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Abstract: In this paper, we consider a technician planning scheme stemming from product distribution
and installation in a manufacturing enterprise that considers factors such as soft time windows, skill
areas, lunch breaks, and outsourcing options, among others. The goal is to identify the optimal
partition of technicians into groups and assignment of customers to technician groups and find
the optimal routes for technician groups to minimize the sum of the travel cost, soft time window
violation cost, and outsourcing cost. To address this problem, the study develops a tailored Lagrangian
heuristic that incorporates several strategies to speed up convergence and produce sharper bounds.
Computational comparisons between the developed heuristic and MIP solver are presented. The
results reveal that the bounds found by the developed algorithm outperform those found by CPLEX for
large instances, and it is capable of identifying high-quality feasible solutions to large-scale problems.

Keywords: logistics; distribution; multi-depot technician planning; Lagrangian relaxation; heuristic
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1. Introduction

This study addresses a multi-depot technician planning problem stemming from prod-
uct distribution and installation in a manufacturing enterprise, considering lunch breaks
and soft time window constraints. The proposed solution aims to identify the optimal
schedules for a certain number of service technicians to provide services at customers’
locations based on customer requests.

Specifically, we plan a horizon (a day), a set of service technicians located at different
depots, and a set of customers associated with daily requests. Every technician qualifies
in some areas at a different skill level (e.g., beginner, medium, or expert). Each service
request requires a group of technicians with the appropriate skills with at least the required
levels, and is associated with a time period during the day within which the request can be
performed, which we refer to as a soft time window (STW). A violation of the time window
is allowed, although it incurs some cost. Specifically, the STW violation cost is proportional
to the delay incurred if the request is served after the soft time window is closed. However,
the maximum delay of the customer is bounded.

On a given day, technicians from the same depot are paired with groups, the qualifica-
tions of which depend on the overall qualifications of group members. The groups then
depart from the depot to serve customers by considering the compatibility between the
group qualifications and requests, and return to it at the end of the day. Because technicians
generally work approximately 6–8 h a day, every technician needs to break to rest and eat
lunch, associated with which is a time window and a duration for the lunch break (Goel
and Irnich [1]).

In addition, owing to the limited number of technicians and the limited working hours
of each technician, in some cases, the service capacity of the supplier may not be sufficient
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to serve all customers. However, the service of unvisited customers still has to be provided,
which may call for outsourcing the services to a third party or postponing them to the next
planning period at an additional outsourcing cost.

The objective is to minimize the sum of the travel, STW violation, and outsourcing
costs by identifying the optimal technician service schedule. The contributions of this study
can be summarized as follows.

First, the present study introduces and describes a novel technician planning problem
with several crucial features, including multiple depots, soft time windows, lunch-break
requirements, and outsourcing options. These features make the developed problem closer
to reality, but inevitably make the problem more difficult to solve. In fact, efficiently solving
the problem with all of its features can be challenging, and an efficient algorithm that can
find the optimal solution or approximate the optimal solution to the problem has not yet
been developed. Therefore, this study aims to address this gap.

Second, we present a tailored Lagrangian heuristic to solve the developed model,
incorporating several strategies to accelerate convergence and produce sharper bounds.
More precisely, the revised volume algorithm is introduced to solve the Lagrangian dual
problem, in which a bidirectional labeling algorithm is devised to optimally solve the
Lagrangian subproblem. A two-stage hybrid heuristic is designed to transform the approx-
imated primal solutions generated during the iterations of the Lagrangian heuristic into
high-quality feasible solutions to the original problem.

Third, this study conducts several numerical experiments to verify the effectiveness
and efficiency of the developed Lagrangian heuristic. The results demonstrate that the
developed algorithm performs better than the general-purpose MIP solver CPLEX and can
find relatively sharper bounds.

The remainder of this paper is organized as follows. Section 2 provides a brief review
of the relevant literature. Section 3 defines the problem and draws up a mixed-integer
programming formulation. Section 4 presents a Lagrangian heuristic with emphasis on
the generation of the solution of the Lagrangian sub-problem and the strategies for trans-
forming the approximated primal solutions into feasible solutions. Section 5 shows the
computational results of applying the developed algorithm on newly generated instances
based on the known benchmark instances in the literature. Finally, Section 6 concludes the
paper by summarizing its findings and discussing future research directions.

2. Literature Review

Smart operation and maintenance services are major industrial services in Industry 4.0,
but it is not easy for manufacturers to achieve high returns from these services due to their
complex operational processes (Huang et al. [2]). Over the past decade, increasingly more
practical features and constraints motivated by real-world settings have been addressed in
technician planning problems. For example, as He et al. [3] pointed out, making an optimal
equipment maintenance service plan is essential in enabling manufacturers to make more
profit and avoid losing efficiency in the supply chain. Meanwhile, the service provider
should cater to the needs of their customers and fully utilize their service skills to ensure
a beneficial business (Orsdemir et al. [4]) The design of efficient technician routing and
scheduling is challenging in this research area. In the following, we review the literature on
technician planning problems in two main aspects: models and solution approaches. For
more results on technician planning problems or related problems, the reader is referred to
the survey papers by Castillo-Salazar et al. [5], Cissé et al. [6], and Fikar and Hirsch [7].

From a modeling point of view, the major differences among different models lie in
the considered features, such as the working time regulations for technicians, customer
preferences (time windows, skill and qualification requirements for the technicians), tech-
nician breaks, balancing the number of customers served by technicians, etc. The first
study on technician planning can be traced to Dutot et al. [8], who investigated a real
telecommunication problem. The authors focused on partitioning technicians into groups
and assigning tasks to groups so that the skill and qualification requirements could be
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matched. This issue has subsequently been widely studied in various fields, such as pro-
duction workshops, supply chains, healthcare, and so on, obtaining a myriad of valuable
managerial insights. For example, Chen et al. [9] zeroed in the problem of assigning
technicians to maintenance tasks at an aircraft maintenance base, in which the technician’s
licenses, fairness, and operational constraints, such as hangar capacity and work shifts, are
considered. They formulated the problem as a bi-objective optimization model with the aim
of minimizing the total cost while simultaneously achieving fairness in workload allocation
among different technicians. However, no routing decision is considered in these situations.
Based on the study by Dutot et al. [8], the French Operations Research Society provided a
real-world data set for technician planning problems in 2007. To solve the 2007 challenge,
Cordeau et al. [10] developed a construction heuristic and an adaptive large neighborhood
search to solve the technician planning problem with several features, including techni-
cian availability, customers’ skill requirements, precedence constraints, and working time
regulations. The objective is to identify an optimal strategy for partitioning technicians
into groups and assigning requests to groups to minimize the makespan. Kovacs et al. [11]
studied the technician planning problem with an outsourcing option, which generalizes the
problem investigated in Cordeau et al. [10] by including the routing decisions, where both
cases with group building and without group building are considered. This problem differs
from the present study in the settings of the depots and time windows in that no lunch
break requirement is considered. Zamorano and Stolletz [12] investigated the multi-period
technician planning problem to determine the daily partition of technicians into groups, the
assignment of customers to groups, and the daily routes of the groups to minimize the sum
of the travel cost, waiting cost, and over-time cost. In contrast to this problem, however,
only a single depot and hard time windows are involved, and no lunch break requirement
nor outsourcing option are considered. Chen et al. [13] studied the multi-period technician
planning problem in the field of home services and consider the fact that the service time
with the customer decreases as technicians’ experience increases, where the time needed
for a technician to serve a request depends on the technician’s experience in the request-
related skill and the speed at which the technician learns (the technicians’ learning rate).
Qiu et al. [14] investigated a novel home healthcare (HHC) provider planning problem
that considers the synchronized services of multiskilled providers necessitated by the
simultaneous service requirements of patients. A main feature of the problem is that there
is a threshold on the maximum difference between the start times of the pairwise synchro-
nized services at a patient, which enables flexible imposition of various synchronization
constraints and generalizes the setting of synchronized services in existing literature. They
devised a tailored branch-and-price-and-cut solution algorithm that incorporates some
enhancement strategies to solve the problem. Schrotenboer et al. [15] examined the tech-
nician planning problem for offshore wind farms over multiple periods to find the ships’
routes for picking up and delivering technicians at each period to minimize the travel cost.
Both of the above problems, however, differ from this study’s problem in that customers
can be visited at any time (no time windows), and no group-building decision or outsourc-
ing option was considered. In addition, neither of these studies involved a lunch-break
requirement. Liu et al. [16] studied the pickup and delivery problem with time windows
involving battery-powered electric vehicles under demand uncertainly, where the uncertain
demands fall within a budget polytope uncertainty set, and developed a two-stage adaptive
robust model to find solutions that are insusceptible to a certain number of deviations in
demands, where the routing, and the service start times and remaining battery capacities
along a route are fixed before the realization of uncertain demands, while the quantities
to load and unload along the route are adjustable to the demand scenario. Zou et al. [17]
investigated the low-carbon multi-depot vehicle routing problem to minimize the sum
of the vehicle assignment cost, travel cost, fuel consumption cost, and carbon emission
cost, and developed a novel transformer model with both multi-head attention mechanism
(MHA) and attention to attention mechanism (AOA) to solve the problem. In this model,
the MHA is used to process different parts of the input sequence, which can be calculated
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in parallel, and the AOA is used to deal with the deficiency problem of correlation between
query results and query vectors in the MHA.

