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Abstract: In this paper, we study the connections between generalized mean operators and entropies,
where the mean value operators are related to the strictly monotone logical operators of fuzzy theory.
Here, we propose a new entropy measure based on the family of generalized Dombi operators.
Namely, this measure is obtained by using the Dombi operator as a generator function in the general
solution of the bisymmetric functional equation. We show how the proposed entropy can be used in
a fuzzy system where the performance is consistent in choosing the best alternative in the Multiple
Attribute Decision-Making Problem. This newly defined entropy was also applied to the problem
of extracting useful information from time-frequency representations of noisy, nonstationary, and
multicomponent signals. The denoising results were compared to Shannon and Rényi entropies.
The proposed entropy measure is shown to significantly outperform the competing ones in terms
of denoising classification accuracy and the F1-score due to its sensitivity to small changes in the
probability distribution.

Keywords: Shannon entropy; Rényi entropy; fuzzy entropy; Dombi operator; time-frequency
distributions; extraction of useful information
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1. Introduction

The concept of entropy is frequently used today as a quantitative measure of the
uncertainty associated with a random variable. Entropy was introduced as a measure of
information in Shannon’s 1948 paper entitled “A Mathematical Theory of Communica-
tion” [1]. However, Shannon’s entropy is not suitable for quantifying uncertainty arising
from vagueness, ambiguity, or missing information that occurs in real-world scenarios.

Since the concept of probability was not sufficient to model uncertainty in ambiguous
systems, Zadeh proposed a new theory, called fuzzy set theory, as a generalization of
classical set theory [2]. From then on, fuzziness became a new tool to measure uncertainty. A
fuzzy entropy function is based on a degree of membership that is different from probability,
and therefore it has a different form from a probabilistic entropy like Shannon’s.

De Luca and Termini introduced a fuzzy entropy function as a weighted Shannon
entropy and introduced axioms that a fuzzy entropy measure must satisfy [3]. After De
Luca and Termini, numerous authors have proposed generalizations of fuzzy entropy.
Pal and Pal proposed an exponential fuzzy entropy based on exponential functions [4].
Kapur in [5] proposed a fuzzy entropy of type (α, β) based on the paper by Sharma and
Tenaja [6] in which they proposed a generalization of the functional equation [7] that
led to a new entropy measure. Fan and Xie [8] proposed a method for generating fuzzy
entropy by a distance measure based on the exponential operation. Based on the work of
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Sharma and Mittal [9], where the authors characterized non-additive entropies of discrete
probability distributions, Hooda proposed new measures of fuzzy entropies [10]. Some
additional parametric generalizations of [3] were studied by Fan and Ma [11]. Verma and
Sharma introduced the generalized exponential fuzzy entropy of order α [12], which is
a generalization of both exponential entropy [4] and logarithmic entropy [3]. Joshi and
Kumar introduced two parametric exponential fuzzy entropies and tested the application of
the proposed measure in multiple attribute decision-making problems [13]. Tian and Yang
proposed an exponential entropy measure for the intuitionistic fuzzy set [14]. Intuitionistic
sets are generalizations of the fuzzy sets proposed by Atanassov [15] as an extension of
the fuzzy set. He added a non-membership function where the sum of the membership
function and the non-membership function is not greater than one.

Entropies of intuitionistic fuzzy sets were also proposed in several papers [16–19].
Other descriptors of similar fuzzy measures and applications can be found in many other
papers, like [20–23].

This paper proposes a new entropy of type (α, β) based on the generalized Dombi
operator [24]. We apply this novel measure to fuzzy sets and compare it with other fuzzy
entropies of type (α, β).

We also apply the proposed measure to the problem of extracting useful content from
a noisy signal in the time-frequency domain. Namely, classical probabilistic entropies are
already widely used in signal analysis, and there are several useful content extraction
methods from time-frequency distributions based on Shannon and Rényi entropies [25–27],
but this is the first time this type of entropy from the family of fuzzy entropies has been
implemented. Here, we improve the local entropy method presented in [28] and compare
the obtained results with those obtained utilizing other entropy measures.

The main contributions of this work may be summarized as follows:

• A new entropy measure based on the family of generalized Dombi operators is
introduced and studied.

• Comparison of the new measure to some existing fuzzy entropies of type (α, β)
through a multi-criteria decision-making model is provided. The performance of
the entropy measure with changes in parameters is found to be consistent in terms of
choosing the best alternative.

• Comparison of the differences between new entropy measures and some classical
entropies is studied.

• The efficiency of the proposed entropy measure is illustrated in examples of extracting
useful information content from noisy signal time-frequency distributions.

The rest of the paper is structured as follows. In Section 2, we provide the theoretical
background and present concept of the (α, β) entropy measures. In Section 3, we general-
ize the operator-dependent entropy measures using the composite functions. Examples,
including the extraction of useful information from noisy time-frequency distributions,
and a comparison of various entropy measures of different operators are elaborated on in
Section 4. Lastly, in Section 5, we drew some conclusions and make some suggestions for
future work.

2. Preliminaries
2.1. Shannon Entropy

Let us start with the basic and well-known Shannon entropy, which has been applied
in various fields. It is fundamental to information theory, although Ludwig Boltzman first
introduced the same idea in statistical mechanics. Shannon in [1] introduced the concept
of information from a discrete source without memory as a function that quantifies the
uncertainty of a random variable. The average of this information is known as the Shannon
entropy measure.

Consider a source that produces messages by broadcasting a sequence of symbols
from the source alphabet. Treating the values in the sequence as successive observations of
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the variable Z of a random experiment, we will assume that the probability associated with
the value zi is pi, and the sum of all pi is 1.

