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Abstract: A graph with n vertices is called an n-graph. A spanning tree with at most k leaves is
referred to as a spanning k-ended tree. Spanning k-ended trees are important in various fields
such as network design, graph theory, and communication networks. They provide a structured
way to connect all the nodes in a network while ensuring efficient communication and minimizing
unnecessary connections. In addition, they serve as fundamental components for algorithms in
routing, broadcasting, and spanning tree protocols. However, determining whether a connected
graph has a spanning k-ended tree or not is NP-complete. Therefore, it is important to identify
sufficient conditions for the existence of such trees. The implicit-degree proposed by Zhu, Li, and
Deng is an important indicator for the Hamiltonian problem and the spanning k-ended tree problem.
In this article, we provide two sufficient conditions for K1,4-free connected graphs to have spanning
k-ended trees for k = 2, 3. We prove the following: Let G be a K1,4-free connected n-graph. For
k = 2, 3, if the implicit-degree sum of any k + 1 independent vertices of G is at least n− k + 2, then G
has a spanning k-ended tree. Moreover, we give two examples to show that the lower bounds n and
n− 1 are the best possible.

Keywords: implicit-degree; spanning tree; leaves; K1,4-free graph

MSC: 05C05; 05C07

1. Introduction

All the graphs considered in this paper are finite, undirected, and simple. Notations
not defined here refer to [1]. For a graph G, we always use V(G), E(G), and |V(G)| to
denote the vertex set, edge set, and number of vertices of G, respectively. A graph G with
n vertices is called an n-graph. Suppose H is a subgraph of G and u is a vertex of G. We
define the neighborhood of u in H as NH(u) = {x ∈ V(H) | ux ∈ E(G)} and the degree of u
in H as dH(u) = |NH(u)|. For two vertices u, v ∈ V(H), we use PH [u, v] to denote a path
between u and v in H with u and v as end vertices, and use PH(u, v) = PH [u, v] \ {u, v},
dH(u, v) to denote the distance between u and v in H, i.e., the number of edges of the
shortest path between u and v in H. Suppose E′ is a nonempty subset of E(G). We use
H + E′ and H − E′ to denote the graph obtained from H by adding and deleting edges in
E′, respectively. If E′ = {e}, we write H + e and H − e instead of H + {e} and H − {e},
respectively. Let ∆(H) denote the maximum degree of H. For an integer i ≥ 1 and a
subset X of V(G), we define NH(X) =

⋃
x∈X
{y ∈ V(H) | xy ∈ E(G)}, dH(X) = ∑

x∈X
dH(x),

and NH
i (X) = {x ∈ V(H) | |NH(x) ∩ X| = i}.
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Let G1, G2, . . . , Gk be k graphs. The union graph of G1, G2, . . . , Gk, denoted by
k⋃

i=1
Gi,

is a graph with vertex set
k⋃

i=1
V(Gi) and edge set

k⋃
i=1

E(Gi); if G1, G2, . . . , Gk are pairwise

vertex disjoint, we denote
k⋃

i=1
Gi by

k
∑

i=1
Gi or G1 + G2 + · · ·+ Gk; if each Gi is isomorphic

to Q, we abbreviate
k⋃

i=1
Gi as kQ. The join graph of G1, G2, . . . , Gk, denoted by

k∨
i=1

Gi, is a

graph obtained from
k
∑

i=1
Gi by connecting any vertex of Gi to each vertex of Gj by an edge

for each i 6= j.
A subset U of V(G) is called an independent set of G if any two vertices of U are

nonadjacent in G. We use α(G) to denote the independence number of a graph G. For an

integer k ≥ 1, we denote σk(G) = min{
k
∑

i=1
dG(ui) | {u1, u2, . . . , uk} as an independent set

of G} if k ≤ α(G); otherwise, σk(G) = +∞.
A tree is a connected acyclic graph. A maximal tree is a tree that cannot be extended

by adding any more edges without creating a cycle. For a tree T, a leaf of T is a vertex
v with dT(v) = 1. We use L(T) to denote the set of leaves in T. A spanning tree (resp. a
Hamiltonian path) of a graph is a tree (resp. a path) containing all the vertices of the graph.
A spanning k-ended tree (resp. k-ended tree) is a spanning tree (resp. a tree) with at most k
leaves. Obviously, a Hamiltonian path is a spanning 2-ended tree.

Spanning k-ended trees are important in various fields such as network design, graph
theory, and communication networks. They provide a structured way to connect all the
nodes in a network while ensuring efficient communication and minimizing unnecessary
connections. In addition, they serve as fundamental components for algorithms in routing,
broadcasting, and spanning tree protocols. Therefore, the existence and properties of
spanning k-ended trees are crucial for optimizing network design and performance. Ozeki
and Yamashita [2] pointed out that determining whether a graph has a spanning k-ended
tree or not is NP-complete. Since then, many scholars have studied the sufficient conditions
for the existence of spanning k-ended trees, such as degree sum conditions [3–9].

The forbidden induced subgraph conditions are a set of criteria used to determine
whether a given graph can have a spanning tree with specific properties. These conditions
indicate which specific subgraphs are not allowed to be induced in the graph for such
spanning trees to exist. Among all the forbidden induced subgraphs, the complete bipartite
graph K1,r is central. A graph that does not contain an induced subgraph isomorphic to
K1,r is called a K1,r-free graph. Matthews and Sumner [10] showed that a K1,3-free n-graph
G has a Hamiltonian path if σ3(G) ≥ n− 2. Kano et al. [11] gave a degree sum condition
for a K1,3-free graph to have a spanning k-ended tree as follows.

Theorem 1 (Kano et al. [11]). Let G be a connected K1,3-free n-graph. If σk+1(G) ≥ n− k for
any k ≥ 2, then G has a spanning k-ended tree.

For k = 2, 3, Kyaw gave a sufficient condition for a K1,4-free graph to have a spanning
k-ended tree.

Theorem 2. Let G be a connected K1,4-free n-graph.

(1) (Kyaw [12]) If σ3(G) ≥ n, then G has a Hamiltonian path.
(2) (Kyaw [13]) If σ4(G) ≥ n− 1, then G has a spanning 3-ended tree.