Research on technician planning problems with lunch-break requirements is relatively
scarce. Bostel et al. [18] investigated the multi-period technician planning problem to
minimize the travel cost, in which several tasks are requested to be performed by a certain
number of technicians over multiple days. Meanwhile, the features considered in this
study included multiple depots, time windows, maximum daily working time, and lunch
break requirements. Compared with our model, only some tasks are subject to the time
window constraint, only technicians with identical skills at the same level are involved, and
no outsourcing option nor group-building decision is studied. Shao et al. [19] addressed
the therapist planning problem over multiple periods, in which the time windows and
lunch-break requirements that occur when the consecutive working time of a therapist
exceeds a given value are considered. The objective is to determine the optimal strategy
of the assignment of patients to therapists over a week and the optimal daily routes of
therapists to minimize the sum of the travel cost, mileage cost, treatment cost, and overtime
cost. However, in their studies, only one depot is involved, all patients must be served, and
no group-building decisions are involved. Trautsamwieser and Hirsch [20] investigated a
HHC provider planning problem over a week, in which the working time regulations for
HHC providers, including breaks, maximum daily working time, and daily and weekly
rest times are involved. However, the break of a HHC provider at a patient’s home is
only taken when their maximum consecutive working time is larger than a given value.
Coelho et al. [21] addressed the vehicle routing problem with lunch break and time window
constraints and assessed the performance of a new mathematical formulation and of the
heuristic developed for the problem. Liu et al. [22] addressed a daily HHC giver planning
problem with an outsourcing option, time windows, and lunch break requirements. The
objective is to determine the optimal routes of HHC providers to minimize the sum of the
travel and outsourcing costs. The two problems above, however, differ from our problem
in that only a single depot and hard time windows are involved and no group-building
decision is considered.

As for the solution approaches for the technician planning problems or related prob-
lems, branch-and-price algorithm (Bostel et al. [18], Cortés et al. [23], Goel and Irnich [1],
Liu et al. [22], Trautsamwieser and Hirsch [20], Zamorano and Stolletz [12], Yuan et al. [24])
is commonly used to solve the problems of optimality in reasonable computing time. Since
finding optimal solutions to the problems is only possible for small and medium-sized
instances, they often become impossible or too slow when investigating more complex
problem variants or real-sized instances. Heuristic methods are widely accepted, especially
those that guarantee proximity to global optimality. Classical heuristics such as adaptive large
neighborhood search (Cordeau et al. [10], Kovacs et al. [11], Schrotenboer et al. [15]), local
search (Souffriau et al. [25]), TS (Tang et al. [26]), simulated annealing (Delgoshaei et al. [27]),
and greedy randomized adaptive search (Hashimoto et al. [28], Shao et al. [19]) have been
frequently applied to the technician planning problems or related problems. However,
the primary drawback of these heuristics is the variability in solution quality across prob-
lem instances, and no lower bounds are provided to verify the quality of the solutions
found. Instead, Lagrangian relaxation is a powerful bounding technique to provide sharper
lower bounds and help derive high-quality feasible solutions for NP-hard combinatorial
optimization problems, especially large-scale problems like Facility Location problems
(Gendron et al. [29], Jena et al. [30]), Production problems (Cui et al. [31]), Inventory
problems (Demantova et al. [32]), Logistics Network Design problems (Holmberg and
Yuan [33], Lee and Dong [34]), Network Revenue Management problems (Topaloglu [35]),
Stochastic Integer Programming problems (Takriti and Birge [36]), and others.

3. Problem Definition and Model Formulation

This section formally describes the problem under examination, and presents a mixed-
integer linear programming model. The main notations are presented in Table 1.
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Table 1. Parameters and decision variables.

Sets

H Set of h depots, each of which corresponds to a customer’s location.
N Set of n service requests (customers), each of which corresponds to the location of a customer.
Ah = {(i, j)|i ∈ N ∪ {ho}, j ∈ N ∪ {hd}, i 6= j} Set of arcs with ho and hd being the dummy vertexes of depot h ∈ H.
Mh Set of technicians living close to depot h ∈ H.
D Set of different areas of skill of each technician.
L Set of different levels of proficiency associated with each skill area.
Γh Group set composed of all possible combinations of the technicians belonging to depot h ∈ H.

Parameters

mhld Number of technicians qualified with proficiency l ∈ L of skill d ∈ D in depot h ∈ H.
δ Number of technicians in each technician group.
C Closing time of the depot.
[eb, db] Time interval of the lunch break with a duration of lb.
[ei, di, Di] STW of customer i ∈ N .
pidl Binary parameter equal to 1 if and only if customer i ∈ N needs a technician with at least

a level l ∈ L of proficiency in skill area d ∈ D.
qmdl Binary parameter equal to 1 if and only if technician m ∈ ⋃

h∈H
Mh is qualified with a

level l ∈ L of proficiency in skill area d ∈ D.
βi Nonnegative parameter denoting the unit STW violation cost at customer i ∈ N .
oi Outsourcing cost of customer i ∈ N .
cij Travel cost associated with arc (i, j) ∈ A.
tij Travel time tij along arc (i, j) ∈ A.
si Service time associated with customer i ∈ N .

Variables

xh
ijτ 1 if technician group τ ∈ Γh traverses arc (i, j) ∈ Ah; 0 otherwise.

uh
mτ 1 if technician m ∈ Mh belongs to technician group τ ∈ Γh in the optimal solution; 0 otherwise.

vh
iτ 1 if technician group τ ∈ Γh takes a break before the service at customer i ∈ N ∪ {hd} and after

the departure from its predecessor in the route of technician group τ ∈ Γh; 0 otherwise.
Th

iτ Service start time at customer i ∈ N ∪ {ho, hd} of technician group τ ∈ Γh.
Tbh

τ Start time of the lunch break of technician group τ ∈ Γh.
Wh

iτ Delay of the service at customer i ∈ N of technician group τ ∈ Γh with respect to di.

3.1. Problem Description

The problem under consideration is defined by a physical networkG = (N ∪H,A =
⋃

h∈H
Ah).

Each depot has a set of technicians living close to it, and each technician has different levels
of proficiency in different areas of skill. We make the following assumptions to facilitate
problem modeling.

• Each customer requires δ technicians in certain skill areas with different levels of
proficiency, and the technicians from the same depot can form technician groups to
serve the customers.

• The comprehensive qualifications of the members of a technician group assigned to a
customer must meet the skill requirements of the customer, and assigning “overqual-
ified” groups is permitted at no additional cost. In what follows, we refer to the
qualification combination of the members of a technician group as the group qualifica-
tion of the group.

• A technician group is allowed to arrive at the location of customer i before ei and wait
until the customer becomes available, and arrival after di is permitted at an additional
penalty cost depending on how late it is. However, the maximum lateness is limited,
i.e., the service start time at customer i cannot be later than a threshold Di.

• A lunch break is needed in the planning horizon, which can be scheduled at any time
within a predefined time interval. The services for customers cannot be interrupted by
lunch breaks.

• If the technician groups cannot provide a service to a certain customer due to the
capacity limit, the customer can be outsourced at an additional outsourcing cost.

• Traversing each arc incurs a fixed travel cost.
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The route of a technician group belonging to the depot h ∈ H is a walk r = (r0, r1, . . . ,
rp, rp+1) with a time vector (T1, . . . , Tp+1), where r0 = ho and rp+1 = hd denote the start
and end depots of the route, respectively; rq ∈ N , q = 1, . . . , p, and Tq, q = 1, . . . , p + 1,
stand for the service start time at customer rq, and all technician groups departing from
their depots at time zero. Route r is said to be feasible if Tp+1 ≤ C and the service at each
customer i visited in the route starts within the time window [ei, Di]. The STW violation
cost for customer rq is defined as follows:

π(Tq) =


0 if erq ≤ Tq ≤ drq ,
βrq(Tq − drq) if drq < Tq ≤ Drq ,
+∞ if Drq < Tq.

