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Abstract: Cell migration in a biological medium towards a blood vessel is modeled, as a ran-
dom process, sucessively inside an annulus (two-dimensional domain) and an annular cylinder
(three-dimensional domain). The conditional probability function u for the cell moving inside such
domains (tissue) fulfills by assumption a diffusion–advection equation that is subject to a Dirichlet
boundary condition on the outer boundary and a Robin boundary condition on the inner boundary.
The mean first-passage time (MFPT) function determined by u estimates the average time for the
travelling cell to reach various interesting targets. The MFPT function fulfills a Poisson equation
inside a domain with suitable boundary conditions, which give rise to various mathematical problems.
The main novelty of this study is the characterization of such an MFPT function inside an annulus
and an annular cylinder, which is subject to a Robin boundary condition on the inner boundary and a
Dirichlet boundary condition on the outer one, and these are integral functions whose densities are
the solution of an inhomogeneous system of linear integral equations.

Keywords: mean first-passage time; diffusion–advection equation; Dirichlet and Robin boundary
conditions; annulus; annular cylinder
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1. Introduction

Cell migration is a key process in a variety of biological phenomena, from embryonic
development to immune responses and even cancer metastasis, as well as an inherently
complex process influenced by multiple factors, including cell type, environmental condi-
tions, and interactions with other cells or extracellular matrix components. See [1–6]. These
factors can create different modes of migration that can be understood using statistical
physics frameworks, especially the idea of random walks. Random-walk models consider
cells as random walkers whose displacement is governed by both diffusion and advection,
and they have been effectively used to describe the statistical behavior of cell migration.
Diffusion accounts for the random, undirected component of cell movement, thus origi-
nating from the intrinsic stochasticity of the intracellular machinery. Advection, on the
other hand, describes directed cell migration, such as chemotaxis where cells move along a
chemical concentration gradient. See [7]. As a result, understanding the dynamics of cell
migration is a fundamental problem in biological physics.

The mean first-passage time (MFPT) in cell migration refers to the average time it takes
for a cell to reach a specific target location or cross a defined boundary for the first time.
See [8–10]. The MFPT, fulfilling a Poisson equation subject to mixed Dirichlet–Neumann
boundary conditions in different confined domains, has been widely studied in the last
decades from analytical and numerical points of view. See [11,12] and their references. For
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instance, the study of the upper and lower bounds of the MFPT of a cell escape through a
boundary region, satisfying a diffusion equation under mixed Dirichlet–Neumann bound-
ary conditions, has been undertaken in [13]. The study of the asymptotic behavior of the
MFPT in annulus geometries with inner and outer regions has been carried out in [14].
The characterization of the MFPT function in three-dimensional simply and doubly con-
nected domains subject to Dirichlet and Neumann boundary conditions has been achieved
previously in [15] by means of a system of inhomogeneous linear integral equations.

In this work, we consider a tissue filling a nonsimply connected finite domain Ω and
bounded by a smooth closed boundary Γ. Inside Ω, a cell migrates towards a certain part
of Γ so as to intravasate it into a blood vessel located outside Ω, and it is enclosed by Ω.
The cell is subject to both diffusive and drift motions, the latter of which are characterized
by a suitable vector ν whose magnitude will be assumed to be small. Let x and y be two
arbitrary points in Ω. The conditional probability density (or transition probability) of a cell
to be at x at time t ≥ 0, being originated at y at time t = 0, is supposed to be the solution
u(t, x, y) of the diffusion–advection equation(

∂

∂t
− D(∆x + ν · ∇x)

)
u(t, x, y) = 0, (1)

where D > 0 is the diffusion coefficient, which is subject to the following conditions:

(A1) u(0, x, y) = δ(x− y) for any x, y ∈ Ω;

(A2) lim
t→+∞

∫
Ω

u(t, x, y) dx = 0 for any y ∈ Ω.

Here, δ stands for the Dirac delta function. The diffusion–advection equation describes the
spatiotemporal behavior of cells undergoing both diffusion (random motion) and advection
(directed motion) due to external factors, such as chemotaxis (movement in response to
chemical gradients) or mechanical forces within the domain Ω.

The MFPT function T, at y ∈ Ω, is defined as

T(y) =
∫

Ω

∫ +∞

0
u(t, x, y) dt dx, (2)

where u is the solution of (1), which is subject to conditions (A1) and (A2). The MFPT
function quantifies the average time it takes for a migrating cell to reach the domain
boundary, which provides a probabilistic measure of the expected time for a cell to achieve
a particular outcome, which is essential for understanding cell behavior and navigation.

Moreover, consider that z is a point on the boundary Γ, and let n(z) be the inner
normal-unit vector at z on Γ, and let the product n(z) · ∇ f (z) ≡ ∂ f (z)

∂n(z) be the inner first
derivative of the function f at z on Γ. Assume that there are two disjoint regions ΓD and
ΓR on the boundary Γ so that Γ = ΓD ∪ ΓR, and the following boundary conditions are
satisfied:

(B1) (Dirichlet) lim
y→z

f (y) = 0, for any z in a region ΓD ⊂ Γ,

(B2) (Robin) a lim
y→z

∂ f (y)
∂n(y)

+ b lim
y→z

f (y) + c = 0 for any z in a region ΓR ⊂ Γ, with a 6= 0, b,

and c given as real constants.

The Dirichlet and Robin boundary conditions describe how cells interact with the
boundaries of the domain. The Dirichlet boundary condition (B1) prevents cells from
leaving or entering through such a boundary so that they are constrained to remain within
the tissue Ω. The Robin boundary condition (B2) is expressed as a combination of both
the Dirichlet and Neumann boundary conditions. The Dirichlet component of the Robin
boundary condition prevents cells from leaving or entering the domain, while the Neumann
component accounts for the flux of cells at the boundary and represents the rate at which
cells are allowed to move across such a boundary.
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Notice that, in the MFPT function, the T defined in (2) solves the so-called adjoint equation

D(∆ + ν · ∇)T(y) = −1 (3)

in Ω, which is subject to the boundary conditions (B1) and (B2) and the finiteness condition
0 ≤ T(y) < +∞ in Ω. This is a direct generalization of the result, without drift (|ν| = 0), as
stated in [15] (Proposition 2.3). See also [16,17].

