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Abstract: The COVID-19 outbreak was a major event that greatly impacted the economy and the
health systems around the world. Understanding the behavior of the virus and being able to perform
long-term and short-term future predictions of the daily new cases is a working field for machine
learning methods and mathematical models. This paper compares Verhulst’s, Gompertz´s, and SIR
models from the point of view of their efficiency to describe the behavior of COVID-19 in Spain.
These mathematical models are used to predict the future of the pandemic by first solving the
corresponding inverse problems to identify the model parameters in each wave separately, using as
observed data the daily cases in the past. The posterior distributions of the model parameters are
then inferred via the Metropolis–Hastings algorithm, comparing the robustness of each prediction
model and making different representations to visualize the results obtained concerning the posterior
distribution of the model parameters and their predictions. The knowledge acquired is used to
perform predictions about the evolution of both the daily number of infected cases and the total
number of cases during each wave. As a main conclusion, predictive models are incomplete without
a corresponding uncertainty analysis of the corresponding inverse problem. The invariance of the
output (posterior prediction) with respect to the forward predictive model that is used shows that the
methodology shown in this paper can be used to adopt decisions in real practice (public health).

Keywords: uncertainty analysis; population models; inverse problems; COVID-19
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1. Introduction

Mathematical models not only help us to understand the behavior of complex systems
in situations that are difficult to observe but can also be of great help in predicting the future
if a suitable observation dataset is available. Mathematical models in epidemiology are
designed to follow the dynamics of disease transmission in groups of people. By making
predictions with these models, it is possible to estimate the health needs to cope with a new
outbreak of a disease, for example, the possible number of infected people, the number of
ICU beds, or the number of tests to be carried out.

Different mathematical models have been used to simulate the behavior of COVID-19,
ranging from those using time series that follow patterns but have difficulty predicting
changes [1] to those based on artificial intelligence, which may have validity problems
due to the absence of sufficient training data sets [2] and even agent-based modeling,
which simulates the behavior of individuals to estimate the spread of the disease in the
community [3]. These models are based on population-level parameters such as movement
rates, distancing, and virus infectivity parameters, which are unknown, but there are
models based on ordinary differential equations that have long been used to simulate
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disease dynamics [4]. Such a model was first proposed by Kermack and McKendrick in
1927 to simulate the transmission of infectious diseases such as measles and rubella [5].
This model is known as SIR because it separates the population into three groups: the
susceptible, infected, and recovered, and consists of a system of three non-linear ordinary
differential equations, which has no explicit solution. However, simple calculus tools allow
us to obtain a great deal of information about the solutions [6,7].

The SIR transmission model [8] considers a large, closed population with no births
or natural deaths in which the rate of encounters between susceptible and infected is
proportional to the size of these populations. It is a short-lived outbreak with no latent
period, and recovery from infection confers permanent immunity. This requires that the
members of each group are homogeneously distributed, with the probability of encounters
per unit of time being the same for all individuals.

Since these assumptions are quite restrictive and, in some cases, unrealistic, the
scientific community adapted the model to reality. Thus, the SEIR model incorporates the
time of disease development during which an individual is affected by contagion but is not
contagious to the rest of the population. SEIS is like SEIR, but immunity to the virus is never
achieved. If you add a new group of people who, at the beginning of the pandemic, have
passive immunity that they later lose, you obtain the MSEIR model, and if the immunity of
the recovered group is temporary, it is the MSEIRS model.

Another way to model a pandemic is to treat the outbreak as a population growth
model, working only with the infected group. Limited growth models, such as the logistic
model proposed by Verhulst (1838) [9], can be used to understand and predict a pandemic.
For small values of magnitude, at the beginning of the outbreak, the virus spreads rapidly,
but as the number of infected grows, the rate of spread of the virus decreases. This is
possible because measures were taken against the disease or because finding a person who
has not previously been in contact with the disease becomes more difficult. The Verhulst
model can predict the human population in an area with the aim of decision-making for
socio-economic and demographic development [10]. Likewise, the Verhulst model, with its
bounds for determining unlimited population growth [11], is a computationally reliable
alternative for solving population problems [12].

Another model used in biology is that of Gompertz (1825) [13]. This model has been
used mainly to describe the growth of a certain population of organisms and for the study
of growing tumors [14–22]. It is a sigmoidal function describing slower growth at the
beginning and end of a given period.

Fernández-Martínez et al. [23] presented the analysis of Verhulst’s and Gompertz’s
models for the short-term and long-term prediction of the COVID-19 pandemic by solving
the corresponding inverse problem via a PSO family member. In this paper, we expand this
comparison to the SIR model, inferring the posterior distributions of the model parameters
via the Metropolis–Hastings algorithm, which is considered a correct importance sampler.