The cost of the route r consisting of the travel cost and STW violation cost is defined
as follows:

cr =
p+1

∑
q=1

crq−1,rq +
p

∑
q=1

βrq max{Tq − drq , 0}.

The goal of the problem is to determine the optimal (i) partition of technicians into
technician groups; (ii) assignment of technician groups to the customers by considering
the compatibility between the group qualifications and customers; (iii) the service route of
each technician group; and (iv) setting of the lunch break for each technician group such
that each customer is visited by exactly one route or is outsourced, and that the sum of the
travel cost, STW violation cost, and outsourcing cost is minimized.

Figure 1 describes a feasible solution for an instance with 2 depots and 15 customers, in
which customers 1–3 and 5–7 are served by two technician groups from depot 1, customers
8–12 and 14–15 are served by two technician groups from depot 2, whereas customers 4
and 13 are outsourced due to limited service capacity.

Depot

Customer 

Unvisited 

Customer

Lunch

Break

Figure 1. Feasible solution for an instance.

3.2. Model Formulation

With the notation listed in Table 1, the problem can be expressed as a mixed integer
linear programming model, to which we refer as MILP, as follows.

Minimize ∑
h∈H

∑
τ∈Γh

∑
(i,j)∈Ah

cijxh
ijτ + ∑

h∈H
∑

τ∈Γh

∑
i∈N

βiWh
iτ + ∑

i∈N
oi
(
1− ∑

h∈H
∑

τ∈Γh

∑
j∈N∪{hd}

xh
ijτ
)
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Subject to the following constraints:

(1a) ∑
h∈H

∑
τ∈Γh

∑
j∈N∪{hd}

xh
ijτ ≤ 1, ∀i ∈ N ,

(2a) ∑
i∈N∪{ho}

xh
ihdτ = ∑

j∈N∪{hd}
xh

ho jτ ≤ 1, ∀h ∈ H, τ ∈ Γh,

(3a) ∑
j∈N∪{hd}

xh
ijτ − ∑

j∈N∪{ho}
xh

jiτ = 0, ∀i ∈ N , h ∈ H, τ ∈ Γh,

(4a) ∑
i∈N∪{hd}

vh
iτ = ∑

j∈N∪{hd}
xh

ho jτ , ∀h ∈ H, τ ∈ Γh,

(5a) vh
iτ ≤ ∑

j∈N∪{ho}
xh

jiτ , ∀h ∈ H, i ∈ N ∪ {hd}, τ ∈ Γh,

(6a) Th
iτ + (tij + si)xh

ijτ ≤ Th
jτ + (1− xh

ijτ)Di, ∀h ∈ H, (i, j) ∈ Ah, τ ∈ Γh,

(7a) Tbh
τ + lbvh

jτ ≤ Th
jτ + (1− vh

jτ)db, ∀h ∈ H, j ∈ N ∪ {hd}, τ ∈ Γh,

(8a) Th
iτ + (tij + si + lb)(xh

ijτ + vh
jτ − 1) ≤ Th

jτ + (2 − xh
ijτ − vh

jτ)Di, ∀h ∈ H, (i, j) ∈
Ah, τ ∈ Γh,

(9a) Th
iτ + si(xh

ijτ + vh
jτ − 1) ≤ Tbh

τ + (2− xh
ijτ − vh

jτ)Di, ∀h ∈ H, (i, j) ∈ Ah, τ ∈ Γh,

(10a) ei ∑
j∈N∪{ho}

xh
jiτ ≤ Th

iτ ≤ Di ∑
j∈N∪{ho}

xh
jiτ , ∀h ∈ H, i ∈ N ∪ {hd}, τ ∈ Γh,

(11a) eb ∑
i∈N∪{hd}

vh
iτ ≤ Tbh

τ ≤ db ∑
i∈N∪{hd}

vh
iτ , h ∈ H, τ ∈ Γh,

(12a) Th
hdτ ≤ C, h ∈ H, τ ∈ Γh,

(13a) ∑
τ∈Γh

uh
mτ ≤ 1, ∀h ∈ H, m ∈ Mh,

(14a) pidl ∑
j∈N∪{hd}

xh
ijτ ≤ ∑

m∈Mh

∑
l′∈L,l≤l′

qmdl′uh
mτ , ∀d ∈ D, l ∈ L, i ∈ N , h ∈ H, τ ∈ Γh,

(15a) Th
iτ − di ≤Wh

iτ + (1− ∑
j∈N∪{hd}

xh
ijτ)Di, ∀i ∈ N , h ∈ H, τ ∈ Γh,

(16a) xh
jkτ , uh

mτ , vh
iτ ∈ {0, 1}, ∀h ∈ H, (j, k) ∈ Ah, i ∈ N ∪ {hd}, m ∈ Mh, τ ∈ Γh;

Th
jτ , Tbh

τ , Wh
iτ ≥ 0, ∀h ∈ H, i ∈ N , j ∈ N ∪ {ho, hd}, τ ∈ Γh.

The objective function minimizes the sum of the travel, STW violation, and outsourc-
ing costs. Constraint set (1a) ensures that each customer can be served by at most one
technician group. Constraint sets (2a) and (3a) guarantee that if a customer has been
assigned to a technician group, this group must enter and leave the customer’s location
and depart from the depot and return to it at the end. Constraint set (4a) ensures that
each assigned technician group needs to take a break in its route, and constraint set (5a)
guarantees that a technician group can take a break before the service at a customer only if
the group serves this customer. Constraint set (6a) defines the service start time for each
customer. Constraint sets (7a) to (9a) impose the constraints on the time of the lunch break
and its adjacent customers. Constraint sets (10a) to (12a) define the time windows of the
customers, lunch breaks and technician groups, respectively. Constraint set (13a) guar-
antees that a technician belongs to one technician group at most in the optimal solution.
Constraint set (14a) ensures that a customer can only be assigned to a technician group
whose group qualification must meet the skill requirements of the customer. Constraint
set (15a) defines the service delay. Finally, constraint set (16a) defines the feasible values
for decision variables.

In general, for each h ∈ H, we assume that sho = shd
= eho = Dho = dho = ehd

= 0 and
Dhd

= dhd
= C, representing the earliest departure time, and latest return time for each

technician group. In what follows, let x = (xh
ijτ)h∈H,(i,j)∈Ah ,τ∈Γh

, u = (uh
mτ)h∈H,m∈Mh ,τ∈Γh

,

v = (vh
iτ)h∈H,i∈N∪{dh},τ∈Γh

and T = (Th
iτ)h∈H,i∈N∪{dh},τ∈Γh

, and denote by (x, u, v, T) a
feasible solution to the MILP. It is noteworthy that the problem under consideration
contains the vehicle routing problem with time windows as a special case, which has been
shown to be NP-hard in the strong sense even for finding a feasible solution (Solomon [37],
Solomon and Desrosiers [38]), implying that it cannot be expected to use exact methods to



Mathematics 2023, 11, 510 8 of 22

solve large-scale instances. Therefore, we present a Lagrangian heuristic for its resolution,
which is presented in the next section.

4. Lagrangian Relaxation

The Lagrangian heuristic is an optimization method that efficiently finds approximate
solutions by decomposing the original problem into several subproblems by relaxing some
constraints, referred to as Lagrangian relaxation. Furthermore, the structure of MILP
makes it amenable to Lagrangian relaxation. To exploit such a structure, constraint set (1a),
referred to as the set of linkage constraints, is relaxed and dualized in the objective function
with a nonnegative vector µ = (µi)i∈N of Lagrangian multipliers. The problem resulting
from Lagrangian relaxation, referred to as the Lagrangian sub-problem, is

(1b) L(µ) = min ∑
h∈H

∑
τ∈Γh

∑
(i,j)∈Ah

cijxh
ijτ + ∑

h∈H
∑

τ∈Γh

∑
i∈N

βiWh
iτ + ∑

i∈N
oi−

∑
i∈N

∑
h∈H

∑
τ∈Γh

∑
(i,j)∈Ah

oixh
ijτ + ∑

i∈N
µi
(

∑
h∈H

∑
τ∈Γh

∑
(i,j)∈Ah

xh
ijτ − 1

)
= min ∑

h∈H
∑

τ∈Γh

∑
(i,j)∈A

(cij + (µi + µj)/2− (oi + oj)/2)xh
ijτ + ∑

h∈H
∑

τ∈Γh

∑
i∈N

βiWh
iτ

+ ∑
i∈N

(oi − µi),

subject to the constraint sets (2a)–(16a).