Our aim is to first characterize the MFPT function when the domain Ω is an annulus
and then when it is an annular cylinder, thereby assuming the Dirichlet boundary con-
dition (B1) on the outer boundary and the Robin boundary condition (B2) on the inner
one. Therefore, in the next section, the explicit characterization of the MFPT function is
achieved, assuming drift motion, when the domain is an annulus limited by two closed
and nonintersecting curves. This domain intends to model the orthogonal projection into a
plane of the tissue and the blood vessel. Then, in Section 3, the three-dimensional domain
considered is an annular cylinder filled by tissue, which surrounds the blood vessel, thereby
assuming no drift motion, for simplicity and satisfying the Dirichlet boundary condition
(B1) on the outer boundary surface and the Robin boundary condition (B2) on the inner
one. The main novelty in this study is to consider a diffusion–advection equation that is
subject to a Robin boundary condition on the inner boundary of an annulus and an annular
cylinder. In the last sections, the conclusions are stated and discussed. Supplementary
justifications and discussions are presented in Appendices A and B for the two-dimensional
case and in Appendix C for the three-dimensional one.

2. The MFPT Function in an Annulus

In this section, let us consider the following two dimensional domains:

• The domain Ω1 is an annulus enclosed by two concentric circles σ1 and σ2, with radii
r1 and r2, respectively (r1 ≤ r2), so that the boundary is formed by the union of
such circles;

• The domain Ω2 is enclosed by two arbitrary smooth (differentiable) curves σ3 and σ4,
which are obtained as small deformations of the previous concentric circles σ1 and σ2,
respectively.

The first situation corresponds to a very idealized planar geometry for the tissue
surrounding the blood vessel, while the second one tries to simulate a somewhat less-
idealized planar geometry for the cross-section. Assume a radial drift on the cell directed
towards the origin of coordinates, that is, ν = − |ν|ρ y.

Proposition 1. Consider the domain Ω1 with the Dirichlet boundary condition (B1) on the outer
circle σ2 and the Robin boundary condition (B2) on the inner circle σ1. The MFPT function T1 is
given by

T1(ρ) =

(
α2 +

1
D|ν|2

) ∫ r2

ρ

e|ν|ξ

ξ
dξ − 1

D|ν|2 ln
(

r2

ρ

)
− r2 − ρ

D|ν| , (4)

for every ρ ∈ [r1, r2] for a suitable integration constant α2 so that a lim
ρ→r1

dT1(ρ)

dρ
+ b lim

ρ→r1
T1(ρ) +

c = 0.

Proof. Upon taking the common center of σ1 and σ2 as the origin, the standard plane polar
coordinates ρ ≥ 0 and ϕ ∈ [0, 2π) will be chosen so that y = ρ(cos ϕ, sin ϕ). Then, the
adjoint Equation (3) may be written as(

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2 − |ν|
∂

∂ρ

)
T(ρ, ϕ) = − 1

D
. (5)
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If the MFPT function has circular symmetry, that is, it is ϕ-independent, then it may
be defined as T1(ρ), thus being the solution of(

1
ρ

d
dρ

(
ρ

d
dρ

)
− |ν| d

dρ

)
T1(ρ) = −

1
D

, (6)

which is a nonself-adjoint second-order linear differential equation. Without needing to
transform it to a self-adjoint form, it can be solved directly so that

T1(ρ) = α1 + α2

∫ r2

ρ

e|ν|ξ

ξ
dξ +

1
D

∫ r2

ρ

e|ν|ξ

ξ

[(
1− e−|ν|ξ

|ν|

)
ξ +

1
|ν|

(
1− e−|ν|ξ

|ν| − ξ

)]
dξ,

where α1 and α2 are alternative pairs of arbitrary integration constants. Now, taking
into account the boundary conditions, it follows that if the Dirichlet condition (B1) is
assumed when ρ = r2 on the circle σ2, then T1(r2) = 0. Particularly, α1 = 0. If the
Robin boundary condition (B2) is imposed when ρ = r1 on the circle σ1, it follows that

a lim
ρ→r1

dT1(ρ)

dρ
+ b lim

ρ→r1
T1(ρ) + c = 0, since ∂

∂n(z) = d
dρ , which gives an expression for α2.

Simplifying it follows (4).

As a particular case of the previous result, suppose two homogeneous Dirichlet
boundary conditions that assume conditions (B1) and (B2), with a = c = 0 and b = 1, and
make a change of the variable η = |ν|ρ with η1 = |ν|r1 and η2 = |ν|r2. The maximum of
D|ν|2T1(η) is obtained at the root of the implicit equation:

1 + η −
(η2 − η1 + ln( η2

η1
))eη∫ η2

∞

et

t
dt−

∫ η1

∞

et

t
dt

= 0.

When η1 = |ν|r1 = 5 and η2 = |ν|r2 = 50, Figure 1 displays the function D|ν|2T1(η).
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Figure 1. The maximum MFPT is attained near the circle σ2, thereby assuming Dirichlet boundary
condition (B1) on both circles σ1 and σ2.

Now, as a less-idealized planar geometry for the projections of a tissue and the blood
vessel onto an orthogonal plane to the latter, suppose that the arbitrary smooth curves σ3
and σ4 are approximately close to (or do not differ much from) two concentric circles σ1 and
σ2, respectively. In other words, σ3 and σ4 are small or moderate deformations of σ1 and σ2,
respectively. Consequently, the common center of the circles σ1 and σ2, even if not an exact
center of symmetry for σ3 and σ4, does not differ much from a point playing such a role.
Let Ω2 be the domain enclosed by σ3 and σ4, and let that inside the annulus be Ω1. The
following representation of the MFPT function T2 in (7) is given as the sum of a particular
solution T1 throughout all Ω1, which is characterized in (4), plus as a general solution inside



Mathematics 2023, 11, 4998 5 of 17

Ω2 of the homogeneous equation D(∆ + ν · ∇)T(y) = 0, which is expressed as the sum of
two closed-line integrals along σ3 and σ4 containing the densities µ2 and µ1, respectively.

Theorem 1. Consider the domain Ω2, with the Dirichlet boundary condition (B1) on the outer
curve σ4 and the Robin boundary condition (B2) on the inner curve σ3. The MFPT function T2 is
given by

T2(y) = T1(|y|) +
2D
a

∫
σ3

G(y, ξ)µ1(ξ) dσ(ξ)− 2D
∫

σ4

∂G(y, ξ)

∂n(ξ)
µ2(ξ) dσ(ξ), (7)

for every y ∈ Ω2, where T1 is defined in (4), G is the Green’s function, and the densities µ1 and µ2
are solutions of the system

µ1(ξ) =

(
a

∂

∂n(ξ)
+ b
)(

2D
a

∫
σ3

G(ξ, s)µ1(s) dσ(s)− 2D
∫

σ4

∂G(ξ, s)
∂n(s)

µ2(s) dσ(s)
)
+

+

(
a

∂

∂n(ξ)
+ b
)

T1(|ξ|) + c, (8)

µ2(ξ) = T1(|ξ|) +
2D
a

∫
σ3

G(ξ, s)µ1(s) dσ(s)− 2D
∫

σ4

∂G(ξ, s)
∂n(s)