The information associated with the outcome Z = zi is denoted by:

h(pi) = −log(pi). (1)

One can also derive this measure axiomatically from a set of natural assumptions men-
tioned below. The expected information of the ensemble {(z1, p1), (z2, p2), ..., (zn, pn)} is

HS(p1, p2, ..., pn) = −c
n

∑
i=1

pilogb(pi), (2)

where b and c are positive constants, and b 6= 1. Each choice of the values b and c determines
the unit in which the uncertainty is measured. The most common choice is to define the
unit of measurement by the requirement that the magnitude of the uncertainty is 1 if
Z = {z1, z2, ..., zn} and p(z1) = p(z2) = ... = p(zn) =

1
n . This requirement can be expressed

by the equation

−c logb

(
1
n

)
= 1. (3)

For b = 2 and c = 1, the resulting unit of measurement is bit. If b = e, then c = 1
ln (n) ,

and the resulting unit of measure is nat. By definition, for pi = 0, pi logb(pi) = 0.
Let us consider a simple case of n = 2:

F(p) = Hs(p, 1− p) = −(p log2(p) + (1− p)log2(1− p)). (4)

For p = 1 or p = 0, F(1) = F(0) = 0.
The Shannon entropy Hs(p) has several important properties, such as nonnegativity,

expansibility, symmetry, recursivity, additivity, and monotonicity. Below, we give a mathe-
matical description of some of the properties that characterize the Shannon entropy [29].

1. If p = 1, then Hs(p) = 0.
2. The entropy is a symmetric function of its arguments, i.e., the entropy Hs(p1, p2, ..., pn)

does not depend on the order of pi:

Hs(p1, p2, ..., pn) = Hs(pσ1 , pσ2 , ...pσn), (5)

where σ1, ..., σn is a permutation of (1, 2, ..., n).
3. Maximum entropy is reached when all probabilities are equal.

Hs(p1, p2, ..., pn) ≤ Hs

(
1
n

,
1
n

, ...,
1
n

)
= 1. (6)

4. Hs is a concave function of all its arguments.
Let us also mention that Shannon entropy can be characterized by a functional
equation. If

f (x) + (1− x) f
(

y
1− x

)
= f (y) + (1− y) f

(
x

1− y

)
(7)

is satisfied, then f (x) is the Shannon entropy.

Remark 1. It is worth noting that the Shannon entropy can be uniquely determined from the above
four properties (1, 2, 3, and 4), which are treated as axioms.

2.2. Rényi’s Measure of Uncertainty

Alfréd Rényi, a Hungarian mathematician, was one of the first to define new measures
of uncertainty. He sought the most general definition of uncertainty measures that would
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preserve additivity for independent events and be compatible with the axioms of probability.
His information measure, known as the Rényi entropy [30], was defined as

H(α)
R (p1, p2, ..., pn) =

1
1− α

log2

(
n

∑
i=1

pα
i

)
. (8)

Let us here summarize the properties of Rényi’s entropy measure where p = (p1, p2, ..., pn):

1. H(α)
R (p) is a symmetric function of its variables.

2. H(α)
R (p) is a continuous function of p.

3. H(α)
R

(
1
n , 1

n , · · · , 1
n

)
= 1.

4. For H(α)
R (p), the additivity is valid.

5. H(α)
R (p) ≤ H′(α)(p) for α ≤ α′.

6. When α→ 1, the Rényi entropy becomes the Shannon entropy. That is

lim
α→1

H(α)
R (p) = HS(p). (9)

The above conditions 1 to 4 characterize the Rényi entropy, i.e., they are necessary
and sufficient conditions for Equation (8). Note, however, that the Rényi entropy does not
satisfy recursivity.

In the next section, we establish an interesting connection between the generalized
arithmetic mean and the generalized geometric mean and show how the Shannon entropy
is related to the Rényi entropy in this context.

2.3. Shannon and Rényi Entropy with Respect to Mean Operators

Here, we will use arithmetic and geometric means to describe the relationship between
the Shannon and Rényi entropy. Sharma and Mittal were among the first ones to explore
the notion of averaging and nonadditivity in this context [9].

The generalized arithmetic mean, where wi ≥ 0, ∑n
i=1 wi = 1, is

A(α)(x,w) =

(
n

∑
i=1

wixα
i

) 1
α

. (10)

Additionally, the generalized or power geometric mean is defined as

G(x,w) =
n

∏
i=1

xwi
i . (11)

There is an interesting connection between the generalized arithmetic mean and the
generalized geometric mean that was investigated in [31]:

lim
α→0

A(α)(x,w) = G(x,w). (12)

Assuming that the value xi and the weight wi are equal, for xi = wi = pi we can write
the two mean operators in the following way:

G(p,p) =
n

∏
i=1

ppi
i , (13)

A(α)(p,p) =

(
n

∑
i=1

pi pα
i

) 1
α

=

(
n

∑
i=1

pα+1
i

) 1
α

. (14)



Mathematics 2023, 11, 505 5 of 23

To find the correct connection with the entropies, we will carry out a parameter
transformation where the parameter β is defined as α + 1. Here, α has a positive value,
which means that β is always greater than 1.

We can now make a connection between mean operators and entropy measures using
the transformation function. The Shannon and Rényi entropies are the monotonic transfor-
mations of G(p,p) and Aα(p,p) when F(x) = k ln(x) is a monotone transformation function.

Let us apply the transformation F(x) in the Shannon entropy

HS(p) = F(G(p,p)) = k ln

(
n

∏
i=1

ppi
i

)
= k

n

∑
i=1

piln(pi). (15)

If we use the arithmetic mean, where k = −ln
(

1
n

)
, we obtain the Rényi entropy

H(α)
R (p) = F(Aα(p,p)) = k

1
β− 1

ln

(
n

∑
i=1

pβ
i

)
. (16)

Namely, with the transformation of the geometric power mean, we obtain the Shannon
entropy, while with the transformation of the generalized arithmetic mean, we obtain the
Rényi entropy.

It can be shown that the limit of the Rényi entropy is equal to the Shannon entropy.
Let us now use mean operators to prove this assertion.

Theorem 1. The limit of the Rényi entropy for β = 1 is the Shannon entropy [30].

Proof. Starting from Equation (4), we know that if α→ 0, β→ 1, we have

lim
β→1

(
k

1
β− 1

ln

(
n

∑
i=1

pβ
i

))
= k

n

∑
i=1

piln(pi). (17)

When the parameter β is equal to 1, the Rényi entropy is equal to the Shannon entropy.
From Equation (15), we know that the same holds for the arithmetic and geometric mean,
i.e., when α→ 0, the arithmetic mean is equal to the geometric mean.