We have compared the robustness of each algorithm, making different representations
to visualize the results obtained. The knowledge acquired is applied to make predictions
and obtain a range of possible variations for the evolution of both the daily number of
infected cases and the total number of cases during each wave in Spain.

It is crucial to note that the approach of the three models is different, and none of them
perfectly describes the context of the COVID-19 epidemic. However, this accuracy is not
necessary for the calculations we are going to make in this article, and they can all be used
to draw important conclusions for predicting the behavior of a pandemic (start date, end
date, the peak of the wave...), leading to similar results if the data are interpreted correctly.

The following section presents the fundamentals of the SIR, Verhulst and Gompertz
models. This analysis also serves to draw relevant conclusions about the dynamics of
the pandemic.
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2. Fundamentals of the Three Models
2.1. SIR Model

The model is governed by the following system of ordinary differential equations
(ODEs):

dS
dt

= − r
K

SI (1)

dI
dt

= − r
K

SI − γI (2)

dR
dt

= γI (3)

where r > 0 is the transmission rate, γ > 0 the recovery rate (being the duration of infection
D = 1/γ), and r/K the transmission rate. The incidence rSI/K of the number of newly
infected individuals per unit of time involves individuals in the infected and susceptible
classes. Additionally, the sum of Equations (1)–(3) is the derivative of the total population
size, the result of which is zero. Therefore, the total population size K = R(t) + S(t) + I(t)
remains constant.

If each infected person has κ contacts, on average, capable of transmitting the disease
per unit time, irrespective of the total population size, then κS/K of those contacts will
be with susceptible persons. If τ of these suitable contacts result in susceptible persons,
it follows that each person carrying the virus infects τκS/K susceptible people per unit
of time. Therefore, defining r = κτ, with the parameter τ known as transmissibility, the
system described above is obtained.

Taking a sufficiently large, initially susceptible population (S(0) = K− 1, I(0) = 1,
R(0) = 0), we define the effective reproductive number Re = (S(0)/K)r/γ and the basic
reproductive number R0 = r/γ, then Re = ((K− 1)/K)r/γ is approximately equal to R0.

This Re is the threshold value that determines whether a disease outbreak will die
out quickly or instead spread and cause a pandemic. If Re ≤ 1, then I(t) is a monotonic
function that decreases towards zero as it grows, while if Re > 1, then I(t) starts growing,
reaches a maximum, and finally decreases towards zero as t increases. This scenario of
growing numbers of infected individuals will serve to describe an epidemic.

It is important to emphasize that the existence of a threshold for determining whether
a disease outbreak becomes an epidemic or not is far from obvious and goes unnoticed by
many public health and infectious disease experts. The reason is that this threshold cannot
be derived from data but requires mathematical modeling.

There are some strategies for Re ≤ 1, such as reducing the duration of infection with
antivirals, adopting strategies to reduce the number of κ contacts or τ transmissibility,
and vaccinating the population to reduce the number of the initial susceptible population.
Regarding the latter strategy, it is possible to avoid a pandemic by vaccinating only part of
the population. This is the phenomenon known as herd immunity, and the critical vaccina-
tion threshold is achieved when the fraction of susceptible people who are vaccinated is
ρ > 1− 1/Re. On the other hand, the maximum number of infected can be expressed as a
function of the single parameter R0, as Imax = K(1− (1/R0)(1 + log R0)).

Finally, as an epidemic progresses, the number of susceptible people and the rate
at which new infections occur decreases. Eventually, S(t) decreases below γK/r, and
the rate of recovery exceeds the rate of infection. Thus, I(t) begins to decline, and the
epidemic ends because of a lack of newly infected individuals and not for lack of the
susceptible population.

2.2. Verhulst Model

Verhulst’s model falls into the class of limited growth models and is a modification of
the model of Malthus (1766–1834) [24], which advocated exponential population growth.
In this model, the rate of reproduction is proportional to the existing population and the
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available resources and is governed by the following first-degree differential equation,
representing the number of daily cases:

dP
dt = rP

(
1− P

K

)
,

P(0) = P0
(4)

where P(t) is the population size, which applied to epidemiology is the number of infected,
r is the intrinsic growth rate, and K is the maximum population size that can be sustained
by the environment, known as the carrying capacity.

The solution of Verhulst’s model is given by

P(t) =
KP0ert

K + P0(ert − 1)
(5)

which depends on the parameters P0, Ky r.
The maximum number of daily cases obtained is

mx
(

dP(t)
dt

)
=

rK
4

, (6)

corresponding to t = tmax = ln A/r, where A is a constant that must satisfy the initial condition

P0 =
K

1 + A
(7)

Therefore, the peak of the daily infections depends on r and K, while the time at which
this peak occurs depends on P0.