µ2(s) dσ(s). (9)

Proof. Let G(y, y′) be the Green’s function, at (y, y′) in the whole plane, so that

D
(
∆y + ν · ∇y

)
G(y, y′) = −δ(y− y′), (10)

where δ stands for the two-dimensional Dirac delta function, without any sort of Dirichlet
or Robin boundary conditions either on σ2 or σ1, nor on σ4 or σ3. Notice that G includes
angular dependences, which are certainly relevant for what follows. If |ν| = 0, then it
follows that

G(y, y′)
∣∣
|ν|=0 = − 1

2πD
ln
∣∣y− y′

∣∣, (11)

which has a logarithmic singularity as |y− y′| tends to 0.
The crucial features to obtain the density µ2 are explained below. Consider two close

points ξ and z lying on a small-line element σ̂4 on the curve σ4 and a point y lying inside Ω2
and close to z so that the difference between I(y)σ̂4 and I(z)σ̂4 of the line integrals on σ̂4 is

I(y)σ̂4 − I(z)σ̂4 =
∫

σ̂4

∂G(y, ξ)

∂n(ξ)
dσ(ξ)−

∫
σ̂4

∂G(z, ξ)

∂n(ξ)
dσ(ξ). (12)

According to Appendix A, the Green’s functions G (including drift) and G||ν|=0 (with
vanishing drift) have the same short-distance behavior, since the operator ν · ∇ is a weak
perturbation of ∆. Then, it is permissible to replace G with G||ν|=0 in (12). The resulting
integrals in (12) are extended to the complete closed curve σ4. The added contributions to
both integrals cancel out with each other. Thus, I(y)σ̂4 − I(z)σ̂4 = I(y)σ4 − I(z)σ4 , with

I(y)σ4 − I(z)σ4 = − 1
2πD

(∫
σ4

∂ ln|y− ξ|
∂n(ξ)

dσ(ξ)−
∫

σ4

∂ ln|z− ξ|
∂n(ξ)

dσ(ξ)

)
.

Except for (2πD)−1, these closed-line integrals are the full angles determined by the
whole σ4 as seen from two situations: either a point y lying strictly inside Ω2, close to z,
or inside z. By directly extending the argument in [18], those two dimensional angles are
2π and π, respectively. This statement will be illustrated through the following simple
example. Let σ4 be a circle of radius r4, and let y be its center. Therefore, as ∂

∂n(ξ) denotes

the inner normal derivative and |ξ| = r4, it follows that 2πDI(y)σ4 =
∫

σ4

1
|ξ|dσ(ξ) = 2π.
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The actual counterpart of I(z)σ4 , if the closed-line σ4 is the boundary of a half circle and z is
taken at the center, yields π. Thus, all that leads to the characterization of the density µ2
by (9). The extension of the above justification to the characterization of the density µ1 to
the actual closed curve σ3 in two dimensions with the drift and Robin boundary condition
can also be carried out directly. For brevity, it will be omitted here.

Models in two dimensions are plagued by a number of subtleties compared to models
in three dimensions, as shown in the following very simplified model in Example 1, where
the domain is only one circle. The structure of the integral equation approach in the proof
of Theorem 1 is confirmed, and the important “averaging” recipe is introduced.

Example 1. Let Ω now be the interior of the full circle σ2 of radius r2, inside of which a cell moves
randomly without drift, with the Dirichlet boundary condition. The circle σ1 and, therefore, the
Robin boundary condition are eliminated in this example. Accepting circular symmetry, the MFPT
function T1 solving Equation (6), with the Dirichlet boundary condition, is defined as follows:

T1(ρ) =
r2

2 − ρ2

4D
. (13)

Consistency will be achieved if (13) is retrieved out of the following modified simplifications
of (7) and (9). Namely, if the MFPT function T2 is defined in (7), for any y ∈ Ω and taking the
density µ2 given in (9), then

T2(y) = T1(|y|)− 2D
∫

σ2

∂G(y, ξ)

∂n(ξ)
µ2(ξ) dσ(ξ) (14)

with

µ2(ξ) = T1(|ξ|)− 2D
∫

σ2

∂G(ξ, s)
∂n(s)

µ2(s) dσ(s), (15)

where T1(|y|) = − |y|
2

4D , without drift. The density µ2 has supposed consistency, which depends
only on ρ = |ξ|. By using (A1), (A5), and (15), noticing that the normal derivative is the inner
one (towards the interior of the domain), and integrating over the angles (so that only g0(ρ, ρ′)
contributes), it follows that

µ2(ξ) = T1(|ξ|)− 2Dr2µ2(r2)
∂ ln ρmax(ρ, r2)

∂ρ′
(16)

where ρmax(ρ, ρ′) = max{ρ, ρ′}. When ρ′ = r2, the derivative
∂ ln ρmax(ρ, r2)

∂ρ′
is ambiguous so

that some prescription will be required to handle it. By applying the “averaging” recipe in [15],
we have

∂ ln ρmax(ρ, r2)

∂ρ′
=

1
2

(
∂ ln ρmax(ρ+, ρ′)

∂ρ′
+

∂ ln ρmax(ρ−, ρ′)

∂ρ′

)
,

where the first and second terms are evaluated for ρ+ = ρ > ρ′ and ρ′ > ρ = ρ−, respectively. The

result is then 1
2ρ′ , which becomes 1

2r2
. In this way, the density µ2 in (16) is given by µ2(ξ) =

r2
2

4D .
So, the second term on the right-hand side of (16) is of the same order as the left-hand side. The
integral in (14) is directly computed for y inside Ω, which also uses g0(ρ, ρ′) so that the above

ambiguity does not arise. Therefore, T2(y) = T1(|y|) +
r2

2
4D , which consistently agrees with (13).

In Appendix B, an approximation method to characterize the densities µ1 and µ2 is
presented whenever the curves σ3 and σ4 are close to the circles σ1 and σ2, respectively.
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3. The MFPT Function in an Annular Cylinder

In this section, the three-dimensional domain is an annular cylinder filled by tissue,
where a cell migrates inside it towards the blood vessel surrounded by it when there is no
drift, that is, |ν| = 0 for simplicity. Namely, we consider the following cases:

• The domain Ω3 is an annular cylinder limited by two parallel and concentric cylin-
drical surfaces S1 and S2, with radii r1 and r2, respectively, with r1 < r2, and by
two lids. Precisely, they are the finite intersections of two parallel planes (at a
distance h from each other) with the cylinders and orthogonal to the axes of the
latter; see Figure 2 below;

• By letting the two lids, in the previous case, be very separated from each other (as
if h tends to infinity) so that they can be disregarded, the surface boundary will be
supposed to be a small or moderate deformation of the two cylindrical surfaces in
scenario 3.