This relationship was also examined in the article by Valverde-Albacete and
Pelaez-Moreno [32].

2.4. Fuzzy Entropy Function

Next, we will elaborate on some of the basic concepts of fuzzy entropy and give an
overview of some fuzzy entropies, later used for comparison with the proposed measure.

Let us now define a fuzzy set A as

A = {xi|µA(xi) : i = 1, 2, ..., n}, (18)

where µA(x) is a membership function:

µA(x) =


0, x does not belong to A ,
1, x belongs to A ,
< 0, 1 >, x is partially member of A.

(19)

The fuzzy entropy of a fuzzy set is the measure of the fuzziness caused by the am-
biguity of a fuzzy set. It is a key concept in the context of measuring the fuzziness of a
fuzzy set, where the measure can be called a fuzzy entropy measure if it at least satisfies
the following axioms [3]:
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1. H(A) attains a minimum if and only if A is a crisp set, i.e., µA(x) = 0 or 1 ∀x.
2. H(A) attains a maximum if and only if A is the fuzziest set, i.e., µA(x) = 0.5 ∀x.
3. H(A∗) ≤ H(A) where A∗ is a sharpened version of A.
4. H(A) = H(¬A) where ¬A is a complement set of A.

Since the measure proposed by Deluca and Termini satisfied all the above axioms, it
was accepted as a valid measure of fuzzy entropy [3]. Over the years, several new fuzzy
entropy measures have been introduced. Here, we will focus on some of the type (α, β).

One of the first entropies of type (α, β) based on the generalization of the functional
equation [33] was introduced by Sharma and Tenaja in [6] as

Hβ
α (A) = 1

21−α−21−β

(
∑n

i=1 µA(xi)
α −∑n

i=1 µA(xi)
β
)
, (20)

where α 6= β.
With this generalized entropy, the authors used the subtraction of two averages. Fan

and Mal proposed a fuzzy entropy in [11] based on the generalized exponential entropy of
a probability distribution described in [34]. It is

Hβ
α (A) =

[
∏n

i=1
µα(xi)

α−(1−µA(xi))
α

µα(xi)
β−(1−µA(xi))

β

] 1
β−α , (21)

where α 6= β.
Hooda in [10] proposed the following measure of fuzzy entropy based on the article

by Sharma and Mittal [9]:

Hβ
α (A) = 1

1−β ∑n
i=1

[ (
µα

A(xi) + (1− µA(xi))
α
) β−1

α−1 − 1
]

, (22)

where α 6= β, α, β > 0, and α 6= 1.
One of the more recent propositions of exponential fuzzy entropy of order (α, β) is

given by Joshi and Kumar [13] as

Hβ
α (A) =

1
n(e1−0.5α − e1−0.5β

)

n

∑
i=1

[ (
µA(xi)e(1−µA(xi))

α
+ (1− µA(xi))e(1−(1−µA(xi))

α)
)

−
(

µA(xi)e(1−µA(xi))
β
+ (1− µA(xi))e(1−(1−µA(xi))

β)
) ] (23)

where either α > 1, and 0 < β < 1, or 0 < α < 1, and β > 1.
This measure generalizes the Verma and Sharma entropy [12], Pal and Pal exponential

entropy [4], and De Luca and Termini logarithmic entropy [3].
Atanassov introduced an intuitionistic fuzzy set as an extension of a fuzzy set by

adding fuzzy sets to a non-membership function [15]. The definition of an intuitionistic
fuzzy set A in X is

A = {〈x, µA(x), νA(x)〉|x ∈ X}, (24)

where the function
µA(x) : X ⇒ [0, 1] and νA(x) : X ⇒ [0, 1]. (25)

There, µA(x) is a membership function, νA(x) is the non-membership function, and
0 ≤ µA(x) + νA(x) ≤ 1.

For each Atanassov’s intuitionistic fuzzy set A, there is the so-called hesitation degree
πA(x) that is defined as

πA(x) = 1− µA(x)− νA(x). (26)

When πA(x) = 0, we obtain the ordinary fuzzy set, defined as

A = {〈x, µA(x), 1− µA(x)〉|x ∈ X}. (27)
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Next, we shall summarize the general concept of entropy.

2.5. The General Concept of Entropy

From the mean operators, we can generate the entropy measures, while the mean can
be generated by a generator function.

If f (x) is a logarithmic function, then F(x) is the product of xi. The crucial property
of the entropy function is that it attains its maximum value at xi =

1
n , i.e., when all the

probability values are equal. We will show that the generalized entropy always satisfies
this requirement.

Based on the generalized mean [35]

F(x) = f−1

(
n

∑
i=1

wi f (xi)

)
,

n

∑
i=1

wi = 1, (28)

if we define wi = xi, we obtain the entropy function

F(x) = f−1

(
n

∑
i=1

xi f (xi)

)
, xi = [0, 1], (29)

where f is the generator function of the entropy, and it is a strictly monotonic and concave
or convex function on [0, 1]. This generator function of the entropy is normally used in
fuzzy theory as a generator function of the operator [33].

In the case of the entropy function, the normalization constant has the value of n.

Theorem 2. The maximum value of F(x) is obtained when all xi =
1
n and ∑n

i=1 xi = 1.

1 = F
(

1
n

)
≥ n f−1

(
n

∑
i=1

xi f (xi)

)
if xi =

1
n

, i = 1...n. (30)

Note that 1 ≥ F(x) only when f (x) 6= a + b
x .

Proof. It is trivial to show that F
(

1
n

)
= 1.

Let us show that F(xi) takes the maximum value at xi =
1
n for all i.

F(x) = ∑n
i=1 xi f (xi) has the maximum value at xi =

1
n if 1−∑(xi) = 0.