The Hamiltonian problem holds significant importance in graph theory and com-
binatorial optimization. It is crucial in determining whether a given graph contains a
Hamiltonian cycle, which is a cycle that visits each vertex exactly once. The problem has
applications in various fields, including computer science, logistics, and transportation,
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as it relates to the design of efficient routes, scheduling, and circuit layout. Furthermore,
the study of the Hamiltonian problem has led to the development of important algorithms
and heuristics, contributing to advancements in computational complexity and theoretical
computer science. The problem also serves as a foundational concept for understanding and
solving other NP-complete problems, making it a central focus of research in combinatorial
optimization and algorithmic design.

Degree conditions and forbidden induced subgraph conditions are the two types of
classical sufficient conditions for graphs to be Hamiltonian. As we all known, in the study
of the existence of a Hamiltonian cycle, the degree sum of end vertices in a longest path
is crucial. Bondy [14] proved that if a 2-connected n-graph has a longest path between
x and y such that dG(x) + dG(y) ≥ c, then G is Hamiltonian or has a cycle of length at
least c. Sometimes, perhaps, the degree sum of the two end vertices of a longest path is
smaller, but the degrees of their neighbors or vertices at distance two with them are larger,
and we can replace them by some larger degree vertices in the right position so that we
can construct a longest path with a larger degree sum of its end vertices. Therefore, we can
construct a longer cycle. With the inspiration of this idea, Zhu, Li, and Deng [15] proposed
the definition of implicit-degree.

Definition 1 (Zhu, Li and Deng [15]). Let x be a vertex of G and let N2
G(x) = {y ∈ V(G) |

dG(x, y) = 2} denote the set of vertices at distance two with x in G. Set M2 = max{dG(y) | y ∈
N2

G(x)}. If l = dG(x) ≥ 2 and N2
G(x) 6= ∅, then suppose that dx

1 ≤ dx
2 ≤ . . . ≤ dx

l−1 ≤ dx
l ≤ . . .

is the degree sequence of vertices of NG(x) ∪ N2
G(x) in G. The implicit-degree of x, denoted by

idG(x), is defined as

idG(x) =
{

max{dx
l , dG(x)}, if dx

l > M2;
max{dx

l−1, dG(x)}, if dx
l ≤ M2.

If l = dG(x) ≤ 1 or N2
G(x) = ∅, then we define idG(x) = dG(x).

Obviously, idG(x) ≥ dG(x) for every vertex x ∈ V(G). From the definition of implicit-
degree, it coincides with the importance of a person’s friends or friends’ friends in a social

network. We define iσk(G) = min{
k
∑

j=1
idG(uj) | {u1, u2, . . . , uk} is an independent set

of G} if k ≤ α(G); otherwise, iσk(G) = +∞. Many classical results in graph theory that
consider degree conditions can be extended to implicit-degree conditions, such as [15–17].
We just give one example related to spanning trees to show this in detail.

Theorem 3 (Cai et al. [18]). Let G be a connected n-graph and k ≥ 2 be an integer. If iσt(G) ≥
t(n−k)

2 + 1 (k ≥ t ≥ 2), then G contains a spanning k-ended tree.

Since iσ2(G) ≥ σ2(G), the result of Broersma and Tuinstra [3] is a corollary of Theorem 3
when t = 2. In this article, we extend Theorem 2 by using iσ3(G) and iσ4(G) in place of
σ3(G) and σ4(G), respectively.

Theorem 4. Suppose G is a connected K1,4-free n-graph.

(1) If iσ3(G) ≥ n, then G has a Hamiltonian path.
(2) If iσ4(G) ≥ n− 1, then G has a spanning 3-ended tree.

The proof of Theorem 4 will be given in Section 3. Now, we present the following
three examples. The first one shows that the lower bounds in Theorem 4 are better than
those in Theorem 3; the second one shows that the lower bounds are sharp in Theorem 4;
and the third one provides graphs which do not satisfy the conditions of Theorem 2, but
satisfy the conditions of Theorem 3.
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Example 1. Let G be a connected n-graph with n > 6. Theorem 3 shows that (1) G has a
Hamiltonian path if iσ3(G) ≥ (3n− 4)/2 > n; (2) G has a spanning 4-ended tree if iσ4(G) ≥
2n − 7 > n − 1. Theorem 4 shows that, if G is K1,4-free, then iσ3(G) ≥ (3n − 4)/2 and
iσ4(G) ≥ 2n− 7 can be reduced to iσ3(G) ≥ n and iσ4(G) ≥ n− 1, respectively.

Example 2. (1) The graph G = K1 ∨ 3Km indicates that the condition iσ3 ≥ n(= 3m + 1) in
Theorem 4 is sharp. Clearly, G has no Hamiltonian path. The vertex in K1 has implicit-degree
3m and every vertex in 3Km has implicit-degree m. So, iσ3(G) = 3m = n− 1. (2) The following
graph G indicates that the condition iσ4(G) ≥ n− 1 in Theorem 4 is sharp. Let Gi be a complete

ni-graph for 1 ≤ i ≤ 4. The graph G is constructed with vertex set V(G) =
4⋃

i=1
V(Gi) ∪ {u, v}

(u, v /∈
4⋃

i=1
V(Gi)) and edge set E(G) =

4⋃
i=1

E(Gi) ∪ {uv} ∪ {uw | w ∈ V(G1) ∪ V(G2)} ∪

{vw | w ∈ V(G3) ∪V(G4)} (see Figure 1). It is easy to verify that iσ4(G) =
4
∑

i=1
ni = n− 2 and

G has no spanning 3-ended tree. Without loss of generality, suppose n1 + n2 ≤ n3 + n4. For each
vertex x ∈ V(G), the degree and implicit-degree of x can be seen from in Table 1.

u v

Kn1

Kn2

Kn3

Kn4

Figure 1. Graph with no spanning 3-ended tree.

Table 1. Degrees and implicit-degrees of all the vertices in the graph in Figure 1.