4.1. Bidirectional Labeling Algorithm for the Lagrangian Sub-Problem

Because the group size and technician composition are predefined, as in Zamorano and
Stolletz [12], it can be assumed that all possible technician groups are known in advance.
To be precise, we check whether the qualification of a technician group τ ∈ Γh, h ∈ H with
|Γh| =

|Mh |
δ!(|Mh |−δ)! , satisfies some requests’ service requirement; if not, we delete τ from

Γh. In addition, for the technician groups with the same qualification in Γh, we delete the
redundant ones to ensure that each technician is assigned to at most one such group. We
denote by Γh, h ∈ H, the resulting groups from depot h. Thus, technicians are partitioned
into possible groups and can be pre-defined in the above manner.

We assume that there are bh different group qualifications in depot h ∈ H, and
let Ξh = {Φh

1, . . . , Φh
bh
} be the set of different group qualifications, and that there are

bh
p, p = 1, . . . , bh, groups that have the group qualification Φh

p. Thus,
bh
∑

q=1
bh

q = |Γh|. Let

N(h,Φh
p)

be the set of customers that can be served by the technician groups with group

qualification Φh
p and A(h,Φh

p)
= {(i, j) ∈ Ah|i ∈ N(h,Φh

p)
∪ {ho}, j ∈ N(h,Φh

p)
∪ {hd}, i 6= j}

be the corresponding arc set. Using the above notation, the Lagrangian sub-problem can be
reformulated as

(1c) L(µ) = min ∑
h∈H

∑
Φh

p∈Ξh
bh

pL(h,Φh
p)
(µ) + ∑

i∈N
(oi − µi),

in which L(h,Φh
p)
(µ) is defined as follows:

(2c) L(h,Φh
p)
(µ) = min ∑

(i,j)∈A
(h,Φh

p)

(cij + (µi + µj)/2− (oi + oj)/2)xijτ + ∑
i∈N

(h,Φh
p)

βiWi,Φh
p
,

subject to the constraint sets (2a)-(11a) and (14a)-(16a), in which Wi,Φh
p

denotes the STW

violation cost at customer i in the route of the technician group with group qualification Φh
p.

Given h ∈ H, Φh
p ∈ Ξd

h and the Lagrangian multiplier vector µ, we refer to the problem
of exactly computing L(h,Φh

p)
(µ) as LSP(h,Φh

p)
(µ), which is concerned with finding feasible

routes in the physical subnetwork (N(h,Φh
p)
∪ {ho, hd},A(h,Φh

p)
) such that the operational

cost is calculated according to Eq. (2c) is minimized. In the following, we devise a dynamic
programming-based (DP-based) bidirectional labeling algorithm to solve LSP(h,Φh

p)
(µ), i.e.,

by propagating labels forward and backward from oh and dh, respectively. The DP-based
bidirectional labeling algorithm was first developed by Righini and Salani [39,40] for the
resource constrained elementary shortest route problem, and it has been shown that it can



Mathematics 2023, 11, 510 9 of 22

significantly improve the computing time of the algorithm compared to a unidirectional
procedure. In the subsequent sections, we first describe the forward and backward label
structures. Second, we elaborate on the label extensions and the dominance procedure we
apply. Finally, we develop a method for merging the forward and backward labels.

4.1.1. Label Structure

In the DP-based bidirectional labeling algorithm, each vertex of the physical subnet-
work is associated with several forward and backward states. A forward label correspond-
ing to vertex i ∈ N(h,Φh

p)
∪ {ho} encodes a feasible route of served customers from ho to i.

Each vertex generally corresponds to several labels since multiple feasible routes can end
at that vertex.

To be precise, a forward label corresponding to vertex i ∈ N(h,Φh
p)
∪ {ho} is represented

by L f w
i = (t f w, a f w, g f w, c f w, i) with the following semantics:
(1d) i: last served customer;
(2d) t f w: service start time for customer i;
(3d) a f w: a binary variable equal to 1 if and only if the technician group has taken a

break before providing the service to customer i;
(4d) g f w = (g f w[k] : k ∈ N(h,Φh

p)
): a |N(h,Φh

p)
| dimensional binary vector, in which

g f w[k] is equal to 1 if and only if customer k has already been served on the partial route
associated with the label or if this route cannot be feasibly extended to customer k because
the STW constraint and closing time constraint;

(5d) c f w: cost of the partial route calculated according to Equation (2c).
A backward label corresponding to vertex i ∈ N(h,Φh

p)
∪ {hd} is represented by Lbw

i =

(tbw, abw, gbw, cbw, i), which encodes a feasible route of served customers from i to hd, where
a f w, g f w and c f w are defined as analogous to those in the forward label, and tbw is the
departure time from i.

4.1.2. Propagation

The DP-based bidirectional labeling algorithm iteratively propagates all the feasible
forward and backward labels to form new labels. The propagation of a forward label
corresponding to vertex i means that appending an additional arc (i, j) to a route from ho
to i, resulting in a route from ho to j. In a similar way, the propagation of a backward label
corresponding to vertex i indicates that appending an additional arc (j, i) to a route from i
to hd, resulting in a route from j to hd.

In forward propagation, the label at ho is initialized as (0, 0, 0, 0, ho). The search is
restricted to elementary propagations to any node j such that g f w[j] = 0. When a label
L f w

i = (t f w, a f w, g f w, c f w, i) is propagated along arc (i, j), two cases are considered.
Case F1. No lunch break occurs when the label propagates along the arc (i, j). In this

case, a new label L f w
j = (g′ f w, t′ f w, a′ f w, c′ f w, j) is generated, in which

(1e) t′ f w = max{t f w + si + tij, ej},
(2e) a′ f w = a f w,

(3e) g′ f w[k] =


1 if k = j or (k 6= j, t′ f w + sj + tjk > Dk,

and max{t′ f w + sj + tjk, ek}+ sk + tkdh
> C),

g f w[k] otherwise,
, ∀k ∈ N(h,Φh

p)
,

(4e) c′ f w = c f w + cij + (µi + µj)/2− (oi + oj)/2 + β j max{t′ f w − dj, 0}.
Case F2. A lunch break is taken when the label propagates along arc (i, j), i.e., the

technician group will have lunch before the start of the service for customer j and after
departure from vertex i. This case indicates that a lunch break cannot be taken before
serving customer i. Thus, there must be a f w = 0. Moreover, to respect the time window
constraint of the lunch break, STW constraint of customer j and closing time constraint, the
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following constraints should be satisfied: t f w + si ≤ db, max{t f w + si + tij, eb}+ lb ≤ Dj,
and max{max{t f w + si + tij, eb} + lb, ej} + sj + tjhd

≤ C, respectively. Under the above

conditions, a new label L f w
j = (t′′ f w, a′′ f w, g′′ f w, c′′ f w, j) is generated, in which

(5e) t′′ f w = max{max{t f w + si + tij, eb}+ lb, ej},
(6e) a′′ f w = 1,

and g′′ f w[k] and c′′ f w are updated as those in g′ f w[k] and c′ f w, respectively.
The label generating rules and feasibility tests for backward propagation are symmet-

rical. Backward propagation starts at time C denoting the latest possible arrival time at hd.
The label at hd is initialized as (C, 0, 0, 0, hd). The search is restricted to elementary backward
propagation to any node j such that gbw[j] = 0. When a label Lbw

i = (tbw, abw, gbw, cbw, i) is
propagated along arc (j, i), two cases are considered.

Case B1. No lunch break occurs when the label propagates along the arc (j, i). In this
case, a new label Lbw

j = (t′bw, a′bw, g′bw, c′bw, j) is generated, in which

(7e) t′bw = min{tbw − si − tji, Dj + sj},
(8e) a′bw = abw,

(9e) g′bw[k] =


1 if k = j or (k 6= j, t′bw − sj − tkj < ek + sk

and min{t′bw − sj − tkj, Dk + sk} − sk − thok < 0),
gbw[k] otherwise,

, ∀k ∈

N(h,Φh
p)

,

(10e) c′bw = cbw + cji + (µi + µj)/2− (oi + oj)/2 + β j max{t′bw − sj − dj, 0}.
Case B2. A lunch break occurs when the label propagates along arc (j, i). This case

indicates that a lunch break cannot be taken before serving customer i, and thus there
must be abw = 0. Moreover, in this case, to respect the time window constraint of the
lunch break, STW constraint of customer j and opening time of the depot, the following
constraints should be satisfied: tbw − si ≥ eb + lb, min{tbw − si − tij, db} − lb ≥ ej + sj, and
min{min{tbw − si − tij, db} − lb, Dj + sj} − sj − tho j ≥ 0. Under the above conditions, a
new label Lbw

j = (g′′bw, t′′bw, a′′bw, c′′bw, j) is generated, in which

(11e) t′′bw = min{min{tbw − si − tij, db} − lb, Dj + sj},
(12e) a′′bw = 1,

and g′′bw[k] and c′′bw are updated as those in g′bw[k] and c′bw, respectively.