Using the Lagrange multiplier, we obtain

∂H(x) + λ∂

(
1−

n

∑
i=1

xi

)
= 0, (31)

where
G(xi) = xi f ′(xi) + f (xi) = λ. (32)

If f (x) = a + b
x , then

G(xi) = xi
−b
x2

i
+ a +

b
xi

= a. (33)

In Equation (32), if xi = xj or G(xi) = G
(
xj
)
, λ is a constant. If x f (x) is a constant

value, then we get f (x) = a + b
x .

Because all xi have to be equal in order to get ∑n
i=1 xi = 1, we know that xi = 1

n ,
i = 1, ..., n.

Remark 2. Suppose we have the Dombi operator f (x) =
(

1
x − 1

)α
. If α = 1, then f(x) is a

generator function and we do not obtain an entropy function. However, for α 6= 1, we obtain the
entropy function.
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3. Entropy Measures Based on the Generalized Dombi Operator

With different composite equations, we can obtain different operators. Here, we exam-
ine the solutions of the associativity and bisymmetric equations when different functions
are used.

Let us first consider the associativity equation solution and function f (x) = −ln(x).
The solution is the fuzzy product operator

c(x, y) = f−1( f (x) + f (y))
= e−(−ln(x)−ln(y))

= eln(xy)

= xy.

(34)

If we define f (x) =
(

1−x
x

)α
, using the associativity equation solution, we obtain

c(x, y) =
1

1 +
((

1−x
x

)α
+
(

1−y
y

)α) 1
α

. (35)

3.1. Continuous Valued Logic and Measure of the Uncertainty

A strict monotonously increasing operator in fuzzy theory has the form

a(w,x) = f−1

(
n

∑
i=1

wi f (xi)

)
, (36)

where f is the generator function f = [0, 1]→ [0, ∞], 1 ≥ wi ≥ 0. If wi = 1 for all i, then the
operator is associative, while for ∑ wi = 1, the operator is bisymmetric.

By comparing Equations (28) and (36), we can say that every logical system generated
by such f has its own entropy measure.

For f (x) = −ln(x), we obtain the Shannon entropy (ln(x) is a generalization of the
probabilistic operator C(x1, ..., xn) = ∏n

i=1 xi). There are a number of operators available
in fuzzy logic theory, such as min-max, Hamacher, Einstein, product, Frank, Lukasiewicz,
Azcel-Asina, and Dombi. Here, we will focus on the Dombi operator family [24].

3.2. Dombi Operator Family

The generalized Dombi operator has two parameters, and in the case of conjunctive or
disjunctive operators, only one parameter is needed.

With f (x) =
(

1−x
x

)α
, which is the Dombi operator, we obtain an entropy measure

obtained from the associativity equation solution in Equation (35):

Ep(x) =
1

1 +
(

∑n
i=1 xi

(
1−xi

xi

)α) 1
α

. (37)

When the Dombi operator is replaced with the generalized Dombi operator

f (x) = ln
(

1 + β
(

1−xi
xi

)α)
, we obtain the following measure:

D(x) =
1

1 +
(

1
β

(
∑n

i=1 xiln
(

1 + β
(

1−xi
xi

)α)
− 1
)) 1

α

. (38)
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Transforming this measure using xi as weight, we obtain an entropy measure:

ED(x) =
1

1 +
(

1
β

(
∏n

i=1

(
1 + β

(
1−xi

xi

)α)xi
− 1
)) 1

α

. (39)

Figure 1 shows the behavior of the entropy for different α and β values.
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Figure 1. Proposed entropy measure for different α and β values for n = 2. (a) Entropy measure
values for α = 1, and β = 1, β = 0.8, β = 0.6, β = 0.4. (b) Entropy measure values for β = 0.9, and
α = 1, α = 2, α = 3, α = 4.

Let us now show that the proposed entropy function satisfies the axioms mentioned
in Section 2.4.

Theorem 3. The fuzziness measure defined above has the following properties P1, P2, P3, and P4:

Proof. P1: Let Ed(x) = 0, then
1− xi

xi
= 0, ∀xi. (40)

This will only hold if xi = 1 or xi = 0, i.e., x is a crisp set.

P2: In Theorem 2 we showed that any measure obtained from the generator function

has a maximum for n = 2 when xi =
1
2 . If f (x) =

(
1
x − 1

)α
and α 6= 1, in an intuitionistic

fuzzy set, the fuzziest set is when µA(x) = 0.5 and νA(x) = 0.5. In that case, the proposed
measure is equal to the case where n = 2 and A = {〈x, 0.5, 0.5〉}∀x ∈ x.

P3: Since ED(x) is an increasing function in xi in [0, 0.5〉 and a decreasing function in
xi in [0.5, 1〉

x∗i ≤ xi ⇒ ED(x∗) ≤ ED(x), in [0, 0.5〉, (41)

and
x∗i ≥ xi ⇒ ED(x∗) ≥ ED(x), in [0.5, 1〉. (42)

Hence,
ED(x∗) ≤ ED(x). (43)

P4: It is evident from the definition that ED(x) = ED(¬x). Hence ED(x) satisfies all the
properties of fuzzy entropy.
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The generalized Dombi operator has several special cases. One special case is the
Dombi operator for β = 0. In this case, Equation (38) has the form

D(x) =
n

∑
i=1

(
1− xi

xi

)α

. (44)

When β = 1 and α = ±1, we obtain the product operator

D(x) = 1−
n

∏
i=1

(1− xi). (45)

The Dombi operator class also includes the Einstein and the Hamacher operators. The
Einstein operator has the form

dE(x, y) =
x + y

1 + xy
. (46)

Namely, for β = 2 and α = ±1 in Equation (38), the Einstein operator is just a particular
case of the generalized Dombi operator, and the solution of the Einstein general law of
velocities is

v =
c

1 + 2
(

∏n
i=1

(
1 + 2 vi

c−vi

)
− 1
)−1 . (47)

The Hamacher operator

o(α)β (x) =
1

1 +
(

1
β

(
∏n

i=1

(
1 + β

(
1−xi

xi

)α))
− 1
) 1

α

(48)

is a particular case of the generalized Dombi operator for β ∈< 0, ∞ > and α = ±1.
Table 1 summarizes the special cases of the generalized Dombi operator. A more

detailed description of the special cases can be found in [24].