Figure 2. The annular cylinder Ω3 bounded by the inner surface S1 and the outer surface S2.

The domain Ω3 corresponds to a very idealized cylindrical geometry for the tissue
surrounding the blood vessel so that its analysis will rely on and constitute a nontrivial
extension to three dimensions of the domain Ω1, which was defined in the previous section.

Proposition 2. Consider the domain Ω3, with the Dirichlet boundary condition (B1) on the outer
surface S2 and the Robin boundary condition (B2) on the inner surface S1. The MFPT function T3
is characterized in Ω3, using cylindrical coordinates, by

T3(ρ, z) = −2c4

h

∫ +∞

0
∑
kz

sin
(

kz
h
2

) fkρ
(ρ) fkz(z)

k2
ρ + k2

z

kρ

kz

[
c1(r2 J1(kρr2)− r1 J1(kρr1)) +

+ c2(r2Y1(kρr2)− r1Y1(kρr1))
]
dkρ,

where fkρ
(ρ) = c1 J0(kρρ) + c2Y0(kρρ), fkz(z) = c3 sin(kzz) + c4 cos(kzz), with Ji and Yi, for

i ∈ {0, 1} being the standard regular and irregular Bessel functions of the ith order, respectively, for
constants c1, c2, and c4, which are determined by the boundary conditions.

Proof. Let σ1 and σ2 be two concentric circles with radii r1 and r2, respectively, so that
r1 < r2, which are formed by the intersection of a plane with the two cylindrical surfaces
S1 and S2 orthogonal to them, respectively. Upon taking the common center of σ1 and σ2 as
the origin of the coordinates, the z axis through that point will be orthogonal to that plane.
Consider the standard cylindrical coordinates w = (ρ, ϕ, z), with y = (ρ cos ϕ, ρ sin ϕ, z),
so that the three-dimensional domain Ω3 may be defined as r1 < ρ < r2, 0 ≤ ϕ < 2π, and
− h

2 < z < h
2 . Then, the Laplacian operator in (3) may be written as

∆ =
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂ϕ2 +
∂2

∂z2 .
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Thus, take into account a MFPT function T3(ρ, z) with circular symmetry (ϕ-independent)
solution of (

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

∂2

∂z2

)
T3(ρ, z) = − 1

D
(17)

in Ω3. In addition, consider the Dirichlet boundary condition (B1), when ρ = r2, so
that T3(r2, z) = 0, and consider the Robin boundary condition (B2), for ρ = r1, so that

a lim
ρ→r1

∂T3(ρ, z)
∂ρ

+ b lim
ρ→r1

T3(ρ, z) + c = 0 for some constants a, b, and c. On the lids,

when z = − h
2 and z = h

2 , assume a homogeneous Robin boundary condition so that

a lim
ρ→r1

∂T3(ρ,± h
2 )

∂ρ
+ b lim

ρ→r1
T3

(
ρ,±h

2

)
= 0. For simplicity, the constants a and b are taken

to be the same for the Robin boundary conditions at ρ = r1 and at the two lids. The
generalization for the different constants is direct and will be omitted.

The procedure to find out the MFPT function T3 proceeds by applying well-documented
procedures based upon suitable three-dimensional Green’s functions and representations
thereof using separability, factorization, and eigenfunctions; see [19]. Thus, let G3(w, w′) be
the Green’s function, in cylindrical coordinates, solution of the equation

D
(

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

∂2

∂z2

)
G3(w, w′) = −1

ρ
δ(ρ− ρ′)δ(z− z′),

so that

G3(w, w′) =
∫

∑
kz

fkρ
(ρ) fkz(z) fkρ

(ρ′) fkz(z
′)

k2
ρ + k2

z
dkρ,

with ∫
∑
kz

fkρ
(ρ) fkz(z) fkρ

(ρ′) fkz(z
′) dkρ =

1
ρ

δ(ρ− ρ′)δ(z− z′) (18)

D
(

1
ρ

d
dρ

(
ρ

d
dρ

))
fkρ

(ρ) = −k2
ρ fkρ

(ρ) (19)

D
d2 fkz(z)

dz2 = −k2
z fkz(z). (20)

The solutions of Equations (19) and (20) may be written as fkρ
(ρ) = c1 J0(kρρ)+ c2 Y0(kρρ),

where J0 and Y0 are the standard regular and irregular Bessel functions, respectively, of the
zeroth order, and fkz(z) = c3 sin(kzz) + c4 cos(kzz) for constants c1, c2, c3, and c4, which are
determined by imposing the boundary conditions. The boundary conditions for fkρ

(ρ) at
r1 (inhomogeneous Robin condition) and r2 (Dirichlet condition) are similar to those in the
two-dimensional case for |ν| 6= 0, and they will not be repeated again. In the case of the Robin
boundary condition, if c 6= 0, then kρ (real) varies continuously, and the constants c1 and c2 are
uniquely defined by the inhomogeneous system. On the other hand, the homogeneous Robin
boundary conditions for fkz(z) at z = ± h

2 make Equation (20) yield an eigenvalue equation for
kz, which has to take on a denumerably infinite set of values with the alternative choices: either
c3 = 0 and c4 6= 0 for the eigenvalue equation tan(kz

h
2 ) = −

b
a kz

or c3 6= 0 and c4 = 0 for the

eigenvalue equation tan(kz
h
2 ) =

a kz
b . The nonvanishing proportionality constant is determined

through the completeness of Equation (18). Now, if the integration over ρ′ and z′ is performed,
it follows, for c3 = 0, that
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T3(ρ, z) = −
∫ r2

r1

∫ z0
2

− z0
2

ρ′ G3(w, w′) dz′ dρ′ =

= −
∫ +∞

0
∑
kz

c4
fkρ

(ρ) fkz(z)

k2
ρ + k2

z

sin
(

kz
h
2

)
kz

h
2

(
c1kρ(r2 J1(kρr2)−

r1 J1(kρr1)) + c2kρ(r2Y1(kρr2)− r1Y1(kρr1))
)
dkρ,

where J1 and Y1 are the standard regular and irregular Bessel functions of the first order,
respectively. In this way, the MFPT function is characterized in terms of an integral and
a series. If h

2 tends to +∞, the description in the two-dimensional case for |ν| = 0
is retrieved.

Now, let us consider the domain Ω4, where the geometry of the domain Ω3 is con-
sidered and the two lids are suppressed so that the two cylindrical surfaces S1 and S2
extend along −∞ < z < +∞. The boundary surface of the three-dimensional domain Ω4 is
formed by two surfaces, which are denoted by S3 and S4 and are very lengthy and moderate
deformations of the above S1 and S2, respectively. Upon recalling that Ω3 encloses Ω4, the
MFPT function T4 defined below in (21) is the sum of a particular solution T1 defined in (4)
throughout all Ω3, plus it is a solution of D∆T(y) = 0 inside Ω4, which is expressed as the
sum of two surface integrals along S3 and S4 containing µ3 and µ4, respectively. Notice that
the MFPT function T4 and the densities µ3 and µ4 are, in particular, z-dependent. When
Si = Si−2, for i ∈ {3, 4}, then µ3 = 0 and µ4 = 0, trivially.

