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Abstract: We have developed an imaging biomarker for quantitatively monitoring the response to
clinical treatment in cancer patients. Similar to other diffusion-weighted imaging DWI techniques,
our method allows for the monitoring of breast cancer progression based on the diffusion coefficient
values in the affected area. Our technique has the advantage of using images from mammograms
and mesoscopic multiparticle collision MPC simulation, making it more affordable and easier to
implement compared to other DWI techniques, such as diffusion-weighted MRI. To create our
simulation, we start with the region of interest from a mammogram where the lesion is located and
build a flat simulation box with impenetrable cylindrical obstacles of varying diameters to represent
the tissue’s heterogeneity. The volume of each obstacle is based on the intensity of the mammogram
pixels, and the diffusion coefficient is calculated by simulating the behavior of a point particle fluid
inside the box using MPC. We tested our technique on two mammograms of a male patient with
a moderately differentiated breast ductal carcinoma lesion, taken before and after the first cycle of
four chemotherapy sessions. As seen in other DWI studies, our technique demonstrated significant
changes in the fluid concentration map of the tumor lesion, and the relative values of the diffusion
coefficient showed a clear difference before and after chemotherapy.

Keywords: diffusion-weighted imaging; mesoscopic simulation; apparent diffusion coefficient;
mammography image

MSC: 62H35; 68U20; 92C50

1. Introduction

Nowadays, many imaging methods are used to determine and diagnose breast lesions;
some use diffusion-weighted magnetic resonance imaging techniques to map the diffusion
of water molecules in tissues. These methods can detect and distinguish between malignant
and benign breast lesions [1–4]. They have a notable ability to determine the density of
tumor cells, their microstructure, and microvasculature at the cellular level without the use
of contrast agents. One of them, the diffusion-weighted image (DWI) [5], coupled with mor-
phological magnetic resonance imaging, improves the evaluation of treatment [6–8]. The
DWI, combined with FDG–PET/CT ( integrated positron emission tomography/computed
tomography (PET/CT) with the glucose analog, 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG)),
technique can predict the complete pathological response [9], and associated with dynamic
contrast-enhanced magnetic resonance imaging, it can improve diagnosis [10–12]. DWI was
also used to assess pathological response and surgical margins in locally advanced breast
cancer patients [13], and the characterization of tumors is improved with high-resolution
DWI [14,15].

An important parameter usually calculated using DWI is the apparent diffusion
coefficient (ADC) [16]. It measures the diffusion of water in the tissue. The ADC reveals
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some effects that the tissue produces on the diffusion coefficient of water, such as perfusion
in capillary networks and incoherent intravoxel movement or non-Gaussian diffusion.
This ability of ADC has attracted much interest from scientists and physicians in the last
decade. Now, we know that the ADC values increase shortly after chemotherapy [17–20]
and help to predict early response to these treatments [21–24]. Individualized ADC maps
can help clinicians tailor treatments and avoid ineffective chemotherapies [25]. The ADC
analysis, complemented with dynamic contrast magnetic resonance imaging, has also
been used to determine tumor diameters [26]. The ADC difference has been shown to
have the best predictive performance for the pathological response after neoadjuvant
chemotherapy [27,28].

For breast lesions, mammography offers an alternative method to obtain images.
The availability of equipment and the low cost for patients make mammograms a usual
resource for analyzing and monitoring breast tumors. Unfortunately, obtaining diffusion-
weighted images from mammograms to do an ADC analysis has not been possible. To
solve this limitation, we propose to use a simulation method to calculate the diffusion
coefficient using a mammogram. To do this, we convert the region of interest (ROI) taken
from a mammogram into a simulation space where point fluid particles move through
cylindrical obstacles representing the tissue’s inhomogeneities [29]. The multiparticle
collision (MPC) [30], a mesoscopic simulation technique, governs the dynamics of the
particles. As the simulation space in MPC is continuous, the simulated fluid is affected
even by small heterogeneities in the system. The effects of these variations are transmitted
around the system by the hydrodynamic coupling. This behavior is essential to calculate
average values, such as the mesoscopic diffusion coefficient (MDC). The outline of the
paper is as follows. Section 2 describes the simulation technique, explains the mechanism
for extracting the ROI from the mammogram, and constructs the simulation space. Next, in
the same section, we present the simulation conditions, showing the parameters used to
calculate the MDC. In Section 3, the results are presented. Finally, Section 4 contains the
conclusions of this work.