Table 1. Special cases of the generalized Dombi operator.

Type of Operator Value of β
Value of α

Conjunction Disjunction

Dombi 0 0 < α 0 < α

Product 1 1 −1

Einstein 2 1 −1

Hamacher β ∈< 0, ∞ > 1 −1

Drastic ∞ 0 < α 0 < α

Min-max 0 ∞ −∞

If we use any type of continuous-valued operator, the continuous-valued operator
system generated by that operator produces its own entropy measure.

Remark 3. The classical Shannon entropy function for n = 2 has the form

E(x) = −(x log2(x) + (1− x) log2(1− x)) (49)
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the approximation of the proposed entropy function is

E(α)
D (x) =

1

1 +
(

1
2

((
1−x

x

)α
+
(

1−x
x

)−α
)) 1

α

, α ≥ 1 (50)

If α = 1,
E(1)

D (x) = 4x(1− x). (51)

We can see that
max|E(x)− E(1)

D (x)| ≤ 0.15. (52)

When α∗ = 6
π2 ,

max|E(x)− E(α∗)
D (x)| ≤ 0.025. (53)

In Figure 2, we can see the differences between the Shannon entropy and the proposed
entropy measure.
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Figure 2. Comparison of the proposed entropy measure and the Shannon entropy. (a) Values of
proposed entropy measure and the Shannon entropy for α = 1 and β = 1. (b) Difference between
values of proposed entropy measure and the Shannon entropy for α = 6

π2 , and β = 1.

4. Examples and Numerical Results

Let us now present several numerical examples, as well as analysis and discus-
sion of the above entropy measures and their comparison with the commonly used
entropy functions.

4.1. Application of the Proposed Entropy in the Multiple Attribute Decision-Making Problem

In many areas, including investment decision-making and project evaluation, the
MADM approaches are extensively used. They include obtaining decision information,
compiling that information in a specific manner, evaluating the options, and choosing the
best alternative. Numerous MADM techniques can be found in [36–39]. As a first example,
we recreated the experiment conducted in [13] with multiple attribute decision-making
(which means making decisions in the presence of multiple, usually conflicting criteria).
The model proposed in [13] is as follows:

• Let Z = (µP(zi, aj))n×m = (µij)n×m be the fuzzy decision matrix.
• The weight of the attribute aj, j = 1, 2, . . . , m, is determined by

β
αυj =

1− Eβ
α (aj)

m−∑m
j=1 Eβ

α (aj)
, (54)
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where Eβ
α is a fuzzy entropy measure.

• The scores are calculated as

Sβ
α =

m

∑
j=1

µP(zi, aj)×
β
αυj, i = 1, 2, ..., n. (55)

An alternative with the highest score is considered the best.
Let us now consider the example of a buyer as in [13], with five alternatives being

taken into consideration, and four attributes used to rank the apartments: price (a1), locality
(a2), design (a3), and safety (a4). Let the characteristics of the alternatives zi(i = 1, . . . , 5) be
represented by a fuzzy decision matrix Z = (µP(zi, aj))

Z =

a1 a2 a3 a4


z1 0.7 0.5 0.6 0.6
z2 0.7 0.5 0.7 0.4
z3 0.6 0.5 0.5 0.6
z4 0.8 0.6 0.3 0.6
z5 0.6 0.4 0.7 0.5

(56)

For this example, we will take α = 2 and β = 19.
Using the model and measure given in Equation (39), we obtain ∑5

i=1 Eβ
α (aj) = 0.6036.

Other values are shown in Table 2.

Table 2. Values of Eβ
α (Z) and β

αυ for α = 2 and β = 19.

a1 a2 a3 a4

Eβ
α 0.2323 0.1000 0.1568 0.1146

β
αυ 0.2260 0.2650 0.2483 0.2607

By calculating Equation (55), we get scores as S(z1) = 0.5961, Sβ
α(z2) = 0.5688,

Sβ
α(z3) = 0.5487, Sβ

α(z4) = 0.5707, and Sβ
α(z5) = 0.5458. We have also calculated the scores

for the other values of α and β and listed them in Table 3.

Table 3. Values of Sβ
α(Z) and β

αυ for different α, and β.

α = 1, β = 1 α = 2, β = 0.8 α = 50, β = 0.8 α = 2, β = 50

Sβ
α(z1) 0.5970 0.5940 0.5976 0.5985

Sβ
α(z2) 0.5705 0.5675 0.5733 0.5724

Sβ
α(z3) 0.5489 0.5473 0.5482 0.5496

Sβ
α(z4) 0.5716 0.5660 0.5669 0.5737

Sβ
α(z5) 0.5468 0.5450 0.5502 0.5482

Based on results obtained, the ranks of the alternatives zi, (i = 1, . . . , 5) are:

• For α = 2, β = 19, z1 � z4 � z2 � z3 � z5.
• For α = 1, β = 1, z1 � z4 � z2 � z3 � z5.
• For α = 2, β = 0.8, z1 � z2 � z4 � z3 � z5.
• For α = 50, β = 0.8, z1 � z2 � z4 � z5 � z3.
• For α = 2, β = 50, z1 � z4 � z2 � z3 � z5.

In each case, z1 is the best choice. We can see that varying the values of parameters in
the proposed measure does not change the choice of the best alternative.
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A comparison to other measures: Now let us calculate other measures and compare
the results for the newly proposed measure.

