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Abstract: We propose a generalized multiscale finite element method combined with a balanced
truncation to solve a parameter-dependent parabolic problem. As an updated version of the standard
multiscale method, the generalized multiscale method contains the necessary eigenvalue compu-
tation, in which the enriched multiscale basis functions are picked up from a snapshot space on
users’ demand. Based upon the generalized multiscale simulation on the coarse scale, the balanced
truncation is applied to solve its Lyapunov equations on the reduced scale for further savings while
ensuring high accuracy. A θ-implicit scheme is utilized for the fully discretization process. Finally,
numerical results validate the uniform stability and robustness of our proposed method.

Keywords: generalized multiscale finite element; balanced truncation; eigenvalue computation; fully
discretization; uniform stability
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1. Introduction

Many scientific and engineering problems in porous media flow and composite mate-
rial involve inherently multiscale model equations. Basically, the model coefficient often
exhibits high-contrast and parameter-dependent behaviors in a sense. Conventional meth-
ods such as the finite difference method, or finite element method, which are applied to
solve these problems on a fully-resolved scale would become unbearably expensive, espe-
cially when a large amount of computations may be consumed for uncertainty parameter
quantification, model reduction and optimization. So an urgent demand for developing
multiscale model reductions with properties of both accuracy and efficiency is of particu-
lar interest.

In the research history, the multiscale finite element method (MsFEM) was first pro-
posed by Hou and Chen in [1,2]. Then it evolved to a generalized multiscale version and
had many applications in scientific fields, see [3–7]. For example, in [3] the generalized
multiscale finite element (GMsFEM) approximated the solution space locally by employing
the enriched multiscale basis functions. This approximation constructed a proper snapshot
space and a local spectral decomposition to realize an efficient model reduction. Chung,
Efendiev and Hou proposed an adaptive multiscale model reduction with GMsFEM in [5],
an adaptively local approach was utilized to update the global snapshot when online
computations proceeded. The local-global couple is shown to be effective in many applica-
tions. As for the parameter-dependent model and the thermoelastic model with phase flow,
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the strategy of multiscale model reduction was addressed in [8–12]. Besides, there were
other techniques such as multiscale reduced-basis method [8,10,13,14], localized orthogonal
decomposition [15], weak Galerkin GMsFEM [16], mixed GMsFEM [17], multiscale-spectral
GFEM [18], meshfree GMsFEM [19], higher-order three-scale method [20] and local discon-
tinuous Galerkin method [21], were applied in a large number of interested fields.

In literature [22–24], a balanced truncation (BT) is directly addressed to their problems.
The aim of BT is to study the principal component analyses in linear systems and in the time
or frequency domains, and it identifies the weakly controllable and observable components
which are used for model reductions. Moreover, the eigenvalues of the Lyapunov solutions
in frequency-limited BT often decay faster than those in the standard BT. However, as for
the parameter-dependent parabolic problem, it would be annoyingly costing or infeasible
since Lyapunov equations are hard to solve. In particular, solving these equations from
the high-contrast permeability, boundary condition, and forcing term on the fine scale
would quickly become prohibitive. Therefore, in this work we propose the joint usages of a
generalized multiscale and balanced truncation to obtain accurate and economical results.

The paper is characterized by the following highlights: As for the parameter-dependent
parabolic problem, we present a combination strategy of the generalized multiscale finite el-
ement method with the balanced truncation, namely GMsFEM-BT. The GMsFEM is skilled
in the random-parameterized model and different coefficients and boundary conditions, it
constructs an enriched projection matrix in the global reduction from the snapshot space.
And it offers a good balance for the accuracy and the efficiency, which is compared with the
fully-resolved FEM and the coarse version of MsFEM. Based on this, the BT is addressed
on the correspondingly reduced scale for further reduction. Then moving from a current
time step to the next time step, an effective implicit full-discretization process is utilized
for the spatial-temporal problem. The uniform stability and convergent results are to be
validated in our work.

The paper proceeds as follows. In Section 2, a preliminary description of the parameter-
dependent parabolic problem is provided and we brief the idea of the local-global multi-
scale reduction. In Section 3, the GMsFEM is applied to the spatial variables through an
eigenvalue computation in the spectral sub-problems, and an offline-online coupling is
accomplished by a projection matrix. In Section 4, the detail of BT is offered for further
reduction for the model. We present a fully discretization process both for time and for
space in Section 5. In Section 6 numerical experiments validate the ability of the combined
GMsFEM-BT strategy. Finally, the conclusion is presented in Section 7.