The Vertex x NG(x) N2
G(x) dG(x) idG(x)

x ∈ V(Kn1 ) (V(Kn1 ) \ {x}) ∪ {u} V(Kn2 ) ∪ {v} n1 n1
x ∈ V(Kn2 ) (V(Kn2 ) \ {x}) ∪ {u} V(Kn1 ) ∪ {v} n2 n2
x ∈ V(Kn3 ) (V(Kn3 ) \ {x}) ∪ {v} V(Kn4 ) ∪ {u} n3 n3
x ∈ V(Kn4 ) (V(Kn4 ) \ {x}) ∪ {v} V(Kn3 ) ∪ {u} n4 n4
x = u V(Kn1 ) ∪V(Kn2 ) ∪ {v} V(Kn3 ) ∪V(Kn4 ) n1 + n2 + 1 n3 + n4 + 1
x = v V(Kn3 ) ∪V(Kn4 ) ∪ {u} V(Kn1 ) ∪V(Kn2 ) n3 + n4 + 1 n3 + n4 + 1

Example 3. (1) Let Gi = Km with i = 1, 2, 3. Let G′ be a graph constructed from the graph
K1 ∨ (G1 ∪ G2 ∪ G3) (m ≥ 2) by adding one edge between xi and yi for each 1 ≤ i ≤ m, and
deleting one edge between K1 and G1, G2. Where V(K1) = {u}, V(G1) = {x1, x2, . . . , xm},
V(G2) = {y1, y2, . . . , ym}, and V(G3) = {z1, z2, . . . , zm}, and x1 and y1 denote the two vertices
not adjacent to u. It is easy to verify that σ3(G′) = 3m = n − 1, iσ3(G′) = 3(m + 1) > n,
and G′ has a Hamiltonian path xmxm−1x1y1y2 . . . ymxz1z2 . . . zm. For each vertex x ∈ V(G′),
the degree and implicit-degree of x can be seen from Table 2. (2) Let G′′ be a graph constructed
from the graph in Figure 1 with ni = m = (n− 2)/4 (1 ≤ i ≤ 4) by adding m− 1 independent
edges between G1 and G2 (see Figure 2). It is easy to verify that σ4(G′′) = 4m = n − 2,
iσ4(G′′) = 2m + 2(m + 1) > n− 1, and G′′ contains a spanning 3-ended tree. This shows that
Theorem 4 generalizes Theorem 2.
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Table 2. Degrees and implicit-degrees of all the vertices in the graph G′.

The Vertex x NG′ (x) N2
G′ (x) dG′ (x) idG′ (x)

x = u V(G) \ {u} ∅ 3m 3m
x = xi(2 ≤ i ≤ m) (V(G1) \ {xi}) ∪ {x, yi} (V(G2) \ {yi}) ∪V(G3) m + 1 m + 1
x = x1 (V(G1) \ {x1}) ∪ {y1} (V(G2) \ {y1}) ∪ {x} m m + 1
x = yi(2 ≤ i ≤ m) (V(G2) \ {yi}) ∪ {x, xi} (V(G1) \ {xi}) ∪V(G3) m + 1 m + 1
x = y1 (V(G2) \ {y1}) ∪ {x1} (V(G1) \ {x1}) ∪ {x} m m + 1
x ∈ zi(1 ≤ i ≤ m) (V(G3) \ {zi}) ∪ {x} (V(G1) \ {x1}) ∪ (V(G2) \ {y1}) m m + 1

Km

Km

Km

Km

Figure 2. Graph with no Hamiltonian cycle.

We will prove Theorem 4 in Section 3 while some preliminaries will be given in
Section 2.

2. Preliminaries

Let x, y be two vertices of an oriented path P. We use xPy to denote the subpath
of P from x to y and yPx to denote the subpath of P from y to x in the reverse direction.
Define x− and x+ as the predecessor and successor of x on P, respectively. For any subset
I ⊆ V(P), we define I− = {y | y+ ∈ I} and I+ = {y | y− ∈ I}. In this section, let
P = x1x2 . . . xp be a path of a connected graph G and x, y, z be any three distinct vertices
not in V(P). The following lemmas are useful in the proof of Theorem 4.

Lemma 1 (Kyaw [13]). Let T be a maximal tree of G with four leaves. If G has no spanning
3-ended tree, then there is no 3-ended tree T′ in G such that V(T′) = V(T).

Lemma 2 (Zhu, Li and Deng [15]). If P is a longest path satisfying x1xp /∈ E(G) and dG(x1) <
idG(x1), then there is a vertex xj ∈ NP(x1)

− such that dG(xj) ≥ idG(x1).

Lemma 3. If NP(x)− ∩ NP(y) = ∅, then

dP(x) + dP(y) ≤
{
|V(P)|, if xx1 /∈ E(G) or yxp /∈ E(G);
|V(P)|+ 1, otherwise.

Proof. Note that |NP(x)− ∪ NP(y)| = |NP(x)−|+ |NP(y)|. If xx1 /∈ E(G), then NP(x)− ∪
NP(y) ⊆ V(P) and thus dP(x) + dP(y) = |NP(x)−| + |NP(y)| = |NP(x)− ∪ NP(y)| ≤
|V(P)|. If yxp /∈ E(G), then (NP(x) \ {x1})− ∪ NP(y) ⊆ V(P) \ {xp} and thus dP(x) +
dP(y) = |NP(x)−|+ |NP(y)| = |NP(x)− ∪NP(y)| ≤ |V(P)|. Otherwise, (NP(x) \ {x1})− ∪
NP(y) ⊆ V(P) and thus dP(x)+ dP(y) = |(NP(x) \ {x1})−|+ |{x1}|+ |NP(y)| = |(NP(x) \
{x1})− ∪ NP(y)|+ 1 ≤ |V(P)|+ 1.

Lemma 4. If NP(x)− ∩ NP(y) = ∅, NP(x)− ∩ NP(z) = ∅, and NP(y) ∩ NP(z) = ∅, then
dP(x) + dP(y) + dP(z) ≤ |V(P)|+ 1.