2. MDC Calculation

The MPC technique has shown good hydrodynamic behavior in various homogeneous,
heterogeneous, or crowded media, even to simulate binary fluids [31], catalytic chemical
reactions [29,32,33], and protein dynamics [34–36]. Due to the coarse grain description,
that is, the substitution of the collision calculation between particles by a rotational change
in their velocities, the MPC technique is computationally efficient. It achieves all this by
keeping the average momentum, energy, and mass constant in the system.

2.1. Building the Simulation Space from Mammograms

An application of diffusion coefficient measurement is monitoring a cancerous lesion
treated with chemotherapy procedures. So, to present our method, we studied a 66-year-old
male patient with a moderately differentiated ductal infiltrating neoplastic lesion before
and after the first chemotherapy cycle. Figure 1 (top) shows the mammograms before (left)
and after (right) the first cycle of four sessions with doxorubicin/endoxan according to the
medical indications.

To extract the ROIs from the mammographic images, we use the image processing
program ImageJ [37]. At the bottom of Figure 1, we observe the corresponding ROIs of
each mammogram. In them, denser areas look lighter than less dense ones.

From the grayscale raster file of each ROI, we build a simulation box. The box’s
volume is given by Lx × Ly × Lz, where Lx and Ly are the numbers of rows and columns
of the raster file, while the height is Lz = 1. We divide the simulation box into V small
cubic cells of volume a3, labeled by an index ξ. Each cell corresponds to a pixel of the raster
image. Inside each of these cells, there is a cylindrical impenetrable obstacle reflecting tissue
heterogeneity. Figure 2 shows a section of a simulation box corresponding to 4 × 3 pixels.
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Before After

Figure 1. Mammograms of the patient before (left column) and after (right column) the first chemother-
apy cycle. The original mammograms are on top. The respective ROIs extracted from the original
mammograms using the image processing program ImageJ are on the bottom.

Figure 2. Section of a simulation box. The section corresponds to 4 × 3 pixels of the grayscale raster
file of a ROI. The section dimension has 4 × 3 × 1 cells. Inside each cell, there is a cylindrical obstacle.
The cylinders with greater radii on the left represent darker pixels, i.e., areas with less dense tissue,
and cylinders with smaller radii on the right correspond to lighter pixels, i.e., denser areas. The black
spheres represent the point fluid particles.

The height of all cylinders is Lz while their radii are given by

rξ =
1
2

(
1 −

Iξ

2b

)
, with ξ = 1, 2, 3, . . . , V ; (1)

where rξ is the radius of the cylinder in the cell ξ, Iξ ∈ [0, 2b] is the intensity of the ξ-th
pixel of the raster file, and b is the color depth of the image.

Note that applying this method to an amorphous channel of cancerous cells, shown
in mammograms as a lighter region, is mapped to a sequence of cells with cylinders with
small radii (rξ ≈ 0) or even without cylinders (rξ = 0). In the set of cells, particles move in
a Brownian way. Instead, the darker regions that delimit these channels are represented by
cells with cylinders with greater radii that can reach the maximum value of rξ = Lz/2.

This construction transfers the properties of the water movement inside a cancerous
lesion to the simulated particles that move inside a rectangular plate of thickness Lz,
crowded by cylinders of different radii.
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2.2. Mesoscopic Technique

To start the MPC simulation, we put N identical particles of mass m into the simulation
box, avoiding placing particles inside cylindrical obstacles. Additionally, each particle is
assigned a random velocity according to a Maxwellian distribution [30]. Therefore, each
particle has a given position and velocity (xi, vi). In MPC dynamics, particles free stream
between multiparticle collision events that occur at discrete times τ. We take obstacles
as rigid and impenetrable cylindrical objects. When a particle collides with an obstacle,
its velocity is reversed, and a bounce-back collision happens. These collisions can occur
several times in the same interval τ. Multiparticle collisions carry out into the cells in the
following way: At every time τ, a rotation operator ω̂ξ , chosen randomly from some set of
rotation operators, is assigned to each cell. After that, the post-collision velocity of particle
i is given by:

v′
i = Vξ + ω̂ξ(vi − Vξ) , (2)

where Vξ is the center of mass velocity in the cell ξ given by

Vξ = n−1
ξ

nξ

∑
i=1

vi , (3)

where nξ is the instantaneous number of particles in the cell ξ. Cells exchange momen-
tum, mass, and energy with their neighbors. We set periodic boundary conditions in the
simulation box to preserve the macroscopic properties of Newtonian fluids.