2. Preliminary Description
2.1. Parameter-Dependent Parabolic Model

We investigate a parameter-dependent parabolic problem in the two-dimensional
heterogeneous media,

ut − div
(
κ(x; µ)∇u

)
= f in Ω × [0, T],

u = g on ∂Ω × [0, T],
u = u0 at t = 0 and in Ω,

(1)

where κ(x; µ) is a high-contrast coefficient with spatial variables x in the two-dimensional
square domain Ω, µ is used to represent the parameter dependence and may be random.
T is the time termination, f (x, t) and g(x, t) are given functions, and u0(x) is an initial
function at t = 0. The numerical solution with the most accuracy, efficiency and stability to
u(x, t) is our target in this work.

In the finite-dimensional discretization, the spatial domain Ω is divided into many
quadrilateral finite elements on coarse grids and then divided on fine grids, which is
denoted by T H and T h, respectively. For a clearer illustration see Figure 1, firstly we divide
the domain on coarse grids, in this way coarse elements K are formed. Denote the coarse
nodes by {yi}Nc

i (Nc is the number of coarse nodes), and denote the coarse neighborhood
of yi by
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ωi =
⋃
{Kj ∈ T H ; yi ∈ Kj}. (2)

In the following, it will be applied in our generalized multiscale finite element method.
Secondly, on the coarse grids T H we refine every coarse element K into more fine elements
k, which is denoted by T h on those fine grids. In this paper, we denote the coarse and the
fine (of every coarse element) partition number in each spatial direction by N and M, thus
H(= 1

N ) and h(= H
M ) are used to denote the coarse mesh size and the fine one, respectively.

It is known that the classical finite element method is manipulated on very fine grids
T h to achieve its maximum accuracy. The functional space is spanned by the piecewise
bilinear polynomials Q1(k), which are subordinated to T h as

Vh = {v ∈ H1(Ω) : v|k ∈ Q1(k), ∀k ∈ T h}. (3)

In Galerkin weak form, it is applied to find uh ∈ Vh such that

(
∂uh
∂t

, vh) + a(uh, vh) = ( f , vh), ∀vh ∈ Vh, (4)

where

(
∂u
∂t

, v) =
∫

Ω

∂u
∂t

vdx,

a(u, v) =
∫

Ω
κ(x; µ)∇u · ∇vdx,

( f , v) =
∫

Ω
f vdx.

As for the initial-boundary value parabolic problem (1), the above (4) produces a discrete
system to solve

Mu⃗t + A(µ)u⃗ = b⃗, (5)

where M = [mij] =
∫

Ω ψiψjdx is a mass matrix, A(µ) = [a(µ)ij] =
∫

Ω κ(x; µ)∇ψi · ∇ψjdx
is a parameter-dependent stiffness matrix, b⃗ = [bi] =

∫
Ω f ψidx is a right-side vector, and ψi

is the bilinear basis function in the 2D problem.

yi

K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

K

Coarse
Element

yi

Figure 1. Illustration of coarse grids, elements and neighborhoods.

As a consequence, in the finite element scheme with a very large partition number, a
huge-size discrete system is obliged to solve

M f u⃗ f t + A f (µ)u⃗ f = b⃗ f , (6)

where M f = Σ
∫

k ψiψjdx, A f (µ) = Σ
∫

k κ(x; µ)∇ψi · ∇ψjdx, and b⃗ f = Σ
∫

k f ψidx. The
subscript f means that the matrices and vectors are processed from all of the fine elements,
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which is different from the subscript c/r from the coarse/reduced elements in the following
situations. For instance, the stiffness matrix A f (µ) is assembled from all of the fine elements,
whose size is N f × N f , where N f = (NM + 1)2 for the 2D spatial discretization. In the
paper, we denote the nodal matrices by B, C (which are transposed to each other B = CT ,
and the size of B is N f × N2), which are allocated to the domain boundary vertices.

2.2. Local-Global Multiscale Reduction

In this subsection, we begin with the process of semi-discretization in the space.
Different from the above-mentioned finite element method (5) on very fine grids, we
present two types of local-global multiscale reductions on coarse grids by contrast.