Proof. Note that |NP(x)− ∪NP(y)∪NP(z)| = |NP(x)−|+ |NP(y)|+ |NP(z)| and (NP(x) \
{x1})− ∪ NP(x) ∪ NP(z) ⊆ V(P). Then, dP(x) + dP(y) + dP(z) ≤ |(NP(x) \ {x1})−| +
|{x1}|+ |NP(y)|+ |NP(z)| ≤ |V(P)|+ 1.
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3. Proof of Theorem 4

Since the result of Theorem 4 (2) will be used in the proof of Theorem 4 (1), we prove
Theorem 4 (2) firstly.

Proof of Theorem 4 (2). Let G be a connected K1,4-free n-graph with iσ4(G) ≥ n− 1 and
let G have no spanning three-ended tree. Then, every spanning tree of G has at least four
leaves. Choose a maximal tree T of G with exactly four leaves such that ∆(T) is minimal.

Since T has exactly four leaves, we have ∆(T) = 4 or ∆(T) = 3 (see Figure 3). Let
L(T) = {x1, x2, x3, x4} and S = {x | x ∈ V(T) and dT(x) = ∆(T)}. Since T is maximal,
NG(L(T)) ⊆ V(T).

If ∆(T) = 4, then |S| = 1. Let S = {r} and NT(r) = {y1, y2, y3, y4} (see Figure 3a).
If yiyj ∈ E(G) for some i 6= j, then T′ = T + yiyj − ryi is a tree with four leaves such that
V(T′) = V(T) and ∆(T′) = 3 < ∆(T). This contradicts the choice of T. So, {y1, y2, y3, y4}
is an independent set of G. Thus, {r, y1, y2, y3, y4} induces a K1,4, a contradiction.

Next, we can assume ∆(T) = 3. Then, |S| = 2. Let S = {s, t} (see Figure 3b). We
choose such a T satisfying the following conditions.

(C1) The distance dT(s, t) is as small as possible;
(C2) The degree sum dG(L(T)) is as large as possible, subject to (1).
Let Bi be the component of T − S such that V(Bi) ∩ L(T) = {xi} and let yi be the

unique vertex of NT(S) ∩V(Bi) with 1 ≤ i ≤ 4. We assume, without loss of generality, that
sy1, sy2, ty3, ty4 ∈ E(T).

1x

2x 3x

4x
1x

2x

3x

4xr

s t

1y

2y

3y

4y

4y
2y

1y
3y

( )a ( )b

Figure 3. Trees with exactly four leaves.

Claim 1. L(T) is an independent set of G.

Proof. If there are two vertices xi, xj ∈ L(T) such that xixj ∈ E(G), then T′ = T + xixj− syi
or T + xixj − tyi is a three-ended tree such that V(T′) = V(T), contrary to Lemma 1.

Claim 2. xiyj /∈ E(G) for 1 ≤ i 6= j ≤ 4.

Proof. If there are two vertices xi, yj such that xiyj ∈ E(G), then T′ = T + xiyj − syj or
T + xiyj − tyj is a three-ended tree such that V(T′) = V(T), contrary to Lemma 1.

Claim 3. NG(L(T)) ∩V(PT(s, t)) = ∅.

Proof. Suppose to the contrary that NG(L(T))∩V(PT(s, t)) 6= ∅. We assume, without loss
of generality, that there is a vertex z ∈ V(PT(s, t)) such that x1z ∈ E(G). Then, T′ =
T + x1z− sy1 is a tree with four leaves such that ∆(T′) = 3, V(T′) = V(T) and dT′(z) =
dT′(t) = 3. But dT′(z, t) < dT(s, t), contrary to the condition (C1).

Claim 4. idG(xj) = dG(xj) for each vertex xj ∈ L(T).

Proof. Suppose that there is a vertex xj ∈ L(T) such that idG(xj) > dG(xj). Without loss
of generality, we assume idG(x1) > dG(x1). Let l = dG(x1) and NG(x1) = {w1, w2, . . . , wl}.
Suppose that dx1

1 ≤ dx1
2 ≤ . . . ≤ dx1

l−1 ≤ dx1
l ≤ . . . is the degree sequence of vertices of

NG(x1) ∪ N2
G(x1) in G. By the definition of idG(x1), we have l ≥ 2 and idG(x1) = dx1

l−1
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or idG(x1) = dx1
l . Denote w−i and w+

i as the predecessor and successor of wi on the path
PT [x1, wi], respectively. Without loss of generality, suppose w−1 = x1. By Claims 1–3, there
must exist a vertex w+

m ∈ N2
G(x1) for some 1 ≤ m ≤ l and {s, t} ∩ {w−1 , w−2 , . . . , w−l } = ∅.

If idG(x1) = dx1
l−1, then, since w−2 , w−3 , . . . , w−l are l − 1 vertices in NG(x1) ∪ N2

G(x1),
there must exist a vertex w−j ∈ {w

−
2 , w−3 , . . . , w−l } such that dG(w−j ) ≥ dx1

l−1 = idG(x1) >

dG(x1). If idG(x1) = dx1
l , then dx1

l > M2 = max{dG(xu) | u ∈ N2
G(x1)}. Since w+

m ∈
N2

G(x1), dG(w+
m) ≤ M2 < dx1

l = idG(x1). Since w−2 , w−3 , . . . , w−l , w+
m are l vertices in

NG(x1) ∪ N2
G(x1), there must exist a vertex w−j ∈ {w

−
2 , w−3 , . . . , w−l } such that dG(w−j ) ≥

dx1
l = idG(x1) > dG(x1). Therefore, in both cases, we can obtain a tree T′ = T + x1wj −

wjw−j with four leaves such that ∆(T′) = ∆(T), V(T′) = V(T), and w−j replaces x1 as a new

leaf of T′. Then, ∑
u∈L(T′)

dG(u)− ∑
u∈L(T)

dG(u) = dG(w−j )− dG(x1) ≥ idG(x1)− dG(x1) > 0,

contrary to condition (C2).

Claim 5. For 1 ≤ i 6= j ≤ 4, if z ∈ V(Bi) ∩ NG(xj), then z− /∈ NG(L(T) \ {xj}), where z−

denotes the predecessor of z on the path PT [xj, z].