4.1.3. Dominance Test

In the above propagation procedure, all possible propagations for each label are
generated and stored, resulting in a large number of labels. Thus, it is critical to abandon
labels, which cannot lead to a complete optimal route. To reduce the number of labels,
a dominance test is needed. Let Li = (t, a, g, c, i) and L′i = (t′, a′, g′, c′, i) be two labels
corresponding to the vertex i. Then, label Li dominates label L′i if:

(1f) g[k] ≤ g′[k], ∀k ∈ N(h,Φh
p)

,

(2f) t ≤ t′ for forward labels and t ≥ t′ for backward labels,
(3f) a ≥ a′,
(4f) c ≤ c′,

and at least one of the inequalities is strict true. A label can be abandoned if it is dominated
by another label.

4.1.4. Concatenate

In the DP-based bidirectional labeling algorithm, both the forward and backward
labels are not necessarily propagated until ho and hd, respectively. Instead, the labels are
propagated only up to a predefined halfway point, thereby reducing the total number of
generated labels. Suitable forward and backward labels are then concatenated to generate
complete routes. In our DP-based bidirectional labeling algorithm, we only propagate the
forward labels whose service start times are less than C/2 and the backward labels whose
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departure times are larger than C/2, i.e., t f w < C/2 and tbw > C/2. A forward label L f w
i =

(t f w, a f w, g f w, c f w, i) and a backward label Lbw
i = (tbw, abw, gbw, cbw, i) can be concatenated

together to generate a complete feasible route if N(L f w
i ) ∩ N(Lbw

i ) = {i}, a f w + abw = 1,

and t f w + si ≤ tbw, where N(L f w
i ) and N(Lbw

j ) denote the customers served by the routes

corresponding to labels L f w
i and Lbw

j , respectively.

4.2. The Lagrangian Heuristic

The optimal solution of the Lagrangian sub-problem, for any Lagrange multiplier
vector µ, yields a lower bound to the problem under consideration. To obtain the best
possible lower bound, we must solve the following Lagrangian dual problem

(1g) z∗ = max
µ>0

L(µ).

The above Lagrangian dual problem is concave and non-differentiable, and is usually
solved by non-smooth optimization methods, including the sub-gradient, analytic center,
bundle method, or cutting-planes. Indeed, all the aforementioned methods have advan-
tages and disadvantages, the efficiency of which highly depends on the characteristic of the
problem to be solved. For example, sub-gradient methods are known for their simplicity,
but they are also known for their lack of well-defined stopping conditions and producing
values for the primal variables. On the other hand, bundle methods are considered robust
and precise, but need to solve a quadratic program in each iteration. To overcome the
drawbacks of the sub-gradient method, the volume algorithm was presented by Barahona
and Anbil [41] as a subgradient-like method that will produce an approximation to a primal
solution and provide much better stopping conditions. In this study, we adopt the revised
volume algorithm (RVA) developed by Bahiense et al. [42] with the aim of exploiting the
advantages of the sub-gradient and bundle methods. In particular, to obtain a high-quality
dual solution, the RVA produces sampling points µt by solving a series of Lagrangian sub-
problems, in which the calculation of µt depends on: (i) a given stability center µ̂p, which is
a special sampling point that provides a “good enough” improvement during the iteration
process; (ii) a stepsize st; and (iii) a convex combination of available super-gradients.

A primal solution can then be expressed as a convex combination of past primal
solutions, in which the weights used in such convex combinations are identical to those
applied for calculating dt.

Adapting the ideas of the algorithms developed by Bahiense et al. [42], Barahona
and Anbil [41], and Frangioni et al. [43], we develop a Lagrangian heuristic, referred to
as Algorithm LBH, in which the RVA is applied to solve the Lagrangian dual problem,
and provide the details of its main components, including the way to produce an initial
incumbent to obtain an upper bound, and the way to translate the approximated primal
solution obtained during the implementation of the algorithm to a feasible solution in the
subsequent subsections. The four stopping criteria are as follows: the maximum number
of iterations MAXITER, the maximum limit of computing time MAXITIME, the relative
gap between the lower and upper bounds ε, and the ascent measures δe and δε. Here, we
just provide a flow chart of our implementation of the Lagrangian heuristic in Figure 2,
and refer readers to Bahiense et al. [42] for details. The formal pseudocode is depicted in
Algorithm LBH in Appendix A.
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Figure 2. Flow chart of the Lagrangian heuristic.

4.3. Upper-Bound Generation Based on the Lagrangian Solutions

Finding a good upper bound for the problem under consideration is an essential
component of Algorithm LBH, which is crucial for speeding up the convergence of the
algorithm. However, because the binary decision variables involved and the stopping
conditions used, approximated primal solution χt generated during the implementation of
Algorithm LBH is generally infeasible for the original problem, i.e., the binary variables
xh

ijτ might be fractional, and the constraint set (1a) might not hold. To obtain a good feasible
solution to the original problem based on χt, we propose a two-stage hybrid heuristic. The
main idea is as follows: after an approximated primal solution χt is generated, a feasibility
recovery procedure is first applied to recover a feasible solution based on this solution
when the conditions in line 32 of Algorithm LBH hold. Using the obtained feasible solution
as an initial solution, a TS algorithm is then used to derive a better feasible solution.

4.3.1. A Feasibility Recovery Procedure

The approximated primal solution χt provides the schedule assigning customers to
the routes of groups or outsourcing them. Because of the iteration rule and the fact that the
assignment constraint set (1a) has been relaxed, the binary variables xh

ijτ might be fractional,
and the constraint set (1a) might not hold.

To recover an integer feasible solution based on χt = (x̂, v̂), we develop a heuristic
comprising of two phases.

In the first phase, we derive an integer solution from χt. To be precise, for each i ∈ N ,
the variables in the set

⋃
h∈H

⋃
τ∈Γh

⋃
j∈(N∪{h})\{i}

{x̂h
ijτ} with a fractional value of no less than

0.8 are fixed at 1, whereas the other fractional variables are fixed at 0.
Let Iτ , h ∈ H, τ ∈ Γh, be the set of customers served by the group τ in the current

integer solution. A complete solution is then constructed by splicing the partial routes
covered by each technician group τ, h ∈ H, τ ∈ Γh, with Iτ 6= ∅ in the cheapest manner. In
the construction process, x̂h

ijτ is reset to 1 if i and j are the end and start vertices of the partial
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routes, respectively. In addition, if ∑
h∈H

∑
τ∈Γh

∑
j∈N∪{h}

x̂h
ijτ = 0, we then assign customer i into

the outsourced customer set.
In the second phase, we translate the solution obtained in the first phase into a feasible

integer solution. As the assignment constraint set (1a) has been relaxed and the construction
strategy in the first phase, the assignment of customers to the routes of technician groups
are either exactly satisfied (assigned to exactly one route or outsourced) or overassigned.
Therefore, the set of all customers can be divided into two disjoint subsets, in which Λ1
and Λ2 represent the customers that are exactly satisfied and overassigned, respectively:
(i) Λ1 = {i : ∑

h∈H
∑

τ∈Γh

∑
j∈N∪{h}

x̂h
ijτ ≤ 1}; and (ii) Λ2 = {i : ∑

h∈H
∑

τ∈Γh

∑
j∈N∪{h}

x̂h
ijτ > 1}.

To obtain a feasible integer solution, we first check whether the number of technicians
qualified with proficiency l ∈ L of skill d ∈ D in each depot h ∈ H used in the resulting
solution exceeds mhld. If that is the case, we delete the redundant routes of the technician
groups in each h containing the technicians with proficiency l of skill d in the cheapest
way, because each technician can belong to at most one used technician group. We then
remove the customers in Λ2 from the redundant routes left after implementing the first
step. To be precise, for each customer i ∈ Λ2, we remove it from the routes in the cheapest
manner as follows. Let f5(i, r) denote the reduction in the sum of the travel cost and
STW violation cost for removing customer i from route r. We select a route r∗ such that
r∗ = arg min

r∈Si
f5(i, r), in which Si contains all routes of technician groups that provide

service to customer i in the current integer solution. It follows that maintaining customer i
in the route r∗ and deleting it from all routes in Si \ {r∗} is the best choice to keep customer
i being served.

To determine whether it is better to keep customer i outsourced, we must compare
f5(i, r∗) and oi. If f5(i, r∗) ≤ oi, we keep customer i in route r∗ and remove i from all
routes in Si \ {r∗}. Otherwise, we remove customer i from all the routes in Si, and add it
to the outsourced customer set.