First, we recall the standard multiscale finite element method (see [1,2,25–27]). A
homogeneous sub-problem is proposed for solving the multiscale basis functions ϕi in
every quadrilateral coarse element K as{ −div(κ(x; µ)∇ϕi) = 0 in K ∈ T H ,

ϕi = li on ∂K,
(7)

where the boundary condition li satisfies that δj(yi) = 1 (i = j), δj(yi) = 0 (i ̸= j). It is
known that useful local information is delivered through the multiscale basis functions
into a global system. However, we also know that this type of standard multiscale scheme
has its deficiencies, such as the relatively low accuracy, slow convergence even divergence
in former literature.

Second, we track the generalized multiscale finite element method (see [3–5]). Another
version of the non-homogeneous local problem in every coarse neighborhood is solved
for the (updated) multiscale basis functions, via the necessary eigenvalue computation. In
this way, plenty of parameter-dependent details are captured through the over-sampling
technique and this would be solved via a singular value decomposition.

Thus in contrast to the finite element method in the fine version (6), the generalized
multiscale method in the coarse version is

Mcu⃗ct + Ac(µ)u⃗c = b⃗c. (8)

In this multiscale scheme, the size of the stiffness matrix Ac(µ) is just Nc × Nc, where
Nc = (N + 1)2 to realize a preliminary computation reduction. It also builds the counterpart
of nodal matrices, which are denoted by Bc, Cc with Bc = RB, Cc = CRT . The projection
matrix R with sufficient microscopic information is constructed from the multiscale basis
functions, which would be provided in the following Formula (21).

If it is necessary for a further decline in computational costs, we could carry out a
further matrix reduction with a strategy of balanced truncation in Section 4, which is in the
reduced-version like

Mru⃗rt + Ar(µ)u⃗r = b⃗r. (9)

The size of Ar is Nr × Nr, and the number Nr(<< Nc << N f ) can be artificially chosen by
users later on. Singular value decompositions would be employed to form the matrices
U, V in (29) with UV = INr . Set Br = UBc, Cr = CcV, thus the matrices are further
reduced to save consumptions. At the same time, accuracy and efficiency are granted in
the novel method.

In a word, we are constantly motivated to chase a better cost-effective balance for the
complicated multiscale parameter-dependent parabolic model.

3. Mechanism of GMsFEM

The GMsFEM is an extended framework that generalizes the MsFEM. Its key mech-
anism relies on that the multiple basis functions in every coarse neighborhood could
be systematically updated, by flexibly enriching the functional space through necessary
eigenvalue computations.
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The GMsFEM has two stages: offline and online. At the offline stage, firstly a snapshot
space is created then based on it a small dimensional construction is required for solving
local spectral decompositions. One of the advantages of the GMsFEM is that the created
snapshot space can be re-used to capture the necessary fine-scale features. After that, a
space reduction is performed and the dominant modes (including sufficient eigenvalues
and eigenvectors) are selected as the multiscale basis functions, for any input parameters
which are fitting our parameter-dependent problem ideally. At the online stage, when the
corresponding boundary condition and force term are defined, the available offline basis
functions are utilized to pursue a high-precision numerical solution with the potential least
costs. Users can also adaptively determine the various number of eigenfunctions needed in
the coarse neighborhoods, to fulfill a proper balance of efficiency and accuracy.

The mathematical theories behind the offline and online spaces are the construction of
snapshot space and the design of spectral sub-problems, we will present the details in the
following subsections in turn. Since plenty of parameter-dependent multiscale problems
may have small eigenvalues, we would like to comprise enough of the eigenvectors associ-
ated with the small eigenvalues to be enriched into the coarse functional space surely. As a
consequence, the multiscale basis functions could be achieved by multiplying the dominant
eigenmodes by the partition of unity functions.

3.1. Offline Stage

At this stage, we first create a snapshot space subordinated to each coarse neighbor-
hood ωi in (2). The construction of snapshot space involves solving the local problems from
a set of parameter-dependent inputs. Being different from the standard multiscale finite
element method solving the local problem (7), an eigenvalue computation is utilized in this
generalized multiscale finite element method.