Proof. Suppose z is a vertex of V(Bi) ∩ N(xj) such that z− /∈ NG(L(T) \ {xj}) for some
i 6= j. Without loss of generality, we assume that syi ∈ E(G) and z−xk ∈ E(G) for
some k 6= j. Then, T′ = T + {xjz, xkz−} − {syi, zz−} is a three-ended tree such that
V(T′) = V(T), contrary to Lemma 1.

Claim 6. N4(L(T) = N3(L(T)) = ∅.

Proof. If there is a vertex w ∈ N4(L(T)), then, by Claim 1, {w, x1, x2, x3, x4} induces a K1,4,
a contradiction.

If there is a vertex w ∈ N3(L(T)), then, by Claim 3, w ∈
4⋃

i=1
V(Bi) ∪ S . Let

wxr, wxs, wxt ∈ E(G), where {xr, xs, xt} ⊂ L(T). We can assume r 6= i. If w ∈ V(Bi)
for some 1 ≤ i ≤ 4, then w 6= yi by Claim 2 and w− /∈ NG(L(T)) by Claim 5. Thus,
{w, w−, xr, xs, xt} induces a K1,4 by Claim 1, a contradiction.

If w ∈ S, then, without loss of generality, we assume w = s. So there is a vertex xj ∈
L(T) such that sxj ∈ E(G) and t ∈ V(PT [s, xj]). If st is an edge of T, then T′ = T + sxj − st
is a three-ended tree such that V(T′) = V(T), contrary to Lemma 1. Otherwise, there is a
vertex s+ ∈ V(PT [s, t]). By Claim 3, x+ /∈ NG(L(T)). Then, {s, s+, xr, xs, xt} induces a K1,4
by Claim 1, a contradiction.

Next, we calculate dG(L(T)). For convenience, for 1 ≤ i ≤ 4, we set A1
i = {xi}, A2

i =
NG(xi)∩V(Bi), A3

i = (NG(L(T) \ {xi}))− ∩V(Bi), and A4
i = (NG

2 (L(T)) \N(xi))∩V(Bi),
where (N(L(T) \ {xi}))− = {u− | u ∈ N(L(T) \ {xi}). Clearly, A1

i ∪ A2
i ∪ A3

i ∪ A4
i ⊆ V(Bi)

for every i = 1, 2, 3, 4.

Claim 7. For 1 ≤ i ≤ 4, A1
i , A2

i , A3
i , and A4

i are pairwise disjoint.

Proof. Clearly, A1
i ∩ A2

i = ∅ and A1
i ∩ A3

i = ∅. By Claim 1, A1
i ∩ A4

i = ∅. By Claim 5,
A2

i ∩ A3
i = ∅ and A3

i ∩ A4
i = ∅. By Claim 6, A2

i ∩ A4
i = ∅.
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For 1 ≤ i ≤ 4, by Claims 6 and 7, and the inclusion–exclusion principle, we have

|V(Bi)| ≥ |A1
i ∪ A2

i ∪ A3
i ∪ A4

i |
= |A1

i |+ |A2
i |+ |A3

i |+ |A
4
i |

= 1 + |NG(xi) ∩V(Bi)|+ |(NG(L(T) \ {xi}))− ∩V(Bi)|
+|(NG

2 (L(T)) \ N(xi)) ∩V(Bi)|
= 1 + |NG(xi) ∩V(Bi)|+ |(NG(L(T) \ {xi})) ∩V(Bi)|

+|(NG
2 (L(T)) \ N(xi)) ∩V(Bi)|

≥ 1 +
4

∑
j=1
|NG(xj) ∩V(Bi)|.

Hence,

4

∑
i=1
|V(Bi)| ≥ 4 +

4

∑
i=1

4

∑
j=1
|NG(xj) ∩V(Bi)|. (1)

By Claim 6, we have

4

∑
j=1
|NG(xj) ∩ {s}| ≤ 2 and

4

∑
j=1
|NG(xj) ∩ {t}| ≤ 2. (2)

Notice that NG(L(T)) ⊆ V(T) and NG(L(T)) ∩ (V(PT [s, t]) \ {s, t}) = ∅ by Claim 3.
By inequalities (1) and (2), we have

4

∑
j=1

dG(xj) =
4

∑
i=1

4

∑
j=1
|NG(xj) ∩V(Bi)|+

4

∑
j=1
|NG(xj) ∩ {s, t}|

≤ (
4

∑
i=1
|V(Bi)| − 4) + 4

=
4

∑
i=1
|V(Bi)| ≤ |V(T)| − 2.

Therefore, by Claim 4, we have n = |V(G)| ≥ |V(T)| ≥ 2 +
4
∑

j=1
dG(xj) = 2 +

4
∑

j=1
idG(xj) ≥ 2 + iσ4(G). So, iσ4(G) ≤ n− 2; this contradicts the condition iσ4(G) ≥ n− 1.

Now, we complete the proof of Theorem 4 (2).
2

Proof of Theorem 4 (1). Let G be a connected K1,4-free n-graph with iσ3(G) ≥ n but let G
have no Hamiltonian path. Since iσ4(G) ≥ iσ3(G) ≥ n, by Theorem 4 (2), G has a spanning
three-ended tree. Let

T ∗ = {T | T is a spanning three-ended tree of G}.

Since G has no Hamiltonian path, every tree in T ∗ has exactly three leaves. We choose
a longest path P = x1x2 . . . xp of T ∗ such that dG(x1) + dG(xp) is as large as possible.
Then, NG(x1) ∪ NG(xp) ⊆ V(P). Let T be the tree in T ∗ containing the path P. Then,
H = T −V(P) is a path of T and one of the end vertices of H is adjacent to some vertex xr
with 2 ≤ r ≤ p− 1 in T. For convenience, set H = y1y2 . . . yh. Without loss of generality,
we assume y1xr ∈ E(T). In fact, by the choice of P, we have h + 1 ≤ r ≤ p− h.