Theorem 2. Consider the domain Ω4 with the Dirichlet boundary condition (B1) on the outer
surface S4 and the Robin boundary condition (B2) on the inner surface S3. The MFPT function T4
is characterized in Ω4 by

T4(y) = T1(|y|) +
2D
a

∫
S3

G3(y, x)µ3(x)dS(x)− 2D
∫

S4

∂G3(y, x)
∂n(x)

µ4(x)dS(x), (21)

where the densities µ3 and µ4 are defined as solutions of the inhomogeneous system of linear
integral equations:

µ3(x) =
(

a
∂

∂n(x)
+ b
)(

2D
a

∫
S3

G3(x, ξ)µ3(ξ)dS(ξ)− 2D
∫

S4

∂G3(x, ξ)

∂n(ξ)
µ4(ξ)dS(ξ)

)
+

(
a

∂

∂n(x)
+ b
)

T1(|x|) + c, (22)

µ4(x) = T1(|x|) +
2D
a

∫
S3

G3(x, ξ)µ3(ξ)dS(ξ)− 2D
∫

S4

∂G3(x, ξ)

∂n(ξ)
µ4(ξ)dS(ξ). (23)

Proof. For i ∈ {3, 4}, each point yi on the surface Si may be written, in cylindrical coor-
dinates, as yi = ((ri + εi) cos ϕ, (ri + εi) sin ϕ, z + εz,i), where εi = εi(ϕ) and εz,i = εz,i(z),
with εz,i(z) tending to 0 as z tends to ±∞. This will enable the dependence of the MFPT
function on z in (−∞,+∞), in addition to those on ϕ and ρ, which will disappear quickly
as z tends to ±∞. A very important assumption is that Ω4, having S3 and S4 as boundaries,
is contained inside the domain Ω3 enclosed between S1 and S2. Let σ3 and σ4 be the two
closed curves obtained as the intersections of the z = 0 plane with the surfaces S3 and
S4, respectively, so that they turn out to be small deformations of two concentric circles
σ1 and σ2, respectively. The common center of such circles σ1 and σ2 plays the role of an
approximate center of symmetry for σ3 and σ4.

Let T1(|y|) be the circularly symmetric MFPT function defined in (4) for any y in
Ω1, with the Dirichlet and Robin boundary conditions on σ2 and σ1, respectively. Let
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G3(y, y′) =
1

4πD|y− y′| be the standard three-dimensional Green’s function solution of

D∆yG3(y, y′) = −δ(y − y′) in the whole space, without any sort of Dirichlet or Robin
boundary conditions. The expansion of G3 in cylindrical coordinates w = (ρ, ϕ, z) is
given by

G3(w, w′) =
1

4πD

+∞

∑
n=−∞

ein(ϕ−ϕ′)
∫ +∞

0
e−κ|z−z′ | Jn(κρ)Jn(κρ′) dκ, (24)

where Jn defines the standard regular Bessel functions of the nth order; see [19]. Let∫
Si

dS(x) denote integration over the surface Si for i ∈ {3, 4}. By extending the treat-

ment of scenario 2 to the actual three-dimensional situation, it follows that the MFPT
function T4(y) satisfying (3) for y inside Ω4, with the Dirichlet and Robin boundary
conditions on S4 and S3, respectively, is defined by (21), where the densities µ3 and µ4
are defined in S3 and S4, respectively, by the inhomogeneous system of linear integral
Equations (22) and (23), respectively.

Further information regarding the understanding of the densities µ3 and µ4 defined
in (22) and (23), respectively, is given in Appendix C.

4. Discussion

The time-honored problem of adequately analyzing elliptic partial differential equa-
tions (in particular, in two and three spatial dimensions) inside a domain with a general
boundary and prescribed boundary conditions continues to stand as an important and
difficult one. The subject by itself has a full variety of important applications, in addition
to cell migration. We refer, for instance, to the Kellogg monograph [20] for a detailed
investigation of elliptic equations, and we also incorporate previous research by other
authors and their applications to electrostatics. Moreover, Balian and Bloch extended those
research investigations to the Schrödinger equation in the framework of nuclear physics
in [21], and Morse and Feshbach incorporated them for general and useful presentations
in [19]. The elliptic partial differential equation is separable only for a few shapes of the
boundary; see [19]. Then, for generic geometries of the boundary preventing separability,
adequate mathematical methods, giving rise to approximations, have to be developed.

More than one century ago, the analysis of the Laplace equation inside a three-
dimensional domain, bounded by one arbitrary surface and either Dirichlet or Neumann
boundary conditions (all of which are known as potential theory), was reduced by math-
ematicians to solve a suitable inhomogeneous linear integral equation of the Fredholm
type for certain unknown density functions defined on the surface; see [20]. Such an
integral equation provides, at least, a mathematical basis for all cases where the shape
of the surface prevents separability (in practice, this includes almost all geometries). In
a previous publication [15], the random motion of a tumor cell in a tissue had given rise
to the study of a three-dimensional Poisson equation for the MFPT function of the tumor
cell inside a domain limited by one or two surfaces. By nontrivially extending [21] to that
Poisson equation, the analysis of the three-dimensional MFPT yielded suitable systems of
coupled inhomogeneous Fredholm linear integral equations for the corresponding density
functions. Cases with spherical surfaces have been solved consistently with solutions found
through other methods. Moreover, the approach has been extended to deal with a special
variety of nontrivial problems: those for one closed surface with mixed Dirichlet–Neumann
boundary conditions on the latter; see [15].

The three-dimensional studies in [15] left open, among a number of other problems,
the analysis of two-dimensional cases, in which the boundary is a closed curve, and of
three-dimensional cases with cylindrical-like boundaries. These two cases constitute the
motivation for and the subject of the present work. In fact, the analysis of the Laplace and
Poisson equations in a two-dimensional annulus displays certain peculiarities, which are
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not found in three-dimensional annular cylinders and require the specific study carried
out here. So, the present work deals with an approach, in the latter geometries, to the
MFPT of a migrating cell based upon the two-dimensional extension of the inhomogeneous
linear integral equations with the boundaries indicated above. In the present work, we
also treat another boundary condition suggested by and relevant for cell migration, namely,
the Robin one. The assumed Robin boundary condition describes how cells interact
with the inner boundary of the domain, and it combines elements of both fixed values
(Dirichlet) and flux (Neumann) conditions so that it accounts for factors like adhesion,
chemotaxis, or mechanical forces at the inner boundary, thereby influencing cell behavior
and movement. Here, we treat boundaries that are small deformations of others and
yield separability: this enables the inhomogeneous linear integral equations to be solved
analytically. Theorems 1 and 2 characterize the solutions of the integral equations yielding
the MFPT and the corresponding densities, in the deformed two-dimensional boundary
and three-dimensional one, respectively.