First, we solve for the snapshot functions from the spectral sub-problems: seeking
(λ

ωi ,snap
i,l , ϕ

ωi ,snap
i,l ) ∈ R× Vωi ,snap such that

−div(κ(x; µ)∇ϕ
ωi ,snap
i,l ) = λ

ωi ,snap
i,l ϕ

ωi ,snap
i,l in ωi ∈ T H , (10)

where l = 1, · · · , Li (Li is the chosen number of eigenfunctions from small to large that
correspond to the dominant eigenvalues). Note that we define zero Neumann boundary
condition for (10), except in the discontinuous case the Dirichlet condition is defined
instead. It is known that solving all the eigenfunctions of a large matrix is exhausting, so we
choose the Li eigenfunctions to construct a snapshot space. The snapshot space Vωi ,snap is
associated to the neighborhood ωi, which is produced from the multiscale eigenfunctions as

Vωi ,snap = span{ϕ
ωi ,snap
i,l : i = 1, · · · , 4, l = 1, · · · , Li}. (11)

Next, the snapshot functions are reordered by using a single index as the columns to create
a projection matrix in a snapshot

Rωi ,snap =
[
ϕ

ωi ,snap
1 , · · · , ϕ

ωi ,snap
Lsnap

]
, (12)

where Lsnap denotes the number of functions in the snapshot construction. It should
be pointed out that Lsnap is not only dependent on the chosen number Li, but also it is
related to the number of parameter µ. For brevity, we omit the superscript ωi to brief as
Vsnap, Rsnap. However, keep in mind that throughout the paper, the offline and online
eigenvalue decompositions are localized for the corresponding coarse neighborhoods.

The discretized form of (10) is

A(µ)ϕ
ωi ,snap
i,l = λ

ωi ,snap
i,l M(µ)ϕ

ωi ,snap
i,l in ωi ∈ T H , (13)

where M(µ) = Σ
∫

ωi
κ̃(x; µ)ψiψjdx, and κ̃ will be defined in the followed Formula (18).
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Then, we perform an elementary dimension reduction of the snapshot space by
applying an auxiliary spectral decomposition to build an offline space. We seek a subspace
of the original snapshot space so that it may properly approximate any neighborhood.
The key is to efficiently build a set of multiscale basis functions for each parameter µ. We
reiterate the offline bilinear forms to be parameter-independent, then there is no need to
rebuild the offline space for each value µ. Then the eigenvalue problem can be described as

AoffΦoff
l = λoff

l MoffΦoff
l , (14)

where
Aoff =

∫
ωi

κ(x; µ)∇ϕ
snap
i · ∇ϕ

snap
j = Rsnap A(µ)(Rsnap)T ,

Moff =
∫

ωi

κ̃(x; µ)ϕ
snap
i ϕ

snap
j = RsnapM(µ)(Rsnap)T ,

where κ(x; µ) and κ̃(x; µ) are averaged parameter-dependent coefficients. A and M denote
similar fine scale matrices as in (13), except that averaged coefficients of them are used.
The smallest number of eigenvalues Loff are picked up in (14) and form the corresponding
eigenvectors as ϕoff

l = ∑j Φoff
l,j ϕ

snap
j (l = 1, · · · , Loff, j = 1, · · · , Lsnap), where Φoff

l,j are the

coordinates of the vector Φoff
l . In this way, the offline projection matrix is constructed as

Roff =
[
ϕoff

1 , · · · , ϕoff
Loff

]
. (15)

3.2. Online Stage

With the offline space available, next we build an online space on every coarse neigh-
borhood for a specified parameter µ. For the computational efficiency, it is assumed that
the online space is a subspace with small dimensions. At the online stage, the reduced-
order bilinear forms are chosen to be parameter-dependent. The eigenvalue problem is ready
to solve

Aon(µ)Φon
l = λon

l Mon(µ)Φon
l , (16)

where
Aon(µ) =

∫
ωi

κ(x; µ)∇ϕoff
i · ∇ϕoff

j = Roff A(µ)(Roff)T ,

Mon(µ) =
∫

ωi

κ̃(x; µ)ϕoff
i ϕoff

j = RoffM(µ)(Roff)T ,

where κ(x; µ) and κ̃(x; µ) now rely on the specified value µ, A(µ) and M(µ) are specified
fine-scale matrices in (13).

To construct the online space we pick the smallest number of eigenvalues Lon from
(16) and finalize the corresponding eigenvectors as ϕon

l = ∑j Φon
l,j ϕoff

j (l = 1, · · · , Lon,
j = 1, · · · , Loff), where Φon

l,j are the coordinates of the vector Φon
l . It should be noted that

the matrices size in (16) solely relies on the dimension of the offline subspace. This results
in the declining consumption of the online space, which in contrast to the original snapshot
space would cost more expenses.