Claim 8. {x1, xp, yj} is an independent set of G for every vertex yj ∈ V(H).
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Proof. If x1xp ∈ E(G), then yhHy1xrPx1xpPxr+1 is a Hamiltonian path of G, a contradic-
tion. Since NG(x1) ∪ NG(xp) ⊆ V(P), we have x1yj /∈ E(G) and xpyj /∈ E(G) for every
vertex yj ∈ V(H). So, {x1, xp, yj} is an independent set of G for every vertex yj ∈ V(H).

Claim 9. idG(x1) = dG(x1) and idG(xp) = dG(xp).

Proof. If dG(x1) < idG(x1), then, by Lemma 2, there is a vertex xj ∈ NP(x1)
− such that

dG(xj) ≥ idG(x1). Thus, P′ = xjPx1xj+1Pxp is another longest path of T ∗ such that
dG(xj) + dG(xp) ≥ idG(x1) + dG(xp) > dG(x1) + dG(xp). This contradicts the choice of P.
So, idG(x1) = dG(x1). Similarly, idG(xp) = dG(xp).

Set iδ(H) = min{idG(u) | u ∈ V(H)}.

Case 1. There is a vertex yt ∈ V(H) such that dG(yt) ≥ iδ(H).

Subcase 1. |V(H)| ≥ 2.

Set A1 = NP(x1)
−, B1 = NP(xp)+ and C1 = NP(yt). If there is a vertex xs ∈ A1 ∩ C1,

then T′ = T + {ytxs, x1xs+1} − {xsxs+1, y1xr} is a tree in T ∗ and P′ = y1HytxsPx1xs+1Pxp
is a path of T ∗ longer than P, a contradiction. So, A1 ∩ C1 = ∅. Similarly, B1 ∩ C1 = ∅.

If there is a vertex xs ∈ A1 ∩ B1, then s 6= r (otherwise, yh Hy1xrPx1xr+1Pxp is a Hamil-
tonian path of G, a contradiction). Thus, T′ = T + {x1xs+1, xpxs−1} − {xrxr−1, xsxs−1} is a
tree in T ∗, and P′ = yhHy1xrPxpxs−1Px1xs+1Pxr−1 if s < r or P′ = yh Hy1xrPxs−1xpPxs+1
x1Pxr−1 if s > r; P′ is a path of T ∗ longer than P, a contradiction. So, A1 ∩ B1 = ∅.
Therefore, A1, B1, and C1 are pairwise disjoint. Note that A1 ∪ B1 ∪ C1 ⊆ V(P) and
NG(x1) ∪ NG(xp) ⊆ V(P). We have

dG(x1) + dG(xp) + dG(yt) = (dP(x1) + dP(xp) + dP(yt)) + (dH(x1) + dH(xp) + dH(yt))

≤ (|A1|+ |B1|+ |C1|) + (|V(H)| − 1)

≤ |V(P)|+ (|V(H)| − 1)

= n− 1.

On the other hand, dG(x1)+ dG(xp)+ dG(yt) ≥ idG(x1)+ idG(xp)+ iδ(H) ≥ iσ3(G) ≥
n, a contradiction.

Subcase 2. |V(H)| = 1.

Then, H = {y1}. Let NP(y1) = {xi1 , xi2 , . . . , xik} (k ≥ 1). We can assume that
xi1 , xi2 , . . . , xik occur in this order along P. Let P1 = x2x3 . . . xi1 , Pj = xij−1+1xij−1+2 . . . xij

for 2 ≤ j ≤ k, and, Pk+1 = xik+1xik+2 . . . xp−1. Clearly, n =
k+1
∑

j=1
|V(Pj)|+ 3. Since P is a

longest path of T ∗, it is easy to verify that NPs(x1)
− ∩ NPs(xp) = ∅ for 1 ≤ s ≤ k + 1,

xij+1 /∈ NP(x1), xij−1 /∈ NP(xp) for 1 ≤ j ≤ k, and moreover, if k ≥ 2, then xij+1 /∈ NP(xp)

for 1 ≤ j ≤ k− 1, xij−1 /∈ NP(x1) and ij − ij−1 ≥ 2 for 2 ≤ j ≤ k.
If k = 1, then, by Lemma 3, dG(x1) + dG(xp) + dG(y1) = dP(x1) + dP(xp) + dP(y1) =

2
∑

j=1
(dPj(x1) + dPj(xp)) + 1 ≤

2
∑

j=1
(|V(Pj)|+ 1) + 1 = n− 1.

If k = 2, then xi1 /∈ NP(xp) (otherwise, {xi1 , xi1−1, xi1+1, y1, xp} induces a K1,4, a con-
tradiction). Thus, by Lemma 3, we have dG(x1) + dG(xp) + dG(y1) = dP(x1) + dP(xp) +

dP(y1) =
3
∑

j=1
(dPj(x1) + dPj(xp)) + 2 ≤

3
∑

j=1
|V(Pj)|+ 2 = n− 1.
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Next, suppose k ≥ 3. Similarly to the case k = 2, we can ascertain that dPj(x) +
dPj(y) ≤ |V(Pj)| for j = 1, k, k + 1. Since G is K1,4-free, {xij−1+1, xij−1, xij} ∩ (NP(x1) ∪
NP(xp)) = ∅ for 2 ≤ j ≤ k− 1. By Lemma 3, we have dPj(x1) + dPj(xp)= dPj\{xij−1,xij

}(x1)

+dPj\{xij−1,xij
}(xp) ≤ |V(Pj \ {xij−1, xij})| = |V(Pj)| − 2 for 2 ≤ j ≤ k − 1. Therefore,

dG(x1) + dG(xp) + dG(y1) = dP(x1) + dP(xp) + dP(y1) =
k+1
∑

j=1
(dPj(x1) + dPj(xp)) + k ≤

|V(P1)|+
k−1
∑

j=2
(|V(Pj)| − 2) + |V(Pk)|+ |V(Pk+1)|+ k ≤ n− 1.

By the above discussion, for any k ≥ 1, we have dG(x1) + dG(xp) + dG(y1) ≤ n− 1.
On the other hand, dG(x1) + dG(xp) + dG(y1) ≥ idG(x1) + idG(xp) + iδ(H) ≥ iσ3(G) ≥ n,
a contradiction.