4.3.2. Upper-Bound Improvement: TS Algorithm

TS algorithm is a meta-heuristic that utilizes a memory scheme to direct the local search
to avoid repeated access to the same solutions (Glover and Laguna [44]), which has been suc-
cessfully applied to solve various vehicle routing problems (see, e.g., Berbeglia et al. [45],
Gendreau et al. [46]). In this subsection we develop a TS algorithm by adapting the idea of
Archetti [47] to further improve the integer feasible solution (x, u, v) obtained in Algorithm
FR. The developed TS algorithm depends on two operators: deleting a customer from the
outsourced customer set and inserting it into a route, and removing a customer from a
route and adding it into the outsourced customer set. Specifically, let O be the outsourced
customer set, rτ the route of the group τ, and S the set of all routes of the current solution,
and let N(rτ) and Nτ be the set of customers served by rτ and the set of customers that can
be served by the technician group τ, respectively. Given a route rτ , the neighborhood of rτ

is determined by the following operators.
(i) Deletion–insertion: Consider customer i ∈ O, deleting it from O and inserting it into

rτ at the cheapest possible position. The route derived from this move is denoted as rτ + i.
(ii) Remove–addition: Consider customer i ∈ N(rτ), removing it from rτ and adding it

to O. The route derived from this move is denoted as rτ − i.

5. Computational Results

In this section, we conduct numerical experiments to: (i) qualify the efficiency of
Algorithm TS for improving the upper bound in Algorithm LBH; (ii) verify the effectiveness
of Algorithm LBH; and (iii) investigate the impacts of the key model parameters on the
solution structure.
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The algorithms have been coded in MATLAB. The IBM ILOG CPLEX optimization
library version 12.8.0 was used to solve the MILP formulation. All experiments were
conducted on a workstation with 8G RAM and an Intel Core i7 3.4 GHz CPU.

5.1. Problem Instances

To assess the performance of the proposed algorithms, we tested instances generated
by the following scheme, similar to that described by Kovacs et al. [11]. These instances
were generated based on the well-known VRPTW benchmark instances of Solomon [37] and
were grouped into six classes. In Classes R1 and R2, customers are randomly distributed
in a square region. In Classes C1 and C2, customers are clustered, and in Classes RC1
and RC2, customer distribution is mixed. Associated with R1, C1, and RC1 is a short
planning horizon, while associated with instances R2, C2, and RC2 is a long planning
horizon implying that each route can visit more customers. Each instance contained
100 customers, and the travel times and costs are equal to the Euclidean distances between
the corresponding vertices.

We considered six different sizes of instances: 50 customers with 5 technicians, 60 cus-
tomers with 7 technicians, 70 customers with 9 technicians, 80 customers with 11 technicians,
90 customers with 13 technicians, and 100 customers with 15 technicians, where 50-, 60-,
70-, 80- and 90-customer instances were generated by considering only the first 50, 60,
70, 80, and 90 customers, respectively. In each instance, two depots were involved. One
corresponds to the depot of the Solomon instance, and the coordinates of the other were
randomly generated with a uniform probability distribution in the smallest rectangle con-
taining all the customers. The maximum working time of technicians C was set to the
latest service start time of the depots. Each customer has a time window [ei, di], and we
set Di = min{di + ε(di − ei), C}, in which ε was chosen randomly from {0.1, 0.2, 0.3}. The
time interval [eb, db] for taking a lunch was set to [4C/9,5C/9]. The technicians qualified in
two skill domains with three possible proficiency levels, and were paired into teams with
size δ = 2. The qualifications of the technicians and the skill requirements of the customers
were randomly generated. In the post-processing step, we adjusted the skill requirement
matrices such that each customer can be served by more than one technician group.

Based on preliminary parameter tuning experiments and the best settings identified
by other authors (Archetti et al. [47], Bahiense et al. [42]), the parameters used in the
algorithms we develop were set as follows: (i) λ = 0.1, δd = δε = 0.0001, ς = 0.001,
ι0 = 1, ι f = 6, ιp = 0.8, and ιmin = 0.0001; and (ii) maxIo = 5, maxIn = 10, maxT = 100s,
mTB = 5, and θ = 1.

The model cost parameters βi and oi, i ∈ N, are associated with the three subgoals.
Generally, the time windows are required by the customers; a late service start time might
lead to customer’ complaints, which should be avoided; thus, βi should be set higher than
the coefficient of travel cost, which is set to be 1. In addition, rejecting a customer during the
planning period will dramatically reduce customer satisfaction, and thus oi should be set
such that it is always preferable toserve a customer rather than to outsource them. Thus, for
each customer i ∈ N, βi was set to 1.5σ/min in monetary units and, as in Kovacs et al. [11],

oi was set to 200 +

(
∑

d∈D
∑

l∈L
pidl

)1.5ξ

, in which constant 200 is based on the geographic

characteristics of the instances: the highest single route costs 200, and the second term
defines the difficulty of customer i. Here, σ and ξ, referred to as the tardiness penalty
coefficient and outsourcing penalty index, respectively, were set to one in our numerical
study, the impacts of which will be discussed in Section 5.4.

5.2. Impact of Algorithm TS for Improving the Upper Bound

First, we conduct experiments to provide insights into the efficiency of Algorithm TS
for improving the upper bound in Algorithm LBH, and restricted our test to the 50- and
60-customer instances. In particular, Algorithm LBH with and without Algorithm TS for
improving the upper bound is been tested, which is stopped either after a maximum of
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5000 iterations or after a maximum of one hour of computing time or when the integrality
(optimality) gap is lower than 1%, i.e., MAXITER = 5000, MAXTIME = 3600 s, and
ε = 0.001.

The computational results are presented in Table 2 by the group of instances, where
a group contains instances that belong to the same instance class as the same number of
customers. The results in Table 1 below “Without tabu” are obtained without Algorithm
TS to improve the upper bound, whereas the results below “With tabu” are obtained with
Algorithm TS for improving the upper bound. We report, for each group of instances,

(i) Avg. Gap: the Average optimality gap in percentages between the lower bound LB
and upper bound UB found by Algorithm LBH encountering up to the current iteration, in
which the optimality gap is calculated by 100× (UB− LB)/UB;

(ii) No.1% Gap: the number of instances with 1% optimality gap;
(iii) Avg. Time: the Average computing time in seconds;
(iv) DT-Gap: the percentage difference in the optimality gap calculated by 100 × (Avg.

Gap(Without tabu)- Avg. Gap(With tabu))/Avg. Gap(Without tabu);
(v) DT-Time: the percentage difference in computing time calculated by 100 × (Avg.

Time(Without tabu)- Avg. Time(With tabu))/Avg. Time(Without tabu); and
(vi) DT-No.1: the percentage difference in the total number of instances with a 1% opti-

mality gap calculated by 100× (No.1% Gap(With tabu)- No.1% Gap(Without tabu))/No.1%
Gap(Without tabu).

The computational results summarized in Table 2 clearly state that Algorithm TS
contributes to the effectiveness of Algorithm LBH in improving the upper bound. First,
Algorithm TS can significantly close the optimality gap. Specifically, when Algorithm TS is
applied, the number of instances, with a 1% optimality gap, increased by 65% and 533.33%
for the 50- and 60-customer instances, respectively. Second, with average optimality gaps
in percentages of 3.24% and 4.79% when Algorithm TS was applied, it closed the average
optimality gap with 43.75% and 47.48% for the 50- and 60-customer instances, respectively.
Finally, with average computing times of 1198.42 and 1789.74 seconds, applying Algorithm
TS requires less computing time, which decreases the computing times, on average by,
9.94% and 8.13% for the 50- and 60-customer instances, respectively. This is primarily
because due to the fact that the additional computational burden of applying Algorithm
TS to improve the upper bound is compensated by implementing fewer iterations in
Algorithm LBH.

Table 2. Performance of tabu search algorithm for n = 50 and 60.