3.3. Offline-Online Coupling

In order to enrich the online basis functions into a reduced formula of (1), we denote
χi as the multiscale partition of unity functions which are from another local problem{ −div

(
κ(x; µ)∇χi

)
= 0 in K ∈ ωi,

χi = gi on ∂K,
(17)

where gi is a continuous and bilinear boundary condition. A summed pointwise energy is
defined as
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κ̃ = κ
Nc

∑
i=1

H2|∇χi|2. (18)

As above, H is the coarse mesh size and Nc is the number of coarse nodes. To construct
the global coarse-grid solution space, the partition of unity functions are multiplied by the
online eigenfunctions to obtain the final multiscale bases

ϕi,l = χiϕ
on
l , i = 1, · · · , Nc, l = 1, · · · , Lon. (19)

Then it follows the online space

Von = span{ϕi,l : i = 1, · · · , Nc, l = 1, · · · , Lon}, (20)

which is quite different from the large-scale finite dimensional space in (3). Using a
single index notation we denote Von = span{ϕk}Nc

k=1. Recalling in (8) now we finalize the
projection matrix R to be utilized in the global reduction

R = [ϕ1, · · · , ϕNc ], (21)

where ϕk (k = 1, · · · , Nc) represents the nodal vector of the generalized multiscale bases.
The matrix R (whose size is Nc × N f ) is now plugged in (8), which could be enriched with
the dominant eigenfunctions and meaningful microscopic behaviors. This would lead to
strengthening the numerical abilities later on.

Now it completes the coarse model reduction in the GMsFEM. In the next section, a
further model reduction will be carried on a balanced truncation (BT).

4. Mechanism of Balanced Truncation
4.1. Related Lyapunov Equations

First recalling that for the standard Lyapunov equation

AW + WAT = Z, (22)

where the matrix W is dense even though the system is sparse, and generally the eigen-
values of W decay quickly when the right-side Z has a low rank. This decay is typically
associated with the approximation error from the balanced truncation.

Next, a joint measure of controllability and observability is offered for solving Lya-
punov equations. It should be pointed out that these equations are not based on the
above-mentioned fine matrices, but instead, they are based on the coarse matrices Ac(µ)
defined in (8) and Bc, Cc below that. Then the related Lyapunov equations are in the form of

Ac(µ)Wcon + Wcon
(

Ac(µ)
)T

+ Bc(Bc)
T = 0, (23)(

Ac(µ)
)TWobs + Wobs Ac(µ) + (Cc)

TCc = 0, (24)

where Wcon is a controllability matrix, Wobs is an observability one, and Z is dependent
on the Bc, Cc. The solutions of these Lyapunov equations play a key role in the model
reduction and in the balanced truncation particularly.

Generally, the computations of dense matrices are of order O(n3). Some techniques
have been evolved to efficiently compute the solutions by reducing the complexity. How-
ever, most of these techniques are often iterative and low-rank approximations, while
in our high-contrast situation, it is hard to provide enough satisfactory approximations.
In Matlab code lyap, the matrices are transformed into the complex Schur forms, and it
computes the resulting triangular systems. In this way, the high-rank approximations
are available and the solutions of Lyapunov equations have a close relationship to the
dominant eigenvalues. Then
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Wcon = lyap(Ac(µ), Bc(Bc)
T),

Wobs = lyap((Ac(µ))
T , (Cc)

TCc)

are used to realize the numerical advantages of the coupled Lyapunov equations. Since
the matrices Ac(µ), Bc, Cc are based on the coarse-scale, then the sizes of Wcon, Wobs are
just Nc × Nc.

Once we obtain the two matrices Wcon, Wobs, which may be expressed in the form of
Cholesky singular value decompositions to get Lcon, Lobs as

Wcon = LconLT
con,

Wobs = LobsLT
obs,

(25)

and

LT
obsLcon = UΣVT =

[
U1 U2

][Σ1 O
O O

][
VT

1
VT

2

]
= U1Σ1VT

1 , (26)

where U, V are to be specified soon in (29). Set Scon = LconV1Σ−1/2
1 , Sobs = Σ−1/2

1 UT
1 LT

obs,
where UT

1 U1 = VT
1 V1 = INr , and the subscript r means the reduced case.

Note that our BT is based on the GMsFEM. An independent set of online basis func-
tions are constructed in which the coarse-scale solution may be sought. As a consequence,
the global system would be processed on a coarse scale to avoid applying the BT on a fine
scale directly. After the offline and online stages in the GMsFEM, it produces a subspace
with small dimensions for each fixed parameter µ. It serves to further diminish the compu-
tational cost, which is associated with the balanced truncation in the model reductions.