From previous studies with MPC simulations without obstacles, it is known that
velocity correlations appear when the particles travel, on average, a small fraction of a cell
side. To avoid this, we can introduce a random shift of the multiparticle collision grid to
restore Galilean invariance [38]. However, our simulations use temperatures high enough
to guarantee the invariance [31].

3. Results

A mean density of n0 = N/V = 10 particles per cell was set to guarantee multiparticle
collision events in all cells. The rotation operators ω̂ξ were taken from the set {±π/2}
about randomly chosen axes. The temperature in reduced units (m = 1, a = 1, τ = 1) was
kBT = 1, where kB is the Boltzmann constant. Thus, if v̄ ∼ (kBT/m)1/2 is the average speed
of the particles in the system, the mean free path, Λ = v̄τ, satisfies the relation Λ/a ⩾ 1
and ensures the conservation of the Galilean invariance.

Through simulation, we can observe the evolution of the density of particles in each
cell of the system. The top of Figure 3 shows two snapshots of the initial fluid density and
the bottom two snapshots of the density after t = 500 time steps.

The system images were built from the ROIs of mammograms taken before (left)
and after (right) the chemotherapy. In the images, the intensity of the yellow color is
proportional to the number of fluid particles present in each cell. Cells in red are those
where the particle concentration is more than twice the initial value.

The final state of the simulations shows the regions where the fluid is highly concen-
trated. In these regions, the fluid, on average, has a longer residence time in cells due to its
reduced mobility. In other words, the images bold the areas where the obstruction caused
by the cancerous lesion is significant. Due to the hydrodynamic coupling, obstructions
affect the entire system, decreasing the diffusion coefficient. Observe that the fluid density
images offer the same information as DWI studies. Therefore, they can be used for the
same purposes in evaluating and monitoring breast cancer.
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Before After

Figure 3. Snapshots of the simulated fluid density. The intensity of the yellow color is proportional to
the fluid density. In red, the cells where the density exceeds twice the initial value. At left (right):
images of the system built using the mammogram taken before (after) the first chemotherapy cycle.
Top: t = 0. Bottom: t = 500 time steps.

We can calculate the mesoscopic diffusion coefficient through the Green-Kubo equa-
tion [39,40], given by:

MDC =
1
d

∫ ∞

0

〈
vj(0) · vj(t)

〉
dt with j ∈ S , (4)

where d is the dimension of the system, vj(t) is the velocity of particle j at time t, and
the angular brackets indicate an average over different initial conditions, starting times.
Sets of labeled particles are S. To avoid the correlation effects on the z axis due to the
thickness of the simulation box, LZ = 1, we only use the x and y components of the
velocities and set d = 2. We do the averages over three realizations and 50 stating time
with 500 labeled particles.

To estimate how long the simulation is to obtain the value of MDC, we can observe
the behavior of the velocity autocorrelation function, Cv = ⟨vj(0) · vj(t)⟩. Figure 4 shows
a fast decay of Cv to values close to zero after t = 5 simulation steps.

To characterize the Cv decay, we adjust the points to the function Cv = exp(−t/tC) to
obtain the characteristic times tC. For the mammogram taken before the first chemotherapy
cycle (circles), we have τC ≈ 0.45, and for the mammogram taken after (squares), we have
τC ≈ 0.58. Therefore, we consider that t = 100 is enough time to estimate the value of MDC
in Equation (4).

Remark that there are significant differences between the conditions in the tissue
of the lesion and the simulation system in terms of spatial and temporal scale, speed or
temperature, and amount of mass. Therefore, it is necessary to rescale both of them to
compare the MCD with the diffusion coefficient in the actual tissue. The rescaled MDC is
given by:

MDC∗ = MDC/MDC0 , (5)
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where MDC0 = 1.167 is the mesoscopic diffusion coefficient for a system without obstacles
given by the theoretical relation [41]

MDC0 =
kBTτ

2m

(
2n0 + 1 − e−n0

n0 − 1 + e−n0

)
. (6)

To compare our results, we have selected two previous studies, the first conducted
by Hahn et al. [10] and the second by Partridge et al. [28]. Both measured the apparent
diffusion coefficient (ADC) before and after the first chemotherapy cycle. In order to make
the comparison, we also rescale ADC as follows:

ADC∗ = ADC/ADCH , (7)

where ADCH is the apparent diffusion coefficient of healthy tissues. Note that this rescaling
reduces the dependency on the calibration of the measuring device [4]. As neither of these two
studies reported the ADCH values, we used the value ADCH = (1.78 ± 0.13) × 10−3 mm2/s
obtained in the third study by Sharma et al. [42].