Case 2. dG(yj) < iδ(H) for every vertex yj ∈ V(H).

Claim 10. dP(y1) ≥ 2 and dP(yh) ≥ 2.

Proof. If dP(y1) = |{xr}| = 1, then xr−1, xr+1 ∈ N2
G(y1) and dH(y1) = dG(y1)− 1. Since

dG(yj) < iδ(H) for every vertex yj ∈ V(H), we have dG(y1) < idG(y1). Then, by the
definition of idG(y1), there is a vertex ys ∈ NH(y1) such that dG(ys) ≥ idG(y1) ≥ iδ(H),
a contradiction.

If dP(yh) = 1, then, by a similar argument to the one above, we can obtain a con-
tradiction. If dP(yh) = 0, then dH(yh) ≥ dG(yh). Since dG(yj) < iδ(H) for every vertex
yj ∈ V(H), we have dG(yh) < idG(yh). Then, by the definition of idG(yh), there is a vertex
yt ∈ NH(yh) such that dG(yt) ≥ idG(yh) ≥ iδ(H), a contradiction.

Subcase 3. |V(H)| ≥ 2.

Since P is a longest path of T ∗, we have |NP(y1)
+| = |NP(y1)| and NP(y1)

+ ⊆ N2
G(y1).

Then, |NH(y1) ∪ NP(y1)
+| = dG(y1). Since dG(yj) < iδ(H) for every vertex yj ∈ V(H),

dG(ys) < idG(y1) for any ys ∈ NH(y1) ∪ {y1}. By the definition of idG(y1), there is a vertex
xt ∈ NP(y1)

+ such that dG(xt) ≥ idG(y1). Suppose xi is the first vertex in NP(y1)
+ such

that dG(xi) ≥ idG(y1) and xj is the last vertex in NP(yh). We can assume i < j. (Since,
otherwise, there is a vertex xk ∈ NP(yh)

+ such that dG(xk) ≥ idG(yh) and k < i.)
Let Q1 = x2x3 . . . xi−1, Q2 = xi+1xi+2 . . . xj−1, and Q3 = xjxj+1 . . . xp−1. Then, n =

|V(Q1)|+ |V(Q2)|+ |V(Q3)|+ |V(H)|+ 3

Claim 11. {x1, xp, xi} is an independent set of G.

Proof. If x1xi ∈ E(G), then yh Hy1xi−1Px1xiPxp is a Hamiltonian path of G, a contradiction.
If x1xp ∈ E(G), then y1HyhxjPxpx1Pxj−1 is a Hamiltonian path of G, a contradiction. If
xixp ∈ E(G), then x1Pxi−1y1HyhxjPxpxiPxj−1 is a Hamiltonian path of G, a contradiction.
So, {x1, xp, xi} is an independent set of G.

Claim 12. dQ1(x1) + dQ1(xp) + dQ1(xi) ≤ |V(Q1)|+ 2.

Proof. Set A2 = NQ1(x1)
−, B2 = NQ1(xp) and C2 = NQ1(xi)

+.
If there is a vertex xs ∈ A2 ∩ C2, then T′ = T + {xjyh, xi−1y1, x1xs+1, xixs−1} −

{xsxs+1, y1xr, xixi−1, xjxj−1} is a tree in T ∗ and P′ = xpPxjyh Hy1xi−1Pxs+1x1Pxs−1xiPxj−1
is a path of T ∗ longer than P, this contradicts the choice of P. So, A2 ∩ C2 = ∅.
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If there is a vertex xs ∈ B2 ∩ C2, then P′ = x1Pxs−1xiPxjyh Hy1xi−1PxsxpPxj+1 is a
Hamiltonian path of G, a contradiction. So, B2 ∩ C2 = ∅. Notice that A2 ∩ B2 = ∅ and
(NQ1(x1) \ {x2})− ∪ NQ1(xp) ∪ (NQ1(xi) \ {xi−1})+ ⊆ V(Q1). Therefore,

dQ1(x1) + dQ1(xp) + dQ1(xi)

= |NQ1(x1)|+ |NQ1(xp)|+ |NQ1(xi)|
= |(NQ1(x1) \ {x2})−|+ |{x2}|+ |NQ1(xp)|+ |(NQ1(xi) \ {xi−1})+|+ |{xi−1}|
= |(NQ1(x1) \ {x2})− ∪ NQ1(xp) ∪ (NQ1(xi) \ {xi−1})+|+ 2

≤ |V(Q1)|+ 2.

Claim 13. dQ2(x1) + dQ2(xp) + dQ2(xi) ≤ |V(Q2)|+ 1.

Proof. Since G has no Hamiltonian path, xpxj−1 /∈ E(G). Set A3 = NQ2(xi)
−, B3 =

NQ2(xp)+, and C3 = NQ2(x1).
If there is a vertex xs ∈ A3 ∩ B3, then T′ = T + {xpxs−1, xjyh, xi−1y1, xixs+1} −

{xsxs+1, y1xr, xixi−1, xjxj+1} is a tree in T ∗ and P′ = xj+1Pxpxs−1Pxixs+1PxjyhHy1xi−1Px1
is a path of T ∗ longer than P, this contradicts the choice of P. So, A3 ∩ B3 = ∅. Similarly,
B3 ∩ C3 = ∅ and A3 ∩ C3 = ∅. Note that NQ2(x1) ∪ NQ2(xp)+ ∪ (NQ2(xi) \ {xi+1})− ⊆
V(Q2). Therefore,

dQ2(x1) + dQ2(xp) + dQ2(xi)

= |NQ2(x1)|+ |NQ2(xp)|+ |NQ2(xi)|
= |NQ2(x1)|+ |NQ2(xp)

+|+ (|(NQ2(xi) \ {xi+1})−|+ |{xi+1}|
= |NQ2(x1) ∪ NQ2(xp)

+ ∪ (NQ2(xi) \ {xi+1})−|+ 1

≤ |V(Q2)|+ 1.