2.3. Gompertz Model

Gompertz’s model, as well as some of his new approximations, have been used in
many aspects of biology, such as the growth of animals and plants or the number and
volume of bacteria and cancer cells, among others [25].

There are several forms of the so-called Gompertz equation (1938) in the literature, but
in this paper, we will consider the following one:

dP
dt = rP ln

(
K
P

)
P(0) = P0

(8)

where P(t), is the population at time t, r is an intrinsic growth constant, with r > 0, and
K > 0, is the carrying capacity or maximum population size. The general solution is

P(t) = Ke−Be−rt
, (9)

where B represents a real constant satisfying the initial equation:

P(0) = Ke−B. (10)

Equation (9) can be expressed in terms of the same parameters as the Verhulst model:

P(t) = K
(

P0

K

)e−rt

(11)

The maximum number of daily cases

mx
(

dP(t)
dt

)
=

Kr
e

, (12)
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is obtained for tmax = ln B/r.
Identical considerations to Verhulst’s model can be made for the peak and the time

at which the peak occurs. The number of infected is higher than in the case of Verhulst’s
model for the same values of K and r. This result can be seen in Figures 1 and 2, in which
Verhulst’s and Gompertz’s models were simulated for an initial population P0 = 1 and
taking different values of K and r (the same in each model).
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Figure 2. Epidemic simulation with Gompertz model for P0 = 1.

In Verhulst’s and Gompertz’s models, the model parameters B and P0 to K are related
via a logarithmic expression. In the case of Verhulst, the logarithmic equation is

ln K = ln P0 + B. (13)

In the case of Gompertz’s model, from Equation (8), we obtain

ln

∣∣∣∣∣
dP(t)

dt
P(t)

∣∣∣∣∣ = ln(rB)− rt, (14)

which can be used to obtain a first approximation of r and B by linear regression.
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Another possibility is taking logarithms directly in Equation (9):

ln P(t) = ln P0 − B
(
e−rt − 1

)
(15)

and solve it for different values of t and by least squares, considering an initial value of
r and obtaining the parameters P0 and B. Analogously, least squares are used to obtain
r, proceeding iteratively until the predicted value P∗ satisfies that

∥∥∥Pobs − P∗
∥∥∥

2
is smaller

than a fixed value.

3. The Inverse Problem

The inverse problem can be written in abstract form as: F(m) = Pobs, where F(m)
represents the predicted time series with the parameters obtained by the corresponding
model (Verhults or Gormpertz), Pobs = (P1, P2, . . . , Pn) ∈ Nn are the observed data (infected
people) in times t1, t2, . . . , tn, and m are the model parameters of the prediction problem.
For instance, in the Verhulst model m = (K, P0, r), which are the parameters that we need
to identify to perform the ad-future predictions.

The data of our problem is a time series containing the number of total infected on
each measurement day, so the inverse problem is to find a set of parameters m = (K, P0, r)
such as the prediction error:

E1(m) =

∥∥∥F(m)− Pobs
∥∥∥

1∥∥∥Pobs
∥∥∥

1

(16)

is less than a certain tolerance tol, where F(m) represents the predicted time series with the
parameters obtained by the corresponding model.

The main source of noise in data, in this case, is the number of infected people, which
sometimes corresponds to two consecutive days instead of the same. This is due to the
way that the data were transmitted. Additionally, sometimes the criteria to classify the
infections has changed over time, causing some data incongruences. Additionally, COVID-
19 cases are usually undercounted. All these facts make it so the model should be a useful
approximation of reality (noise included) to optimize decision-making. The fact that the L1
norm is used has some implications for the statistical distribution of the outliers due to its
robustness in their presence.

The set of models that fit the data with an error smaller than tol contains the so-called
equivalent models

Mtol = {m : E(m) ≤ tol} (17)

which can be found in a curvilinear valley or even in different unconnected basins [26].
In this case of a set of plausible values, uncertainty analysis is necessary to obtain a
representative sample of the solutions, which will be carried out by a method capable of
exploring the set of equivalent parameters to obtain the most plausible one. This method is
a member of the PSO (Particle Swarm Optimization) family called RR-PSO (Regressive-
Regressive Particle Swarm Optimization), designed by Fernandez-Martinez and Garcia
Gonzalo [27]. It is important to note in this case that casting the inverse problem as a
sampling problem makes the use of regularization unnecessary. The only prior information
that is used is the search space where the model parameters are sampled. The use of the
Metropolis–Hastings (MH) algorithm corresponds to a Bayesian formulation of the inverse
problem, while the sampling of the parameters through an exploratory global algorithm,
such as RR-PSO, is only a numerical approximation of the posterior distribution of the
model parameters provided by a correct theoretical sampler, like MH.