4.2. Further Reduction

Based on coarse matrices (compared with the fine ones), now we have the platform to
fulfill the potential further reduction. In our work, we use the first Nr ordered eigenvalues
and the normalized eigenvectors of the matrix LT

conWobsLcon, by solving

LT
conWobsLconξi = λiξi, i = 1, · · · , Nr. (27)

The sets of eigenvalues and eigenvectors are given by

{λi}, and {ζi} = {σ−1
i ξT

i LT
conLT

obs}, (28)

where σi = λ1/2
i is the singular values.

The balanced truncation is validated to be more efficient in the numerical simulation.
Since their a-priori error estimates rely on the quick decay of eigenvalues in (27) and the
magnitude of all truncated eigenvalues summation. On the other hand, the balanced
truncation has its weaknesses too. The Lyapunov Equations (23) and (24) require expensive
computations for unknown Wcon and Wobs, and the singular value decompositions are
costing too, especially for the very fine case.

With the eigenvalues and corresponding eigenvectors in place, the above-mentioned
matrices U and V are constructed from the reduced matrices in (9) and Br, Cr below that as

U =


σ−1/2

1 ζ1
...

σ−1/2
Nr

ζNr

Lobs, V = Lcon
[
ξ1σ−1/2

1 · · · ξNr σ−1/2
Nr

]
, (29)

whose size is Nr × Nc and Nc × Nr, respectively. And the property of UV = INr is ensured.
As a consequence, the reduced version is Ar(µ) = UAc(µ)V, where r depends on

the eigenvalue decay and is determined by users in the numerical experiment. Now we
achieve the reduced scale since Ar(µ) has a size of Nr×Nr, compared with the coarse scale
Ac(µ) with a size of Nc × Nc, while the fine-scale A f (µ) with a size of N f × N f , whose
Nr << Nc << N f .
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5. Fully Discretization for Time and Space

As for the parabolic problem, we are now in the procedure of fully discretization. A
θ-implicit scheme is presented to the original Formula (5), we have

M u⃗(x,tm+1)−u⃗(x,tm)
∆t + θA(µ)u⃗(x, tm+1) + (1 − θ)A(µ)u⃗(x, tm)

= θ⃗b(x, tm+1) + (1 − θ)⃗b(x, tm).

In the form of θ-explicit scheme, it shows(
M
∆t + θA(µ)

)
u⃗(x, tm+1)

= θ⃗b(x, tm+1) + (1 − θ)⃗b(x, tm) +
M
∆t u⃗(x, tm)− (1 − θ)A(µ)u⃗(x, tm).

We know the influence of the temporal parameter θ on the fully discretization. In the
following numerical experiments, we set θ = 1, namely the backward Euler difference
is applied.

Define Ã(µ) = M
∆t + θA(µ), ˜⃗b(x, tm+1) = θ⃗b(x, tm+1)+ (1− θ)⃗b(x, tm)+

[ M
∆t − (1 − θ)A(µ)

]
u⃗(x, tm), then

we get

Ã(µ) · u⃗(x, tm+1) =
˜⃗b(x, tm+1). (30)

Solving the above ordinary differential equations, the corresponding numerical results are
obtained from different schemes.

Thus in the paper, a proposed combination of GMsFEM-BT approach for the parameter-
dependent parabolic problem is evolved for both the spatial and the temporal discretiza-
tions. It avoids a huge system computation, while maintaining an ideal balance between
accuracy and efficiency at the same time. The generalized multiscale method is addressed
in an offline-online coarse scale system, which is further reduced via using the balanced
truncation, whose computational cost would be saved greatly.

6. Numerical Experiment

Now numerical results are ready to reveal the strength of our proposed method. Mat-
lab codes are executed on a Windows desktop with Intel(R) Core(TM) i9-10900K CPU
3.70 GHz and 32 GB RAM. We set the right side f = 1, so there is no exact solution or
analytical solution for this random-parameterized parabolic problem. To solve the prob-
lem (1), first we divide the square domain Ω = [0, 1]×[0, 1] into NM × NM = 200 × 200
fine elements and use the classical FEM to solve on space and the FDM to solve on time for
(6). This approach is the most expensive, and it serves as a reference solution.