Claim 14. dQ3(x1) + dQ3(xp) + dQ3(xi) ≤ |V(Q3)|+ 1.

Proof. Since G has no Hamiltonian path, x1xj−1, x1xj+1 /∈ E(G). By the choice of P,
yhxj−1, yhxj+1 /∈ E(G). Since G is K1,4-free, x1xj /∈ E(G) (otherwise {xj, x1, xj−1, xj+1, yh}
induces a K1,4). Set A4 = NQ3(x1)

−, B4 = NQ3(xp)+, and C4 = NQ3(xi).
If there is a vertex xs ∈ A4 ∩ B4, then T′ = T + {xpxs−1, xjyh, x1xs+1} − {xsxs+1, y1xr,

xjxj−1} is a tree in T ∗ and P′ = xj−1Px1xs+1Pxpxs−1Pxjyh Hy1 is a path of T ∗ longer
than P, this contradicts the choice of P. So, A4 ∩ B4 = ∅. Similarly, B4 ∩ C4 = ∅ and
A4 ∩ C4 = ∅. Note that NQ3(x1)

− ∪ (NQ3(xp) \ {xp−1})+ ∪ NQ3(xi) ⊆ V(Q3). Therefore,

dQ3(x1) + dQ3(xp) + dQ3(xi)

= |NQ3(x1)|+ |NQ3(xp)|+ |NQ3(xi)|
= |NQ3(x1)

−|+ |(NQ3(xp) \ {xp−1})+|+ |{xp−1}|+ |NQ3(xi)|
= |NQ3(x1)

− ∪ (NQ3(xp) \ {xp−1})+ ∪ NQ3(xi)|+ 1

≤ |V(Q3)|+ 1.
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Since P is a longest path of T ∗, it is easy to verify that NH(x1)∪NH(xp)∪NH(xi) = ∅.
Therefore, by Claims 11–14, we have

dG(x1) + dG(xp) + dG(xi) =
3

∑
l=1

(dQl (x1) + dQl (xp) + dQl (xi))

≤ (|V(Q1)|+ 2) + (|V(Q2)|+ 1) + (|V(Q3)|+ 1)

≤ n− 1.

On the other hand, dG(x1) + dG(xp) + dG(xi) ≥ idG(x1) + idG(xp) + idG(y1) ≥
iσ3(G) ≥ n, a contradiction.

Subcase 4. |V(H)| = 1.

Then, H = {y1}. By a similar argument to the one in Subcase 3, there is a vertex
xt ∈ NP(y1)

+ such that dG(xt) ≥ idG(y1). Suppose xi is the first vertex in NP(y1)
+ such

that dG(xi) ≥ idG(y1) and xj is the last vertex in NP(y1). Clearly, i < j. Similarly to the
discussion in Claim 11, we can ascertain that {x1, xp, xi} is an independent set of G. Let
P1 = x1x2 . . . xi−1, P2 = xi+1xi+2 . . . xj−1, and P3 = xjxj+1 . . . xp−1.

If there is a vertex xs ∈ NP1(x1)
− ∩ NP1(xi), then P′ = y1xi−1Pxs+1x1PxsxiPxp is a

Hamiltonian path of G, a contradiction. So, NP1(x1)
− ∩ NP1(xi) = ∅. Similarly, NP1(x1)

− ∩
NP1(xp) = ∅, NP1(xp)− ∩ NP1(xi) = ∅, and NP1(xi)

− ∩ NP1(xp) = ∅. Since G is K1,4-
free, NP1(xi) ∩ NP1(xp) = ∅ (otherwise, if there is a vertex xs ∈ NP1(xi) ∩ NP1(xp), then
{xs, xi, xp, xs−1, xs+1} induces a K1,4, a contradiction). Therefore, by Lemma 4, dP1(x1) +
dP1(xp) + dP1(xi) ≤ |V(P1)|+ 1. Similarly, dP2(x1) + dP2(xp) + dP2(xi) ≤ |V(P2)|+ 1 and
dP3(x1) + dP3(xp) + dP3(xi) ≤ |V(P3)|+ 1. Thus, we have

dG(x1) + dG(xp) + dG(xi) =
3

∑
l=1

(dPl (x1) + dPl (xp) + dPl (xi))

≤
3

∑
l=1

(|V(Pl)|+ 1) = n− 1.

On the other hand, dG(x1) + dG(xp) + dG(xi) ≥ idG(x1) + idG(xp) + idG(y1) ≥
iσ3(G) ≥ n, a contradiction. Now, the proof of Theorem 4 (1) is completed.

4. Discussion

Spanning k-ended trees are important in various fields such as network design, graph
theory, and communication networks. They provide a structured way to connect all the
nodes in a network while ensuring efficient communication and minimizing unnecessary
connections. In addition, they serve as fundamental components for algorithms in routing,
broadcasting, and spanning tree protocols. However, determining whether a connected
graph has a spanning k-ended tree or not is NP-complete; therefore, it is important to
identify sufficient conditions for the existence of such trees. The implicit-degree proposed
by Zhu, Li, and Deng is an important indicator for the existence of spanning k-ended trees.
In this article, we provide two sufficient conditions for K1,4-free connected graphs to have
spanning k-ended trees for k = 2, 3. Moreover, we point out that the lower bounds in
our result are the best possible. There exist K1,4-free connected graphs that satisfy our
conditions but do not satisfy the conditions of Theorem 2; therefore, our result is stronger
than that of Theorem 2.

5. Conclusions

From the definition of implicit-degree, it can be seen that the implicit-degree of a vertex
comprehensively considers the degree of the vertex as well as the degrees of its neighbors
and vertices at distance two with it. Furthermore, the implicit-degree of a vertex is greater
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than or equal to the degree of that vertex. In this article, we have demonstrated that the
degree conditions in Theorem 2 can be equivalently replaced by implicit-degree conditions.
Additionally, many classic results under degree conditions, such as Dirac’s condition and
Ore’s condition for the Hamiltonian cycle problem, also hold when replaced by implicit-
degree conditions. We believe that the existence problems of spanning subgraphs under de-
gree conditions can be equivalently replaced by corresponding implicit-degree conditions.
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