Without Tabu With Tabu

n Group No. Inst Avg. Gap Avg. Time No.1% Gap Avg. Gap Avg. Time No.1% Gap DT-Gap DT-Time DT-No.1

50 R1 12 5.01 1154.32 5 2.18 967.66 9 56.49 16.17 80.00
C1 9 5.35 973.33 5 4.04 1012.93 5 24.49 −4.07 0.00

RC1 8 7.79 928.25 2 4.49 996.72 4 42.36 −7.38 100.00
R2 11 5.68 1480.13 4 2.89 1263.61 7 49.12 14.63 75.00
C2 8 5.59 1718.62 3 3.24 1501.21 4 42.04 12.65 33.33

RC2 8 5.57 1806.60 1 3.15 1562.48 4 43.45 13.51 300.00
Total/Weighted average 5.76 1330.73 20 3.24 1198.42 33 43.75 9.94 65.00
60 R1 12 9.35 1675.21 1 4.32 1584.57 4 53.80 5.41 200.00

C1 9 8.78 1829.32 1 5.15 1673.01 3 41.34 8.54 100.00
RC1 8 9.22 2223.12 0 5.89 1842.68 3 36.11 17.11 -
R2 11 8.69 2802.87 0 4.22 2395.97 4 51.43 14.52 -
C2 8 10.32 2653.79 1 5.24 2794.73 2 49.22 −5.31 100.00

RC2 8 8.43 3165.47 0 4.31 2938.70 3 48.87 7.16 -
Total/Weighted average 9.12 2352.45 3 4.79 2161.37 19 47.48 8.13 533.33

5.3. Algorithmic Performance

We now compare the lower bound found by Algorithm LBH to the best lower bound
obtained by solving the continuous LP relaxation of the MILP and solving the MILP using
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the state-of-the-art MIP solver CPLEX. We also report our computational results for solving
the MILP using CPLEX vs. Algorithm LBH.

We test all the 50-, 60-, 70-, 80- and 90-customer instances. As in the previous ex-
periments, an iteration number limit of 5000 and a 1% optimality stopping criterion are
applied. However, for the maximum limit of computing time, we set one hour for the
50- and 60-customer instances, two hours for the 70-customer instances, three hours for the
80-customer instances, and five hours for the 90- and 100-customer instances.

The comparison results are summarized in Table 3, which reports the following indicators:
(i) Avg. LGap: the average gap in percentages between the lower bound LB found by

Algorithm LBH and the best lower bound LBC−LR obtained by solving the continuous LP
relaxation of the MILP and solving the MILP using CPLEX encountering up to the current
iteration, in which the gap LGap is calculated as 100× (LB− LBC−LR)/LBC−LR;

(ii) Avg. Gap: the average optimality gaps in percentages between the lower and
upper bounds found by solving the MILP using CPLEX and Algorithm LBH, respectively;

(iii) No.1% Gap: the number of instances with a 1% optimality gap has been proven
by solving the MILP using CPLEX and Algorithm LBH, respectively, in which we only
consider the instances for which CPLEX found a feasible solution when solving the MILP
using CPLEX;

(iv) Avg. Time: the average computing time in seconds;
(v) DC-Gap: the percentage difference in the optimality gap calculated by 100 × (Avg.

Gap(Algorithm LBP)- Avg. Gap(CPLEX))/Avg. Gap(Algorithm LBP); and
(vi) DT-Gap: the percentage difference in computing time calculated as 100 × (Avg.

Time (CPLEX)- Avg. Time (Algorithm LBP))/Avg. Time (Algorithm LBP),
in which the character “-” is used to indicate an out-of-memory condition.

The lower bound found using Algorithm LBP. From the term “Avg. LGap” in Table 2,
one can see that the lower bounds found by Algorithm LBP are very close to the optimal
solution values and are quite tight compared to the LP relaxation.

With average gaps in percentages between LB and LBC−LR of −0.66% and 0.13% for
the 50- and 60-customer instances, respectively, we can conclude that the lower bounds
found by Algorithm LBH are close to the optimal solution values. This is due to the fact
that CPLEX is capable of solving 83 of the 112 instances to optimality and the average
optimality gaps (Avg. Gap(CPLEX)) were only 0.35% and 1.96%, respectively, implying
that the obtained LBC−LR values were extremely close to the optimal solution values.

With average gaps in percentages between LB and LBC−LR of 2.71%, 3.40%, 3.69%
and 4.61%, respectively, when the number of customers n ranges from 70 to 100, we can
conclude that the lower bounds found by Algorithm LBH are quite tight compared to
the LP relaxation. In fact, according to the definition of LGap, the aforementioned data
demonstrate that the lower bounds found by Algorithm LBP are at least 0.0271, 0.0240,
0.0369, and 0.0461 times larger on average than the lower bounds found by LP relaxation
for the 70-, 80-, 90- and 100-customer instances, respectively. In general, the average gap
between LB and LBC−LR increases with the number of customers because the problem
becomes more complex.

Comparison with CPLEX. The computational results presented in Table 2 allow us to
draw the following conclusions: (i) the average quality of the solutions found by CPLEX
is quite good for instances with fewer customers, whereas the performance of CPLEX
deteriorates as the number of customers increases; and (ii) Algorithm LBH provides
stable results for all the test problems, and outperforms CPLEX when the number of
customers increases.

Although CPLEX is capable of proving a 1% optimality gap for 83 out of the 112 in-
stances with 50 and 60 customers and consumes less computing time compared with
Algorithm LBH for the 50-customer instances, Algorithm LBH outperforms CPLEX when
the number of customers is equal to or larger than 70, which lowers the average optimality
gap and consumes significantly less computing time when compared to CPLEX. For the
70-customer instances, the average optimality gap found by Algorithm LBH is 34.23%
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lower than that found by CPLEX, and Algorithm LBH is 1.0945 times faster, on average,
than CPLEX. For the 80-customer instances, the average optimality gap found by Algorithm
LBH is 69.03% lower than that found by CPLEX, and Algorithm LBH is 0.7489 times faster
on average than CPLEX. Most importantly, CPLEX cannot prove a 1% optimality gap for
any instance with 80 customers, whereas Algorithm LBH can prove a 1% optimality gap for
30 out of the 56 instances. What is more, CPLEX is unable to solve instances with a number
of customers equal to or larger than 90 in most cases, owing to the large increase in the
number of variables in MILP and limited computation resources. Instead, with Algorithm
LBH, the problem can be solved using a desktop with limited computation resources and
less RAM. This is because of the iterative nature of Lagrangian heuristics, which is also an
advantage over the all-at-once algorithms used in CPLEX.

Table 3. Algorithmic performance comparisons.

CPLEX Algorithm LBH

n Group No. Inst Avg. Gap Avg. Time No.1% Gap Avg.LGap Avg. Gap Avg. Time No.1% Gap DT-Gap DT-Time

50 R1 12 0.02 398.47 11 −0.18 2.18 967.66 9 99.08 −58.82
C1 9 0.00 403.26 9 −0.24 4.04 1012.93 5 100.00 −60.18

RC1 8 0.11 202.00 7 −0.49 4.49 996.72 4 97.55 −79.73
R2 11 0.23 1098.85 10 −0.89 2.89 1263.61 7 92.04 −13.03
C2 8 0.46 783.12 6 −1.24 3.24 1501.21 4 85.80 −47.83

RC2 8 0.35 652.27 6 −1.15 3.15 1562.48 4 88.89 −58.25
Total/Weighted average 0.18 599.95 49 −0.66 3.24 1198.42 33 94.44 −49.93
60 R1 12 1.15 1951.70 8 0.35 4.32 1584.57 4 73.38 23.16

C1 9 1.53 2492.17 6 0.07 5.15 1673.01 3 70.29 48.96
RC1 8 1.41 3032.10 5 0.12 5.89 1842.68 3 76.06 64.54
R2 11 0.98 2573.21 7 0.33 4.22 2395.97 4 76.78 7.39
C2 8 1.35 2982.59 4 −0.16 5.24 2794.73 2 74.24 6.72

RC2 8 1.96 3375.38 4 −0.09 4.31 2938.70 3 54.52 14.85
Total/Weighted average 1.36 2665.64 34 0.13 4.79 2161.37 19 71.61 23.33
70 R1 12 3.55 7100.75 2 2.67 2.43 2576.51 8 −46.09 175.59

C1 9 4.83 6455.67 3 2.31 3.52 3348.30 6 −37.22 92.80
RC1 8 4.35 5966.12 2 3.46 3.80 3675.16 5 −14.47 62.33
R2 11 5.09 7035.27 1 2.65 2.30 2913.52 9 −121.30 141.46
C2 8 4.98 6818.25 2 2.33 4.36 3442.96 4 −14.22 98.03

RC2 8 6.12 7200.00 0 2.90 2.88 3956.29 5 −112.50 81.98
Total/Weighted average 4.64 6795.95 10 2.71 3.12 3244.59 37 −52.05 109.45
80 R1 12 9.17 10,800.00 0 3.02 3.09 5756.66 6 −196.76 87.60

C1 9 12.38 10,800.00 0 3.81 3.24 6048.72 5 −282.09 78.55
RC1 8 16.80 10,800.00 0 3.48 4.49 6468.72 3 −274.16 66.95
R2 11 11.11 10,800.00 0 3.78 4.02 6003.66 7 −176.36 79.89
C2 8 13.17 10,800.00 0 3.06 3.71 5442.96 5 −254.98 98.42