1. When we apply the entropy proposed by Sharma and Tenaja, given in Equation (20), to
the example (56), the values of the score functions take the values (for α = 0.2, β = 0.8)

Sβ
α(z1) = 0.6078; Sβ

α(z2) = 0.5851; Sβ
α(z3) = 0.5534; Sβ

α(z4) = 0.5855; Sβ
α(z5) = 0.5571, (57)

and this results in a sequence of alternatives as z1 � z4 � z2 � z5 � z3.
2. When we apply the entropy proposed by Fan and Mal, given in Equation (21), to the

example (56), the values of the score functions take the values (for α = 0.5, β = 18)

Sβ
α(z1) = 0.5895; Sβ

α(z2) = 0.5554; Sβ
α(z3) = 0.5476; Sβ

α(z4) = 0.5709; Sβ
α(z5) = 0.5347. (58)

and this results in a sequence of alternatives as z1 � z4 � z2 � z3 � z5.
3. When we apply the entropy proposed by Hooda, given in Equation (22), to the

example (56), the values of the score functions take the values (for α = 0.3, β = 0.5)

Sβ
α(z1) = 0.5987; Sβ

α(z2) = 0.5726; Sβ
α(z3) = 0.5497; Sβ

α(z4) = 0.5742; Sβ
α(z5) = 0.5482. (59)

and this results in a sequence of alternatives as z1 � z4 � z2 � z3 � z5.
4. When we apply the entropy proposed by Joshi and Kumar, given in Equation (23), to

the example (56), values of score functions take the values (for α = 1.2, β = 1)

Sβ
α(z1) = 0.6400; Sβ

α(z2) = 0.6533; Sβ
α(z3) = 0.5575; Sβ

α(z4) = 0.5819; Sβ
α(z5) = 0.6133. (60)

resulting in a sequence of alternatives as z2 � z1 � z5 � z4 � z3.

We see that the values of the parameters in the proposed measure do not change the
choice of the best alternative, but change the order of the other alternatives. The β value
does not seem to influence the choice of the alternatives in most cases; however, it seems
that with greater α values priority of the alternatives changes according to the greatest
differences in the attribute values. In both cases, when the α value was 50, alternative z2
was given priority over the alternative z4 based on the attribute a3. The same happens with
the alternatives z3 and z5, where the alternative z5 was favored because of the attribute a3.
We will take a closer look at the changes in entropy value based on the parameter changes
in the next example.

4.2. A Comparison of the Proposed Measure with Classical Probability Entropies

In the next example, we applied the proposed entropy measures to two examples of
data from the Household Finance and Consumption Survey, a joint project of the central
banks and national statistical offices of the European Union (EU) [40]. The dataset provides
detailed household-level statistics on various aspects of household balances and related
economic and demographic variables. To test the entropy measures listed earlier, we chose
two examples, namely the distribution of household size and educational attainment in
four different EU member states and aggregate information obtained for the EU. The EU
members selected were Belgium (BE), Germany (DE), Croatia (HR), and Hungary (HU).

Table 4 shows the percentage distribution of household sizes in the EU and four EU
countries. For each country, a list of entropies was calculated for the given probability
distribution. The entropy measure found by using the generalized Dombi operator is given
in the table for different values of α and β, as well as the Shannon and Rényi entropies. This
example clearly indicates the large difference in entropy values.

The above entropy measures were also calculated for the distribution of the educational
level of the population in the EU and the four countries studied, as shown in Table 5.
Figure 3 shows the values of the entropy measure with different values of α or β. The
proposed entropy measure is more sensitive to the choice of α, as can be seen in Figure 3a.
From Figure 3b, we see that the choice of β affects the measure most strongly when the α
value is between −10 and 10.
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Table 4. Entropies for the distribution of household sizes in EU and four EU countries.

Household Size EU BE DE HR HU

1 34.6 34.7 40.6 24.6 29.5

2 31.6 31.5 34.2 26.9 32.0

3 15.4 11.8 12.4 18.4 18.4

4 12.9 14.3 9.0 18.1 12.7

5+ 5.5 7.7 3.8 12.0 7.4

α, β Entropy

Proposed measure

1, 1 0.8495 0.8577 0.7569 0.9635 0.8908

2, 0.8 0.7151 0.7130 0.6293 0.8480 0.7595

50, 0.8 0.6639 0.6626 0.5645 1 1

2, 50 0.7365 0.7292 0.6557 0.8716 0.7820

50, 50 0.6642 0.6624 0.5645 1 1

Shannon entropy - 0.8966 0.9065 0.8281 0.9436 0.9264

Rényi entropy - 0.8300 0.8371 0.7343 0.9791 0.8742

Table 5. Entropies for the distribution of education level in the EU and four EU countries.

Education Level EU BE DE HR HU

Basic or no education 30.4 22.8 10.1 24.6 23.7

Secondary 40.7 31.0 56.7 59.3 51.1

Tertiary 28.9 46.2 33.2 16.1 25.2

α, β Entropy

Proposed measure

1,1 0.9784 0.9274 0.7415 0.7418 0.8777

2, 0.8 0.8621 0.7629 0.5924 0.5492 0.6808

2, 0.5 0.8620 0.7622 0.5884 0.5447 0.6790

4, 0.8 0.8474 0.7387 0.5571 0.5186 0.6511

4, 0.5 0.8474 0.7386 0.5550 0.5153 0.6505

Shannon entropy - 0.9891 0.9620 0.8368 0.8637 0.9390

Rényi entropy - 0.9663 0.8940 0.6893 0.6737 0.8263
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Figure 3. The proposed entropy based on the Dombi operator for different values α and β parametar.
(a) Values of proposed entropy measure for α = 1, α = −2, α = 2, and α = 50 with β ranging from
0.1 to 1. (b) Values of proposed entropy measure for β = 1, β = 0.8, β = 4, β = 8, and β = 50 with α

ranging from −10 to 70.
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4.3. Extracting Useful Information Content From Noisy Time-Frequency Distributions

Motivated by the differences in entropy measure values in the previous examples, we
decided to implement the entropy measure based on the generalized Dombi operator in
the state-of-the-art 2D Local Entropy Method (2DLEM) to extract useful content from noisy
signal time-frequency distributions proposed in [28]. The flowchart of the method is shown
in Figure 4.

The 2DLEM method is based on a local 2D entropy calculation, and the useful content
is extracted from the entropy map. The entropy level in the time-frequency domain is
significantly different when signal components (useful information content) are present
compared to domain regions containing mainly noise. The original method used Rényi en-
tropy for information extraction. This study modified the technique to utilize the proposed
entropy measure based on the Dombi operator instead and compared the denoising results
with those obtained using the 2DLEM with the Shannon and Rényi entropy.