We quote several problems that are left open in the mathematically oriented approach
reported in this work and in [15], such as the following:

• Extensions to more general nonseparable two- and three-dimensional boundaries,
which are not small deformations of the separable boundaries considered here;

• Further analysis of mixed boundary conditions on the same boundary.

5. Conclusions

The MFPT function T(y) for a cell, being originated at time t = 0 at y in the domain
Ω, to reach a suitable part of the boundary of Ω has been studied in different two- and
three-dimensional simplified (separable to nonseparable) models considering the Dirichlet
and Robin boundary conditions. Drift motion was taken in a general formulation in the
two-dimensional case, although it was omitted for simplicity in certain cases. The following
models were studied:

• In the two-dimensional case, the domain Ω was defined as an annulus, and the boundary
was formed by either two concentric circles or by small deformations thereof;

• In the three-dimensional case, the domain Ω was defined as an annular cylinder, and
the boundary was formed by either parallel concentric cylindrical surfaces of finite
length or by lengthy deformations thereof.

Explicit solutions have been given for separable cases. By starting from a specific sepa-
rable model, the corresponding nonseparable one follows, which is generated by slightly
deforming the surface of the former. The solution of the Poisson equation for the MFPT
function for the slightly deformed boundary has been represented by invoking potential
theory in terms of linear integral equations with inhomogeneous terms given by the exact
MFPT function of the separable boundary. The use of the exact MFPT functions of the
separable boundaries as inhomogeneous terms for the deformed cases constitutes an im-
portant achievement. The linear integral equations display similar structures for the chosen
deformed geometries and have been solved (reduced to a finite number of quadratures and
series summations) for small deformations in outline. The Green’s functions involved in
those equations for deformed geometries display certain ambiguities, which were analyzed
and bypassed using a consistent “averaging” procedure.
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Appendix A. The Green’s Function G vs. G||ν|=0 in Two Dimensions

In this appendix, it is deduced that the Green’s functions G and G||ν|=0 have the same
short-distance behavior due to the fact that the operator ν · ∇ is a weak perturbation of ∆.
Consider the polar coordinates w = (ρ, ϕ), wherein the two-dimensional Green’s function
G, the solution of Equation (10), may be expanded into a Fourier series as

G(w, w′) =
1

2π

+∞

∑
n=−∞

gn(ρ, ρ′)ein(ϕ−ϕ′), (A1)

and given the radial Green’s functions gn(ρ, ρ′), for n ∈ N, we have the solution

D
(

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− |ν| ∂

∂ρ
− n2

ρ2

)
gn(ρ, ρ′) = −1

ρ
δ(ρ− ρ′), (A2)

which can be obtained directly though general recipes in terms of two linearly independent
solutions, gn,re(ρ) regular and gn,ir(ρ) irregular, at ρ = 0 of the homogeneous equation

D
(

1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− |ν| ∂

∂ρ
− n2

ρ2

)
gn,j(ρ) = 0 (A3)

with j ∈ {re, ir} (see, for instance, [19] (volume 1)). Therefore,

gn(ρ, ρ′) = −D
gn,re(ρ)gn,ir(ρ

′)χ(ρ− ρ′) + gn,ir(ρ
′)gn,re(ρ′)χ(ρ′ − ρ)

ρ ∆(gn,re(ρ), gn,ir(ρ))
(A4)

where ∆(gn,re(ρ), gn,ir(ρ)) is the standard (constant) Wronskian of gn,re(ρ) and gn,ir(ρ), and
χ is the step function given by χ(r) = 0 for r < 0, where χ(r) = 1 if r > 0.

When there is no drift, that is, |ν| = 0, the Green’s function G given in (11) is such that

g0(ρ, ρ′)
∣∣
|ν|=0 = − 1

D
ln ρmax, gn,re(ρ) = ρn, n ∈ Z \ {0},

gn(ρ, ρ′)
∣∣
|ν|=0 =

1
2D|n|

(
ρmin
ρmax

)|n|
, gn,ir(ρ) = ρ−n, n ∈ Z \ {0}, (A5)

where ρmin = min{ρ, ρ′}, and ρmax = max{ρ, ρ′}.
Now, when |ν| 6= 0, if n = 0, the two independent solutions of Equation (A3) are

g0,re(ρ) = 1 and g0,ir(ρ) =
∫ ρ

0

e|ν|ξ

ξ
dξ; and if n 6= 0, then Equation (A3) can be reduced by

extending the procedure to yield (6) with a suitable replacement of − 1
D to define the linear

integral equations. For a recent related application of this technique, see [22]. Namely, let
− 1

D be replaced by n2

ρ2 gn,i(ρ) so that the regular (re) solution may be written as

gn,re(ρ) = 1 +
∫ ρ

0

e|ν|ξ

ξ

(∫ ξ

0
e−|ν|zn2gn,re(z) dz

)
dξ, (A6)

and the irregular (ir) solution may written as

gn,ir(ρ) =
∫ ρ

0

e|ν|ξ

ξ
dξ +

∫ ρ

0

e|ν|ξ

ξ

(∫ ξ

0
e−|ν|zn2gn,ir(z) dz

)
dξ. (A7)



Mathematics 2023, 11, 4998 13 of 17

These two integral equations are some sorts of generalizations of Volterra integral
equations [23]. Their successive iterations have been analyzed and, some consequences are
summarized below. First, the series formed by the successive iterations of Equation (A6)
is finite for any ρ, and it tends to 1 as ρ tends to 0. Secondly, the series formed by the
successive iterations of Equation (A7), except for the first term, is finite for any ρ, and it

tends to 0 as ρ tends to 0, while the first term
∫ ρ

0

e|ν|ξ

ξ
dξ tends to ln ρ as ρ tends to 0. Finally,

it follows that G and G||ν|=0 have the same short-distance behavior.

Appendix B. An Approximation Method for σ3 and σ4 Close to σ1 and σ2

The system where the densities µ1 and µ2 are defined, by Equations (8) and (9),
respectively, may be rewritten compactly as

µ = L(T1) + K(µ), (A8)

where µ is a column vector formed by µ1 and µ2, and

L(T1) =

(a
∂

∂n(ξ)
+ b
)

T1 + c

T1

,

K(µ) = 2D


(

∂

∂n(ξ)
+

b
a

)∫
σ3

G(ξ, s) dσ(s) −
(

a
∂

∂n(ξ)
+ b
)∫

σ4

∂G(ξ, s)
∂n(ξ)

dσ(s)

1
a

∫
σ3

G(ξ, s) dσ(s) −
∫

σ4

∂G(ξ, s)
∂n(ξ)

dσ(s)

(µ1(s)
µ2(s)

)
.