A random-parameterized coefficient is combined like

κ(x; µ) = µ1κ1(x) + µ2κ2(x) + µ3κ3(x) + µ4κ4(x), (31)

where the parameter µ = (µ1, µ2, µ3, µ4) may be randomly picked from [0, 1]4,

κ1(x) = 10 ·
 2 + 1.8 sin

(
2πx
ε1

)
2 + 1.8 cos

(
2πy
ε2

) +
2 + 1.8 cos

(
2πy
ε1

)
2 + 1.8 sin

(
2πx
ε2

)
,

κ2(x) = 10 ·
 2 + 1.8 sin

(
2πx
ε3

)
2 + 1.8 cos

(
2πy
ε4

) +
2 + 1.8 cos

(
2πy
ε3

)
2 + 1.8 sin

(
2πx
ε4

)
,

κ3(x) = 10 ·
 2 + 1.8 sin

(
2πx
ε5

)
2 + 1.8 cos

(
2πy
ε6

) +
2 + 1.8 cos

(
2πy
ε5

)
2 + 1.8 sin

(
2πx
ε6

)
,

κ4(x) = 100 ·
(

4 + 2.5 sin
(

2π · tanh(20(r − 0.3))
ε7

))
,
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and r =
√
(x − 1

2 )
2 + (y − 1

2 )
2, and set ε1 = 0.2, ε2 = 0.08, ε3 = 0.125, ε4 = 0.0078125,

ε5 = 0.012, ε6 = 0.004, ε7 = 0.8. A resulting permeability field expresses the structure with
high contrast and quasi-periodicity, see Figure 2. The homogeneous boundary condition
g = 0 and the initial function u0 = 0 are defined for simplicity.

Figure 2. Coefficient κ(x; µ).

In the coarse-scale schemes, the MsFEM and the updated GMsFEM for (8) are applied
to obtain the coarse-scale outputs. In both schemes, we set the double refinement of the
coarse partition N = 5, 10, 20 in turn and fix the fine partition M = 10 in each coarse
element. However the latter GMsFEM, with the contributions of eigenvalue computation
and enriched multiscale basis functions, would offer more accurate simulations. Finally,
we utilize the BT on the reduced scale for (9) to test the behaviors of our GMsFEM-BT
approach.

To be more specifical, in the GMsFEM to create the snapshot space first for the offline-
online stages, three equally spaced points in each dimension are set and the eigenfunctions
number Li = 10 is kept in (11), then the number of snapshot functions is Lsnap = 3j ×
Li = 810 in (12), where j = 4 is the number of random parameter µj. In each coarse
neighborhood, the online-stage eigenfunctions number Lon in (20) is smaller than the
original Lsnap. Through a further reduction in the BT, after solving the Lyapunov Equations
in (23) and (24) for a controllability Wcon and observability Wobs on the coarse scale, we
use the singular value decompositions to build U, V in (29), whose size is dependent on a
smaller number Nr on the reduced-scale.

We are quite interested in comparing the simulation behaviors from the fully-resolved
fine system, the coarse system and the reduced system. We set the refinement of N = 5,
10, 20, and the fine partition is kept as M = 10 in each coarse element, then on both x, y
directions in the 2D problem the number of coarse vertices is Nc = (N + 1)2 = 36, 121, 441.
Then the matrix size of the fine system is N f = (NM + 1)2 = 2601, 10,201, 40,401, while the
corresponding matrix size of the generalized coarse system is 207, 988, 4293, which is much
smaller than N f and is a bit larger than Nc. In contrast, the matrix size of a reduced system
is Nr, which would be chosen as smaller integers in the following.

Figure 3 shows the discrete errors of MsFEM and GMsFEM, both are compared to the
reference solution. Note that the reference is solved from a fully-resolved fine system on
NM × NM = 200 × 200, while the solutions of MsFEM and GMsFEM are obtained from
their coarse system. It is certified that with the contributions of eigenvalue computation for
the dominant eigenfunctions and multiscale enrichments, the GMsFEM performs better
than the MsFEM. We list the norm errors from the MsFEM and the GMsFEM with the
refinement of the partition number in Table 1 and Figure 4. The error percentages indicate
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the fast convergence and stability of GMsFEM, which is much superior to the behavior
of MsFEM.

Figure 3. Errors of MsFEM and GMsFEM on coarse partition N = 20.
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Figure 4. Percentages of L2 and H1 norm errors from MsFEM and GMsFEM on log-log scale.

Table 1. Percentages of norm error from MsFEM and GMsFEM, on different partition numbers N.