SignalTFD Calculate entropy for
the window size

Increase window size

All windows sizes 
 calculated?

Go to next point in
TFD

Pick the optimum
window size

Calculation done for 
 all points in the TFD?

Calculate the entropy
map

Signal in time domain

No

Yes

No

Yes
Extract the

classification mask

Compare the ideal
mask with the

classification mask

Figure 4. Flowchart of the 2DLEM method.

The 2DLEM method consists of several steps. The method works with time-frequency
distributions; more precisely, with the spectrogram (the squared magnitude of the short-
time Fourier transform) of the noisy signal, as well as other quadratic time-frequency
distributions from Cohen’s class [41,42]). The local 2D entropy is calculated by treating
the time-frequency distribution as a probability density function. For each point in the
distribution, the entropy is calculated for different window sizes. The entropy value for the
optimal window size is determined using the relative intersection of confidence intervals
(RICI) algorithm [43–45]. After the process is completed for each point in the distribution,
we obtain the entropy map.

In the second step, the method again uses the RICI algorithm to extract useful content
from the entropy map. The signal energy is calculated for different threshold values. Based
on this calculation, the RICI algorithm extracts information from the entropy map by
comparing the intersection of the confidence intervals of the signal energy for the particular
threshold with the confidence intervals of the other thresholds.

By thresholding the entropy map, we obtain a classification mask containing 0 and
1, where 1 represents the useful content. In the calculation of the 2DLEM method with
proposed entropy, we selected different α and β values. The results in extracting useful
information from noisy signals are given for two synthetic, nonstationary test signals. The
first tested signal consists of three signal atoms, while the second is a multicomponent
frequency-modulated signal. The time series of the signals are shown in Figure 5, while in
Figure 6 there are the time-frequency distributions of these signals.

The performance of the applied technique was analyzed for different signal-to-noise
ratios (SNRs) ranging from −3 dB to 6 dB. The base model used for the evaluation was a
noise-free signal spectrogram. Next, hard thresholding of 5% was performed to obtain a
classification mask containing only ones and zeros, where ones are treated as useful content
in the probability distribution. The ideal classification masks obtained this way for the
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two signals are shown in Figure 7a,b. The feasibility and performance of this method were
studied in previous articles, but only the Rényi entropy was applied [28,46].
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Figure 5. Time domain plots of the noisy signals. (a) The first signal. (b) The second signal.

(a) (b)

Figure 6. Time-frequency distributions of two signals for SNR = 0 dB. (a) Time-frequency distribution
of the first signal. (b) Time-frequency distribution of the second signal.

(a) (b)

Figure 7. Ideal useful content extraction for two signals. (a) Useful information content for the first
signal. (b) Useful information content for the second signal.

The efficiency of extracting useful information from the noisy time-frequency domain
is measured using the accuracy and F1 score.



Mathematics 2023, 11, 505 17 of 23

Accuracy is defined as

accuracy =
TP + TN

TP + TN + FP + FN
, (61)

where TP is true-positive, TN is true-negative, FP is false-positive, and FN is false-negative.
Ideal mask extraction is shown in Figure 7. Masks are obtained by thresholding the
entropy maps (Figures 8–10). The result of subtracting the ideal mask and the obtained
classification masks (Figures 11–13) is used to calculate the metric values. Elements, where
the overlapping masks were equal, are TP and TN (overlapping of ones gives TP and
overlapping of zeros gives TN). If the subtracting result is 1, the mask obtained did not
recognize the useful content and is considered the FN. When the result of subtracting the
ideal and obtained mask is−1, there was no useful content, but it was wrongly “recognized”
as useful content and it was treated as the FP.

The F1 score takes into account both precision and recall of the classification. It is a
harmonic mean of these two scores defined as

F1 = 2× precision× recall
precision + recall

, (62)

where
precision =

TP
TP + FP

, (63)

and
recall =

TP
TP + FN

. (64)

Table 6 shows the classification results for the first analyzed signal consisting of signal
atoms. The proposed entropy measure based on the generalized Dombi operator improved
the classification accuracy compared to the Shannon and Rényi entropies for all tested
SNRs. The α and the β values for the results reported in Tables 6 and 7 are 2 and 0.8,
respectively. The proposed entropy outperforms the Rényi entropy by 0.0134 to 0.024 in
accuracy and by 0.007 to 0.0134 in F1 score. The largest improvement in both accuracy and
F1 score was observed for the highest tested noise level of SNR = −3 dB.

Table 6. Classification results for the first signal.

SNR Shannon Entropy Rényi Entropy Proposed Entropy

Accuracy

−3 dB 0.929 0.954 0.978

0 dB 0.942 0.964 0.9807

3 dB 0.935 0.96 0.9821

6 dB 0.949 0.972 0.9854

F1 score

−3 dB 0.966 0.975 0.9884

0 dB 0.9714 0.981 0.9897

3 dB 0.968 0.979 0.9905

6 dB 0.975 0.985 0.9923

The results for the second tested signal are shown in Table 7. As in the previous case,
the proposed entropy measure based on the generalized Dombi operator outperforms other
entropy measures, while for this test signal, the Shannon entropy outperforms the Rényi
entropy. Namely, for the SNR of −3 dB, the proposed entropy improves the accuracy by
up to 0.0118 compared to the Shannon entropy and by up to 0.0667 compared to the Rényi
entropy. F1 is improved by up to 0.0081 and 0.0439 compared to the Shannon entropy and
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the Rényi entropy, respectively. Moreover, the difference is significant at higher SNR values.
The greatest difference was for SNR = 6, and the accuracy was improved by 0.042 and the
F1 by 0.0256.

Table 7. Classification results for the second signal.