RC2 8 14.73 10,800.00 0 3.23 4.58 7621.31 4 −221.61 41.70
Total/Weighted average 12.52 10,800.00 0 3.40 3.80 6175.40 30 −229.47 74.89
90 R1 12 - - - 3.60 3.18 9250.43 7

C1 9 - - - 4.07 4.16 11,097.18 5
RC1 8 - - - 3.18 4.22 10,667.60 4
R2 11 - - - 3.42 3.27 10,412.88 6
C2 8 - - - 3.17 4.24 11,089.12 4

RC2 8 - - - 4.79 4.04 12,462.54 3
Total/Weighted average - - - 3.69 3.78 10,699.56 29
100 R1 12 - - - 4.17 4.24 13,577.78 3

C1 9 - - - 5.12 4.88 15,516.60 3
RC1 8 - - - 4.61 5.02 16,590.84 2
R2 11 - - - 4.21 5.12 16,066.54 2
C2 8 - - - 4.79 5.98 15,909.50 2

RC2 8 - - - 5.06 5.33 17,942.38 1
Total/Weighted average - - - 4.61 5.03 15,765.29 13

5.4. Sensitivity Analysis

We further investigate the problem we consider in depth by conducting a sensitivity
analysis of the solution concerning the tardiness penalty coefficient σ and outsourcing
penalty index ξ on the 56 instances with n = 60.
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To compare the performance changes, we consider the following four metrics: (i) av-
erage total cost, (ii) average travel cost, (iii) average STW violation cost, and (iv) average
outsourcing cost. Here, we use the instances that can find the solution with a 1% optimality
gap within 2 h under all settings of the considered parameter to calculate the average value.
The growth rate of the value of each metric Rate = (cval − bval)/bval is also reported, in
which bval is the value obtained in the baseline setting and cval is the corresponding value
obtained in the current setting. Thus, the growth rate indicates the relative change in the
value of one metric with the changes in the considered parameter.

We first analyze how mercies change with variations in σ ∈ {1, 2, . . . , 10}. The com-
parison results are shown in Figure 3. In Figure 3a, the histogram depicts the average total
cost, and the broken line shows the average total cost growth rate with σ = 2, . . . , 10 over
that with σ = 1. The settings for the other metrics in Figure 3b–d are analogous. We can
see that, with the increase of σ, both the average total cost and average outsourcing cost
increase, whereas the average STW violation cost decreases overall. Specifically, the rate
of increase in both the average total cost and average outsourcing cost is nearly linear,
whereas the increase in the average STW violation cost first tapers off and then evens
moved beyond a threshold. This is expected, because increasing σ while keeping other
model parameters unchanged naturally leads to an increase in the optimal value, and it
will try to avoid being late in the optimal solution with a larger σ. However, owing to
limited service capacity beyond a threshold (for example σ = 4), it is beneficial to outsource
some customers to avoid high average STW violation cost, which results in an increase in
the average outsourcing cost and makes the average STW violation cost relatively stable.
In addition, the average travel cost remains relatively stable, and not very sensitive to
variations in σ.

Figure 3. Comparison results with different σ.

Figure 4 illustrates the variations in metrics with ξ ∈ {1, 1.5, 2, 2.5, . . . , 5}. Because
increasing ξ will increase the cost of outsourcing a customer, the results in Figure 4a,d show
that, as expected, both the average total cost and average outsourcing cost increase with the
increase of ξ. Specifically, the average total cost initially increases gradually up to a certain
threshold (ξ = 2.5) and then grows exponentially. Looking more closely at Figure 4d, we
find an identical threshold (ξ = 2). Before the threshold, because a higher outsourcing
cost yields an increase in the number of customers served in the optimal solution, the
average outsourcing cost decreases slowly with an increase in ξ, which leads to an increase
in the travel cost and STW violation cost. However, beyond the threshold, the variation
in ξ will not affect the optimal solution, i.e., it will not increase the number of customers
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served owing to the limited service capacity. It follows that both the average total cost and
the average outsourcing cost grow exponentially, whereas the average travel cost and the
average STW violation cost remain relatively stable when ξ ≥ 2.5.

Figure 4. Comparison results with different ξ.

6. Conclusions

This study analyzes a technician planning problem that involves the multiple depots,
STW, lunch breaks, outsourcing option, and working day limitation, among others, in
which technicians are skillful in different skill areas and work in different groups to serve
customers. The goal is to identify the optimal partition of technicians into groups and
assignment of customers to technician groups, and determine the optimal routes for techni-
cian groups to minimize the sum of the travel, soft time window violation, and outsourcing
costs. We design a Lagrangian heuristic that incorporates several strategies to speed up
convergence and produce sharper bounds, to solve the problem.

Computational comparisons between the developed Lagrangian heuristic and MIP
solver CPLEX are presented. The proposed bounds outperform those obtained by CPLEX
for large instances, and the developed algorithm is found to be capable of generating good
feasible solutions to large-scale instances in a reasonable amount of time.

Future research could consider the following extensions of our study. First, we present
a Lagrangian heuristic, which can be easily adapted to deal with other types of constraints,
owing to its decomposition structure. Future research may therefore apply the developed
algorithm to solve other related real-life problems. Second, it is important to consider
other problem characteristics, such as workload balancing (Schwerdfeger and Walter [48],
Ouazene et al.[49]). Finally, the developed Lagrangian heuristic requires considerable com-
puting time to obtain high-quality solutions for large-scale instances. Therefore, developing
an efficient heuristic or meta-heuristic for this problem would be interesting.
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Appendix A. Pseudo-Code of the Lagrangian-Based Heuristic

Algorithm A1: Algorithm LBH

Input: G = (N ∪H,A), λ, ε, δe, δε, ς, ι0, ι f , ιp, ιmin, MAXITER, and MAXITIME
Output: The incumbent (x̃, ũ, ṽ, T̃)
Set µ0 ←0 and UB = +∞.
Solve the Lagrangian sub-problem by implementing Algorithm DP(h, Φh

p, µ0) for all
h ∈ H, Φh

p ∈ Ξh to obtain L(µ0) and (x0, u0, v0, T0).
g0 ← ( ∑

h∈H
∑

τ∈Γh

∑
j∈N∪{hd}

xh0
ijτ − 1)i∈N , χ1 ← (x0, v0), µ̂1 ← µ0.

e1 ← g0, LB← L(µ0), q1 ← g0, s1 ← λ UB−LB
||d1||2 , p = t← 1, ser ←False, Ts ← ∅, ε1 = f ← 0,

ω0 ← 1.
while t ≤ MAXITER and CPUtime ≤ MAXITIME do

µt ← max{µ̂k + stet, 0}, ϕt ← st||et||2 + | < et, µ̂k − qt > |+ εt.
Solve the Lagrangian sub-problem by implementing Algorithm DP(h, Φh

p, µt) for all
h ∈ H, Φh

p ∈ Ξh to obtain L(µt) and (xt, ut, vt, Tt).
gt ← ( ∑

h∈H
∑

τ∈Γh

∑
j∈N∪{hd}

xht
ijτ − 1)i∈N .

LB← max{LB, L(µt)}.
if (UB− LB)/UB ≤ ε then

Stop.

if L(µt)− L(µ̂p) ≥ ςϕt then
µ̂p+1 ← µt, p← p + 1, ser ← TRUE.

else if ser=False then
f ← f + 1.

if ser=TRUE then
λ← 1.1λ.
else if f mod 3=1 then

λ← 0.66λ

st+1 ← λ UB−LB
||et ||2 .

ω′t ← <gt ,µ̂p−qt>−<gt ,µ̂p−µt>−st+1<et ,gt−et>
st+1||gt−et ||2 .

ωt ←


ωt−1/10 if ω′t ≤ 1e− 8,
min{ιt, 1.0} if ω′t ≥ 1,
ω′t otherwise,

χt+1 ← ωt(xt, vt) + (1−ωt)χt, et+1 ← ωtgt + (1−ωt)et.
qt+1 ← ωtµt + (1−ωt)qt, εt+1 ← ωt(1−ωt) < gt − et, qt − µt > +(1−ωt)εt.
if t mod ι f =1 then

ιt+1 ← max{ιpιt, ιmin}.
if ||et+1||2 ≤ δ2

e and | < et+1, µ̂k − qt+1 > |+ εt+1 ≤ δε then
Stop.

if ser=TRUE or f mod 5=1 then
Implement the two-stage hybrid heuristic developed in Section 4.3 to update UB

and incumbent (x̃, ũ, ṽ, T̃), starting with χt+1.

if (UB− LB)/UB ≤ ε then
Stop.

t← t + 1.
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