefore, we would choose a faster iterator, such as the Adam, for the
parameter estimation. Finally, the performance of the whole cloud computing platform can
be evaluated, which is meaningful for the cloud service providers and users.

In addition, a MAP/M/1/K assumption will be considered to estimate the arrival
rates and evaluate the system performance. As a generalization of an NHPP, a MAP takes
account of the dependency between consecutive arrivals and is often used to model com-
plex, bursty, and correlated traffic streams. Therefore, we would like to concentrate on the
MAP parameter estimation of quasi-birth-death queueing systems using utilization data.
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Abbreviations

Abbreviations Meaning
IaaS Infrastructure-as-a-Service
PaaS Platform-as-a-Service
SaaS Software-as-Service
VM virtual machine
ME Moment estimates
FCFS First-come-first-served
HPP Homogeneous Poisson process
NHPP Non-homogeneous Poisson process
MAP Markovian arrival process
LLF Log-likelihood function
EM Expectation maximization
AIC Akaike’s information criterion
Notation Meaning
Mt Non-homogeneous Poisson process
K Capacity of a queueing system
Ek Erlang distribution
G Geometric distribution
λ Arrival rate of an HPP
λ(t) Intensity function of an NHPP
µ Service rate of an exponential distribution
Q(t) Infinitesimal generator matrix of an NHPP
λi Arrival rate of the i-th time interval
T Total observation time interval
n The number of time intervals
∆t A time interval
tu Time length of an unobserved period
to Time length of an observed period
Bt Time length of busy time
It Time length of idle time
O Zero matrix
D Utilization data
Di Utilization data in i-th time period
ui i-th utilization sample of the observable period
p initial probability vector
Λ0 (K + 1)-by-(K + 1) block matrix
Λ1 (K + 1)-by-(K + 1) block matrix
U Missing data in an unobserved time interval
θ
′

A vector of parameters to be estimated
λi,j Arrival rate from i state to j state
Ni,j The number of transition from state i to state j
Si The sojourn time in state i
NU

i,j The number of transition from state i to state j at unobserved time period
NO

i,j The number of transition from state i to state j at observed time period
SU

i The sojourn time in state i at unobserved period
SO

i The sojourn time in state i at observed period
λall(t) Integrated intensity function of virtual servers
λ̂i The i-th estimated arrival rate of a series of HPPs
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