✈

✺✹✸✷✶✵

✷

✶ ✺

✶

✵ ✺

✵

Figure 4. Evolution of the velocity autocorrelation function Cv. The circles and squares represent
the mammogram results before and after the first chemotherapy cycle. Solid lines are the best fit for
equation Cv = exp(−t/tC). Points were obtained by averaging the realizations.

Table 1 compares the MDC∗ before and after the first chemotherapy cycle obtained
through simulation with the ADC∗ values obtained through Equation (7).

Table 1. ADC∗ and MDC∗ values before and after the first chemotherapy cycle. Columns 2 and 3
show the ADC∗ values obtained using the values of ADC reported by Partridge et al. [28] and Hahn
et al. [10], respectively. At the bottom is the difference between the diffusion coefficients before and
after the first chemotherapy cycle.

Study ADC∗ ADC∗ MDC∗

Before 0.61 ± 0.06 0.52 ± 0.13 0.54 ± 0.03
After 0.70 ± 0.09 0.62 ± 0.24 0.63 ± 0.02

∆DC 0.09 0.10 0.09

Observe that there is a good agreement between the simulated values and those
measured in these two previous works in both treatment stages, i.e., the results with
ADC∗ and MDC∗ are statistically indistinguishable. Furthermore, the results obtained
with MDC∗ have minor errors and are statistically differentiated. A parameter to consider
to measure the effectiveness of the applied treatment is the difference between the diffusion
coefficients before and after the first chemotherapy cycle ∆DC [28]. The value of ∆DC



Mathematics 2023, 11, 4988 7 of 10

obtained using our technique is practically the same as those reported in the two previous
studies conducted with DWI, as the bottom of Table 1 shows.

Usually, physicians can classify breast tumors as benign or malignant lesions. The
ADC allows distinguishing between these two kinds of lesions. Table 2 shows the ADC∗

obtained through the values reported by Yoshikawa et al. [43] and by Sharma et al. [42] for
malignant and benign lesions.

Table 2. ADC∗ values for malignant and benign breast lesions before any therapy.

Type [42] [43]

Malign 0.57 ± 0.06 0.55 ± 0.03
Benign 0.88 ± 0.08 0.72 ± 0.01

There is a good agreement between the values of ADC∗ of malign lesions shown in
Table 2 and the value of the mesoscopic diffusion coefficient before the chemotherapy cycle,
MDC∗ = 0.54 ± 0.03, shown in Table 1. Moreover, even the value of the mesoscopic
diffusion coefficient after the chemotherapy cycle, MDC∗ = 0.63 ± 0.02, is statistically
different from the values of ADC∗ of benign lesions.

Finally, all MPC simulations ran in a couple of hours on a 3400 GHz 7th generation
I7 processor desktop computer, with a sequential algorithm executed on one of its cores.
This performance shows that MPC dynamics can handle N ≈ 106 fluid particles in a
media with more than 65,000 obstacles in the heaviest calculation, all that on a standard
personal computer.

4. Conclusions

We developed a technique that allows for the evaluation of cancerous lesions before
and after a cycle of chemotherapy. The technique is based on the fact that cancerous lesions
produce changes in tissue structure that alter the diffusion coefficient values in the affected
area. Unlike other diffusion-weighted imaging (DWI) techniques that require specialized
equipment such as magnetic resonators, our technique only requires a mammogram and a
personal computer to simulate and calculate the diffusion coefficient.

We use multiparticle collision MPC dynamics to simulate fluid behavior inside tissues,
which is a mesoscopic simulation technique that maintains the fundamental properties
of fluids, such as hydrodynamic coupling and continuity in the diffusion space. MPC is
efficient even when simulating fluids in crowded environments, making it well suited for
our purpose.

The relative values obtained from the MPC simulations of the mesoscopic diffusion
coefficient (MDC∗) are equivalent to the apparent diffusion coefficient (ADC∗) reported
in previous studies of breast cancer lesions. Furthermore, our technique is able to mea-
sure a key parameter—the change in relative diffusion coefficient after the first cycle of
chemotherapy (∆DC)—that was found to be almost identical to that reported in previous
studies conducted with other techniques. Additionally, our technique can differentiate
malignant lesion and benign tumors.

The fact that our technique only requires a personal computer and mammograms
makes it inexpensive and easy to implement and disseminate. Given these advantages, it is
promising technique for the evaluation of cancerous lesion.

5. Patents

The methodology applied in this paper has been presented in the United States Patent
and Trademark Office, with the title “Method for Monitoring and Analysis of Biomedical
Images” under the provisional patent application number 2362.20100P.
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