4. Results

The data were obtained from reports provided by the Centro de Coordinacion de
Alertas y Emergencias Sanitarias del Ministerio de Sanidad del Gobierno de España [28].
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After obtaining the data on total infections and computing the daily infections, the
next step of our study was to set the start and end dates of each wave. As can be seen in
Figure 3, the first wave was the smallest, but in reality, it is believed that there were quite a
few more infections than reported by health authorities.
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For the purpose of this article, we will focus our attention on the third wave, which
starts around 8th December 2020 and is characterized by an upturn in the daily cases a few
days after the Christmas holidays (see [23] for more information).

4.1. Results Comparison

First, using the Verhulst model, really good results have been obtained, which can be
found in Figure 4, where the red dashed line is the observed data and the green one is the
best model obtained by minimizing the error. The error obtained was 1.76% with an initial
infected population of approximately P0 ≈ 3 × 104, a carrying capacity K ≈ 1.55 × 106,
and a growth rate r = 0.086.
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Second, Figure 5 shows how the fit obtained using Gompertz’s model failed primarily
at the beginning of the outbreak, with an error of 3.98%. Furthermore, the initial population
obtained, P0 = 16, has been much different with respect to the Verhulst results, and the
growth rate is slightly lower, r = 0.062.
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Finally, the SIR model returns a precise fit, which can be seen in Figure 6, with an error
of 2.15%, a growth rate of r = 0.255 and a recovery rate of 0.161. It is important to note that,
unlike Verhulst’s and Gompertz’s fits, the SIR model does not need to reach the carrying
capacity, K ≈ 2.5 × 106, at the end of an outbreak. This could be visualized in Figure 7,
where the epidemic ends because of a reduction in the number of infected people and not
due to the lack of susceptibility.
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4.2. Predictions

In order to make predictions, it is first necessary to obtain a representative sample of
equivalent models. In this paper, the Metropolis–Hastings algorithm, which is a Markov
chain Monte Carlo (MCMC) method, was chosen.

After sampling, the next step is to extrapolate the pandemic curves and calculate the
different percentiles. The p-percentile of a prediction on one day is the number of infected
people left by the p% of predictions below.

With the aim of giving a general idea about the effectiveness of the different models at
making predictions, two examples of it will be presented, the first one made on 5 January
2021 and the second one on 25 January, a few days after the peak of the wave in daily cases.

On the one hand, as it may be seen in Figures 8–10, the 75th and 90th Verhulst
percentiles are the only ones that correctly predict the fast growth of daily infections at the
beginning of the outbreak.
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On the other hand, they fail at predicting the end of the outbreak, whereas other
models like SIR obtain more accurate predictions. In this case, Gompertz’s model seems
like it has not been able to detect the tendency properly due to the lack of data.

Continuing with the predictions made on 25 January, it can be seen how all the models
considerably improved their results.

Figures 11–13 show the predictions of these three models. For instance, the Verhulst
and SIR models (Figures 11 and 13) not only allow us to obtain a more precise frame of
daily cases, but they fit the wave shape much better.
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Finally, as can be seen in Figure 12, Gompertz’s predictions maintain that long-term
trend that fails to adjust the peak of the wave but is the most accurate when it comes to
predicting the number of daily cases over April.

To complement these results, Appendix A shows the posterior histograms of the model
parameters for each of the models and COVID-19 waves. These histograms account for the
uncertainty analysis (model appraisal) of the inverse unknowns: initial population, growth
rate, maximum population infected (in the case of Verhults’s and Gompertz’s models), and
for the SIR parameters via the Metropolis–Hastings algorithm. As can be observed, all
the models provide very consistent results. Therefore, the conclusions achieved by the
posterior analysis are similar.
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5. Conclusions

In this article, a comparison is made between Verhulst’s, Gompertz’s, and SIR models
in terms of their effectiveness in predicting the effects of COVID-19 outbreaks in Spain and
for the purpose of socio-health planning. The analysis of the different solutions obtained
by each model shows the daily prediction of infected people and the total number of
infections. All this translates into reliable present and future predictions that are key in
determining health measures aimed at the population to mitigate the most serious effects
of the next wave.

We show different predictions for COVID-19 in Spain made by each of the models,
where the infection rate is between 3% and 10%, i.e., the virus infects between 3 and 10
people out of 100 vulnerable people. The three models show similar results, but it is
easier to refine the parameters of Verhulst’s model. In view of these facts, it would be
more appropriate to use the Verhulst model for long-term forecasts and the SIR model for
short-term forecasts or when precise information on the recovery rate is available. Finally,
it is clear throughout the article that none of the models is perfect, but precisely because of
these differences in the predictions of each model, they could be used in a complementary
way to inform decision-making during a pandemic.
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