A posteriori, if σi = σi−2, with i ∈ {3, 4}, then L(T1) evaluated on σi−2 vanishes, and the
solutions of the above equations are µ1 = 0 and µ2 = 0. Let σ3 and σ4 be small deformations
of σ1 and σ2, respectively, so that, for each yi on σi, it may be written in polar coordinates
yi = (ri−1 + εi)(cos ϕ, sin ϕ), with εi = εi(ϕ). Then, L(T1), now evaluated on σ3 and σ4
and no longer on σ1 and σ2, is small, and so µ1 and µ2 should be small as well. The

integration over σ3 and σ4 is carried out as
∫ 2π

0
r1dϕ and

∫ 2π

0
r2dϕ, respectively. Moreover,

the line integrals, the Green’s function G, and its derivative in Equations (8) and (9) can
also give rise, to the lowest order, to explicit corrections of the same order (εi) as L(T1).
Such corrections can be directly written, but they will be omitted for brevity. Therefore, the
previous Equation (A8) may be approximated as

µ ' L′(T1) + K′(µ), (A9)

where L′(T1) is the sum of L(T1) and all such corrections, and the operator K′ is the resulting
approximation of K, which is formed by the line integrals over σ1 and σ2. Corrections to
K′ are omitted, as they would yield higher corrections to µ. On the other hand, it is not
warranted that higher iterates of (A9) have smaller orders of magnitude than lower order
ones, that is, all iterates of (A9) should be considered in principle on equal footing. A
simpler version of this feature was met for the second term on the right-hand side of
Equation (16). Then, the required approximation of (A8), which takes into account all such
iterates, is

µ ' [I − K′]−1L′(T1), (A10)

where I stands for the identity operator, and [I − K′]−1 denotes the inverse of the operator
I − K′. For convenience, the components of L′(T1) are expanded in a Fourier series as
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L′(T1)i =
1

2π

+∞

∑
n=−∞

L′(T1)i,n einϕi (A11)

with i ∈ {1, 2}. The small L′(T1)i depend on ϕi, since they are now evaluated on the slightly
deformed curves σ3 and σ4. If n 6= 0, then L′(T1)i,n are nonvanishing in general. Suppose
that |ν| = 0 (no drift) so that Equation (A1) applies, and

µi(yi) =
1

2π

+∞

∑
n=−∞

µi,neinϕi (A12)

with i ∈ {1, 2}. By using Equations (A12) and (A5) and integrating over the angles, it
follows from (A9) that the unknown µi,n, with ρ1 = ρ′1 = r3 and ρ2 = ρ′2 = r4, are
defined by

µ1,n = L′(T1)1,n(ρ1) +
2D
a

r3

(
a

∂gn(r3, ρ′1)

∂ρ1
+ bgn(ρ1, ρ′1)

)
µ1,n +

+ 2D r4

((
a

∂

∂ρ1

∣∣∣∣
ρ1=r3

+ b

)
∂gn(ρ1, r4)

∂ρ′2

)
µ2,n (A13)

µ2,n = L′(T1)2,n(ρ2) +
2D
a

r3 gn(ρ2, ρ′1) µ1,n + 2D r4
∂gn(ρ2, r4)

∂ρ′2
µ2,n. (A14)

The derivatives ∂gn(r3,ρ′1)
∂ρ1

and ∂gn(ρ2,r4)
∂ρ′2

are ambiguous and, thus, pose a problem similar
to the one met in Example 1. Then, the “averaging” recipe in such an example has to
be invoked as well. The recipe was applied there, in a simpler context, for n = 0, and

proceeds similarly here for any integer n. For n = 0, it follows
∂g0(r3, ρ′1)

∂ρ1
= − 1

2Dr3

and
∂g0(ρ2, r4)

∂ρ′2
= − 1

2Dr4
. For n 6= 0, it follows

∂gn(r3, ρ′1)

∂ρ1
= 0 and

∂gn(ρ2, r4)

∂ρ′2
= 0.

The remaining contributions in the right-hand sides of Equations (A13) and (A14) pose
no ambiguity, as r4 > r3 is directly evaluated. After that, such equations constitute an
inhomogeneous algebraic linear system for each pair µ1,n and µ2,n, which is solved trivially
in terms of L′(T1)1,n and L′(T1)2,n, respectively. Such solving implements the instruction
[I − K′]−1 in Equation (A10). Therefore, the MFPT function reads as

T(y) = T′1(y) +
∫ 2π

0
r3G(y, ξ)µ1(ξ) dϕ +

∫ 2π

0
r4

∂G(y, ξ)

∂n(ξ)
µ2(ξ) dϕ, (A15)

where T′1 includes T1 and all corrections of the order δi that are not included in µi.

Appendix C. Extending the Approximation Method to Three Dimensions

To go somewhat deeper into the consistency between the two- and the three-dimensional
cases, further information regarding the understanding of Equations (22) and (23) is pro-
vided in this appendix. The system formed by Equations (22) and (23) can be recast
compactly as

µ = P(T1) + Q(µ)

where µ is a column vector formed by µ3 and µ4, P(T1) is a column vector formed by all the
contributions related to T1, and Q is the 2× 2 matrix linear operator containing only surface
integrals over S3 and S4. By arguing as in the previous Appendix B, even if the actual
counterpart of Equation (A8) is valid for S3 and S4, which are moderate deformations of
S1 and S2, respectively, in the following development, it will be assumed that the former
two surfaces are small deformations of the latter. Notice that the surface integrals and
the functions G3 and ∂G3

∂n in (21)–(23) can also give rise, to the lowest order, to explicit
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corrections of the same order (εi and εz,i) as P(T1). Such corrections can be directly written,
as they are independent on µ, but they will be omitted for brevity. The sum of P(T1) and
all such corrections will be denoted by P′(T1) (of the orders εi and εz,i). Then, for the
three-dimensional case, the Equation (A8) can be approximated as

µ ' P′(T1) + Q′µ, (A16)

where Q′ is the resulting approximation of Q, and the surface integrals over S3 and S4 are
approximated by ∫

Si

=
∫ 2π

0

∫ +∞

−∞
ri dzi dϕi,

with i ∈ {3, 4}. The presence of an integration over R recalls the three-dimensional nature
of the very lengthy, slightly deformed cylinders. With respect to this approximation, the
normal derivatives are z-independent and, thus, are similar to those met for Q′ in two
dimensions. Then, the required approximation of (A16), which takes into account all such
iterates, is µ ' [I −Q′]−1P′(T1).