SNR Shannon Entropy Rényi Entropy Proposed Entropy

Accuracy

−3 dB 0.8859 0.8310 0.8977

0 dB 0.8785 0.8687 0.9346

3 dB 0.8966 0.9135 0.9459

6 dB 0.9331 0.9174 0.9751

F1 score

−3 dB 0.9356 0.8998 0.9437

0 dB 0.927 0.9213 0.9616

3 dB 0.9376 0.9466 0.9686

6 dB 0.9587 0.9495 0.9843

Figures 8 and 9 show the entropy map computed with the Shannon and the Rényi en-
tropies, respectively, while Figure 10 shows the entropy map computed using the proposed
entropy measure. These were then used as input for the next step of the 2DLEM method,
which extracted useful content in form of a classification mask, as shown in Figure 11 for
the Shannon measure, in Figure 12 for the Rényi measure, and in Figure 13 for the measure
based on the generalized Dombi operator, respectively.

(a) (b)

Figure 8. Entropy maps obtained by applying the 2DLEM method with the Shannon entropy for
SNR = 0 dB. (a) Entropy map for the first signal. (b) Entropy map for the second signal.

(a) (b)

Figure 9. Entropy maps obtained by applying the 2DLEM method with the Rényi measure for
SNR = 0 dB. (a) Entropy map for the first signal. (b) Entropy map for the second signal.
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(a) (b)

Figure 10. Entropy maps obtained by applying the 2DLEM method with the proposed entropy based
on the generalized Dombi operator for SNR = 0 dB. (a) Entropy map for the first signal. (b) Entropy
map for the second signal.

(a) (b)

Figure 11. Extracted useful information content obtained by applying the 2DLEM method with the
Shannon entropy for SNR = 0 dB. (a) Classification mask for the first signal. (b) Classification mask
for the second signal.

(a) (b)

Figure 12. Extracted useful information content obtained by applying the 2DLEM method with the
Rényi entropy for SNR = 0 dB. (a) Classification mask for the first signal. (b) Classification mask for
the second signal.
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(a) (b)

Figure 13. Extracted useful information content obtained by applying the 2DLEM method obtained
with the proposed measure based on the generalized Dombi operator for SNR = 0 dB. (a) Classification
mask for the first signal. (b) Classification mask for the second signal.

Inspecting Figures 11–13 and comparing the quantitative results given in Tables 6 and 7,
we see that the proposed entropy measure based on the generalized Dombi operator
significantly outperformed the Rényi entropy in extracting useful information content from
the noisy signal in the time-frequency domain. By applying this measure, more of the
useful content is preserved and less noise is included in the final result. Therefore, the novel
technique produced a higher classification accuracy and F1 score for all SNRs. Results for
different α and β values for the 2DLEM method in combination with the proposed entropy
measure are reported in Tables 8 and 9. There are slight differences when different values
are used, but regardless of the values used, the proposed entropy measure still outperforms
the Shannon and the Rényi entropy. The choice of values was motivated by Section 4.2,
where we can see that the α parameter has a greater influence on the results, and the largest
difference is found between −10 and 10 (as can be seen from Figure 2). This result clearly
shows the potential of our entropy function based on the generalized Dombi operator to
analyze the information content of nonstationary noisy data in the time-frequency domain,
and its potential in similar areas where traditionally the Shannon or the Rényi entropy
is applied.

Table 8. Classification results for the first signal with proposed entropy measure and different
parameter values.

SNR α = 10, β = 2 α = 1, β = 1 α = −10, β = 0.5 α = 0.5, β = 10

Accuracy

−3 dB 0.9388 0.937 0.9523 0.9346

0 dB 0.9610 0.9623 0.9625 0.9686

3 dB 0.9736 0.9768 0.9757 0.9755

6 dB 0.9728 0.9728 0.9798 0.9757

F1 score

−3 dB 0.9668 0.9662 0.9744 0.9646

0 dB 0.9786 0.9794 0.9796 0.9827

3 dB 0.9854 0.9872 0.9866 0.9866

6 dB 0.9847 0.9847 0.9888 0.9864
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Table 9. Classification results for the second signal with proposed entropy measure and different
parameter value.

SNR α = 10, β = 2 α = 1, β = 1 α = −10, β = 0.5 α = 0.5, β = 10

Accuracy

−3 dB 0.8922 0.8965 0.8866 0.8880

0 dB 0.9172 0.9233 0.9297 0.9325

3 dB 0.9552 0.9565 0.9602 0.956

6 dB 0.9718 0.9689 0.9682 0.9674

F1 score

−3 dB 0.9381 0.9349 0.9355 0.9421

0 dB 0.9506 0.9558 0.9592 0.9611

3 dB 0.9723 0.9744 0.9767 0.9744

6 dB 0.9833 0.9814 0.9810 0.9805

5. Conclusions

In this paper, we established a connection between mean operators and entropies
using transformation functions. We formulated a new method for defining an entropy
measure for a logical system. It was shown that different operators can be obtained by
using different compound equations. We demonstrated that each logical system generated
by an operator has its own entropy measure. We concentrated on the family of Dombi
operators and showed that a system generated by the Dombi operator has its entropy
measure. The new entropy measure was defined using a bisymmetric equation solution
with a generalized Dombi operator. The introduced exponential fuzzy entropy of order
(α, β) was tested in the framework of fuzzy set theory and it was shown to be consistent
in decision-making for multiple attributes. Next, the proposed entropy was implemented
in the framework of classical probability. It was also tested in the method previously
based on the Rényi entropy to extract useful information from noisy signal time-frequency
representations. Our numerical results confirmed that the proposed entropy outperformed
both the Shannon and the Rényi entropies because it was more sensitive to small changes
in the probability distributions. Namely, the proposed measure improved classification
metrics (accuracy and F1) for all tested nonstationary signals and SNRs.

As a future research direction, it would be worth looking at additional applications
of the proposed measure in fuzzy theory, intuitionistic fuzzy theory, and soft fuzzy set
theory. The proposed entropy measure could be extended to cover intuitionistic fuzzy and
interval-valued intuitionistic fuzzy sets. It would also be interesting to study the measure’s
behavior in nonlinear dynamical systems. Note that in [47], a comparison was performed
between fuzzy entropies and entropies commonly used in time series analysis, such as
the approximate entropy and the sample entropy, and the results tell us that systems with
fuzzy structures have better performance scores. With this in mind, it would be interesting
to see whether the proposed measure could be modified for applications with time series,
and compared with the family of entropy measures used in such systems. This is intended
for future work.
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