Coarse Partition N Norm MsFEM Error (%) GMsFEM Error (%)

5 L2 7.35 0.81

H1 29.35 8.97

10 L2 3.00 0.31

H1 18.39 5.44

20 L2 2.30 0.08

H1 15.75 2.90

In Figure 5, a series of outputs are provided for the reference on the very fine partition
NM = 200, the GMsFEM on the quite coarse partition N = 10, and the BT on the several
reductions Nr. In Table 2 we observe that on small reductions Nr such as 20, the GMsFEM-
BT does not behave well. However, with the increase of Nr it shows the ability to deliver
more necessary details of the reference, and its error percentage is less than 0.04% in the
end. Note that the reduced size of GMsFEM-BT on Nr = 260, which is compared to
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the generalized coarse size of GMsFEM with Nc = 988 and the fine size of FEM with
N f = 40,401. In the meantime, in fact the GMsFEM-BT works based on the GMsFEM’s
coarse scale, and it would take some time to solve the Lyapunov equations and the singular
value decompositions. However on the contrary, if the GMsFEM-BT works based on the
FEM’s fully-resolved fine scale, the computational cost would increase inevitably.

Reference
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Figure 5. Outputs on coarse partition N = 20 of reference, GMsFEM coarse and GMsFEM-BT with
different reduced numbers Nr, respectively.

Table 2. Percentages of H1 norm error from GMsFEM and GMsFEM-BT. on coarse partition number
N = 20.

GMsFEM Error (%)
GMsFEM-BT Error on Different Nr (%)

Nr = 20 Nr = 100 Nr = 180 Nr = 260

2.90 2.16 1.04 0.51 0.38

Figure 6 shows the error percentages between the fine and coarse, and between the
coarse and reduced, respectively. We find that with time goes by, it is reasonable that the
error percentages between the reference and the GMsFEM with a coarse partition number
N = 20 (which is fixed during the process) would increase with the time step, but the error
remains at a relatively low level overall (less than 0.16%). However, it is exciting to observe
that the error percentages between the generalized coarse and the reduced Nr = 340
would decrease and remain stable at 0.2% during the time elapses, which validates the
strength of GMsFEM-BT to simulate the real application with costing just an amount of
computational resource.

Finally, we provide the CPU time among different methods based on their correspond-
ing matrix sizes. In Table 3 it is apparent that the FEM consumes the maximum time on
a fully fine matrix size of N f = 40,401 to solve for the reference solution. The MsFEM (on
a coarse size of Nc = 441) and the GMsFEM (on a coarse size of Nc = 4293) spend less
time to reach their numerical results. However, note that the GMsFEM has to construct
the snapshot space (which could be reused) and couple the offline-online stages with the
singular value decompositions. This process consumes some time, so three parts of time
(for offline, online and solving stages, respectively) are shown in the table for GMsFEM,
but it would bring good accuracy. A Lyapunov solver based on the GMsFEM with the
generalized coarse size of Nc = 4393 offers its strength. After that, the reduced matrix size
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of BT is chosen as the user’s demand, and the satisfactory balance both for accuracy and
efficiency of the GMsFEM-BT is shown in the numerical results.
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Figure 6. With time elapsing, error percentages between fine and coarse N = 20 (left), and between
coarse and reduced number Nr = 340 (right).

Table 3. Comparisons of CPU time.

FEM MsFEM GMsFEM BT

size 40401 441 4293 20 100 180 260

time (s) 572.78 1.48 16.59 + 5.78 + 7.47 0.0039 0.0082 0.011 0.025

Lyapunov solve GMsFEM-BT

time (s) 19.45 29.8439 29.8482 29.8510 29.8650

7. Conclusions

In the paper, a parameter-dependent parabolic model is addressed by a combination
strategy of GMsFEM-BT. Neither the FEM works on the fully-resolved fine scale, nor
the MsFEM works on the coarse scale, the GMsFEM acts on the updated coarse scale
by introducing the necessary eigenvalue computation to create the snapshot space and
couple the offline-online stages. In this way, the selected dominant eigenfunctions are
plugged into the projection matrix. The balanced truncation is then presented to solve the
Lyapunov equations, whose results are served in the reduced matrices for further reduction.
The fully discretization for time and space is applied to the parabolic problem. In the
numerical experiments, the capabilities of the GMsFEM-BT are demonstrated convincingly.
Its simulation is quite close to the reference result, and the error percentages and CPU
time of the GMsFEM-BT are encouraging. Our method could be extended to other random
parameter cases in the multiscale simulations.
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