Indeed, by extending the operator in (A11) to the three-dimensional case, the compo-
nents of P′(T1) are

P′(T1)i =
1

(2π)3/2

∫ +∞

−∞

+∞

∑
n=−∞

P′(T1)i,n(kz)ei(nϕ1+zkz) dkz. (A17)

The small P′(T1)i depend on ρi, z and ϕi, with i ∈ {1, 2}, since evaluations now are
performed on the slightly deformed Si and, moreover, there are small contributions from
the integrals, as discussed previously in the proof of Theorem 2. Let

µi(yi) =
1

(2π)3/2

∫ +∞

−∞

+∞

∑
n=−∞

µ̃i,n(kz)ei(nϕ1+zkz) dkz (A18)

for i ∈ {3, 4}. By using Equations (A12) and (A5), and integrating with∫ 2π

0

∫ +∞

−∞
e−i(nϕ1+zkz)dϕ1dz, Equation (A16) become (ρ1 = ρ′1 = r1, ρ2 = ρ′2 = r2):

µ̃3,n(kz) = P′(T1)1,n(kz) +
2D
a

r1 µ̃3,n(kz)

(
a
∫ +∞

0

κ

κ2 + k2
z

dJn(κρ)

dρ

∣∣∣∣
ρ=r1

Jn(κr1) dκ +

+ b
∫ +∞

0

κ

κ2 + k2
z

Jn(κr1)Jn(κr1) dκ

)
+

+ 2Dr2 µ̃4,n(kz)

(
a
∫ +∞

0

κ

κ2 + k2
z

dJn(κρ)

dρ

∣∣∣∣
ρ=r1

dJn(κρ)

dρ

∣∣∣∣
ρ=r2

dκ +

+ b
∫ +∞

0

κ

κ2 + k2
z

Jn(κr1)
dJn(κρ)

dρ

∣∣∣∣
ρ=r2

dκ

)
(A19)

µ̃4,n(kz) = P′(T1)2,n(kz) +
2D
a

r1 µ̃3,n(kz)
∫ +∞

0

κ

κ2 + k2
z

Jn(κr1)Jn(κr2) dκ +

+ 2D r2 µ̃4,n(kz)
∫ +∞

0

κ

κ2 + k2
z

Jn(κr2)
dJn(κρ)

dρ

∣∣∣∣
ρ=r2

dκ. (A20)

The behavior of the previous integrals may be summarized below, with the properties
of the Bessel functions involved at small and large κ:

1. The oscillating behavior of the Bessel functions enables the four integrals to be finite
at large κ.

2. For small κ and kz 6= 0, all integrals are finite.
3. For small κ and kz = 0, all integrals are finite, except the first one defining µ̃4,0,

which gives rise to a logarithmic divergence. This logarithmic divergence turns out
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to be harmless and to yield finite results upon performing integrations over kz at a
later stage.

4. The first integral defining µ̃3,n and the last one defining µ̃4,n pose ambiguities related
to those met in Example 1 and in the proof of Theorem 2. In fact, by invoking the
asymptotic behavior of the Bessel functions for large κ, the oscillating integrands
in those two integrals are shown to contain contributions having, to the leading
order, the same asymptotic behavior in κ as the oscillating integrand of the integral

U(ρ − ρ′) =
∫ +∞

κ0

sin (ρ− ρ′)κ

κ
dκ, with large but finite κ0. U(ρ − ρ′) is finite and

nonvanishing for ρ− ρ′ 6= 0, it changes sign as ρ− ρ′ does, and U(0) = 0.
An alternative argument supporting the discontinuity and, hence, the ambiguity, is
the following: for ρ− ρ′ > 0, one has U(ρ− ρ′) = −si(κ0(ρ− ρ′)), with si(z) being a
function related to the sine-integral function (Equation (5.2.26) in [24]). Notice that
si(z) is unambiguously defined if |argument(z)| < π, but z = κ0(ρ− ρ′) < 0 (say,
argument(z) = π) precisely for ρ− ρ′ < 0.
Then, those two integrals contain contributions having different (finite and nonvan-
ishing) values depending on the sign of ρ− ρ′. They have to be evaluated by the same

“averaging” procedure. For instance, the integral
∫ +∞

0

κ Jn(κr2)

κ2 + k2
z

dJn(κr2)

dρ′
dκ has to be

replaced by

1
2

(∫ +∞

0

κ Jn(κ(r2 + ε))

κ2 + k2
z

dJn(κr2)

dρ′
dκ +

∫ +∞

0

κ Jn(κ(r2 − ε))

κ2 + k2
z

dJn(κr2)

dρ′
dκ

)
,

with ε > 0 tending to 0, a procedure which cancels out the different contributions
with opposite signs. And so on for the other integral.

5. The third integral in µ̃3,n and the first one in µ̃4,n above behave in a continuous way
and do not give rise to ambiguities.

After that, Equations (A19) and (A20) constitute an inhomogeneous algebraic linear
system for each pair µ̃3,n and µ̃4,n, which is solved trivially in terms of P′(T1)1,n and
P′(T1)2,n, respectively. That implements the instruction µ ' [I −Q′]−1P′(T1) at the end of
the proof of Theorem 2. The resulting µ̃3,n and µ̃4,n yield, through Equations (A15), (A18),
and (24), the MFPT function.

The limiting case Si = Si−2, with i ∈ {3, 4}, (z dependence thereby disappearing) will
be revisited briefly, to provide further consistency between the two- and three-dimensional
cases without deformations. Notice the following relationship between the three- and two-

dimensional Green’s functions without boundary surfaces
∫ +∞

−∞
G3(y, y′) dz′ = G(y, y′),

where y and y′ in the left-hand and right-hand sides are three-dimensional and two-
dimensional, respectively. Then, by invoking Equations (24) and (A1), it follows the
interesting relationship involving Bessel functions:

1
D

∫ +∞

0

1
κ

Jn(κρ)Jn(κρ′) dκ = gn(ρ, ρ′). (A21)

This enables us to follow the correspondence between Equations (8) and (9), be-
tween (22) and (23), between Equations (A13) and (A14), and between (A19) and (A20) to
hence to confirm consistency. The details are omitted.

Similarly, the MFPT function solution of (17) becomes

T3(y) = T′1(y) +
2D
a

∫
S1

G3(y, ξ)µ3(ξ) dS(ξ)− 2D
∫

S2

∂G3(y, ξ)

∂n(ξ)
µ4(ξ) dS(ξ), (A22)

where T′1 includes T1 and the remaining small corrections, which are counterparts of those
included into P′(T1).
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