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1. Introduction

Image inpainting involves the completion of missing portions within an image or
video by utilizing information from the surrounding areas. It essentially functions as a form
of interpolation and finds applications in diverse domains, such as the restoration of aging
paintings by museum artists [1], elimination of scratches from vintage photographs [2],
manipulation of scenes in photographs [3], and the restoration of motion pictures [4].

The seminal work by Bertalmio et al. in [5] holds significant importance, presenting
a novel approach to image inpainting through the incorporation of Partial Differential
Equation (PDE) models. In this context, the authors introduced boundary conditions for
PDE image inpainting models. These conditions involve the constant grayscale image
intensity and the direction of isophote vectors at the boundary of the inpainting region.
The isophote vector ∇⊥u represents the orthogonal gradient vector.

In 1958, John Cahn and John Hilliard proposed the chemical energy for the Cahn–
Hilliard equation to characterize phase separation phenomena, specifically phase coarsen-
ing in binary alloys. This phenomenon becomes apparent when a binary alloy is sufficiently
cooled, leading to the emergence of nucleides in the material (partial or total nucleation).
This process, known as spinodal decomposition, results in rapid material inhomogeneity,
forming a fine-grained structure with alternating appearances of the two components.
Subsequently, during a slower time scale phase called coarsening, these microstructures
enlarge. The Cahn–Hilliard equation finds applications in various fields, including image
processing, biology, and population dynamics. In 2007, Bertozzi et al. proposed the modi-
fied Cahn–Hilliard equation for binary image inpainting in [6], where the fidelity term is
added to the Cahn–Hilliard equation. The authors in [7] demonstrated the existence of a
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unique local solution over time, while those in [8,9] established both the global solution in
time and the existence of a finite-dimensional global attractor. The model has also been
studied with singular (logarithmic) nonlinear terms, resulting in faster and more efficient
image inpainting. The Cahn–Hilliard equation is not limited to binary image inpainting;
various adaptations are employed for color image inpainting (see [8]) and grayscale image
inpainting (see [9]). The modified Cahn–Hilliard for binary image inpainting is given by

ut = ∆
(
−ε∆u +

1
ε

f (u)
)
+ λ0χΩ\D(x)(h− u), with ε > 0, λ0 > 0, (1)

which can be written in the following system:
ut = ∆µ + λ0χΩ\D(x)(h− u), in Ω× [0, T],

µ = −ε∆u + 1
ε f (u), in Ω× [0, T],

u = ∆u = 0 on ∂Ω× [0, T],
u(x, 0) = u0(x) in Ω,

(2)

where Ω represents a bounded domain in Rn for n ≤ 3, where h = h(x) stands for
a given (damaged) image, and D ⊂⊂ Ω denotes the inpainting region (total region).
The term λ0χΩ\D(x)(h− u) constitutes the fidelity term, representing the indicator function.
The choice of this term, as opposed to a condition such as u = h outside the inpainting
domain, is motivated by several factors, especially in light of the model’s analysis. Notably,
there is no need for regularity assumptions on D, and h outside D does not need to be
perfectly known (it could be, for example, noisy).

Additionally, nonlinear term f is defined as f (s) = 4s3 − 6s2 + 2s, for all s ∈ R. It
is essential to note that this nonlinear term f corresponds to the derivative of potential
F(s) = s2(s− 2)2. The underlying idea in this model is to solve (1) until a steady state is
reached, thereby obtaining inpainted version u(x) of the original damaged image h(x).
The equation has been examined with Neumann boundary conditions, as discussed in [8,9].

Our objective in this paper is to propose and analytically study various numerical lin-
ear algebra schemes for solving Problem (1) with Dirichlet boundary conditions. In the first
part, we introduce a 1D finite difference discretization in space along with a semi-implicit
discretization in time. We demonstrate the convergence of our proposed numerical solution
to the continuous solution. Additionally, we present a 1D finite difference discretization
in space with an implicit discretization in time and provide proof of convergence to the
continuous solution once more. In the second part, we introduce 2D schemes based on finite
difference discretization in space, utilizing both semi-implicit and implicit discretizations
in time. Finally, we conduct a thorough analysis of the convergence of these schemes to the
continuous problem in both cases.

2. 1D Discretization
2.1. 1D—Semi-Implicit Fully Discretized Scheme

Consider one-dimensional system{
ut = ∆µ + λ(x)(h− u)

µ = −ε∆u + 1
ε f (u)

, in Ω× [0, T], (3)

where u ≡ u(x, t), h ≡ h(x), λ(x) = λ0χΩ\D(x) for a ≤ x ≤ b, D = [c, d], where c > a and
d < b, and χ denotes the indicator function such that

χΩ\D(x) =
{

0 i f x ∈ D,
1 i f x ∈ Ω\D.

Using the centered difference and Euler’s backward difference methods, let ζ = b−a
M+1

where M ∈ N ∪ {0} be the uniform step on the x-axis such that a = x0 < x 1 < · · · <
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xM < xM+1 = b, and let τ be the time step such that tn+1 = tn + τ for t ∈ N ∪ {0}. Then,
the semi-implicit 1D system scheme is as follows:

un+1
i − un

i
τ

=
µn+1

i+1 − 2µn+1
i + µn+1

i−1
ζ2 + λ(xi)

(
h(xi)− un

i
)
,

µn+1
i = −ε

un+1
i+1 − 2un+1

i + un+1
i−1

ζ2 + 1
ε f
(
un

i
)
,

which is similar to
un+1

i = un
i +

τ

ζ2

(
µn+1

i+1 − 2µn+1
i + µn+1

i−1

)
+ τλ(xi)

(
h(xi)− un

i
)
,

µn+1
i = − ε

ζ2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
+ 1

ε f
(
un

i
)
.

The matrix form of the scheme is as follows:{
Un+1 = Un + Aµn+1 + L(Un),

µn+1 = BUn+1 + G(Un),
(4)

where A and B are symmetric matrices such that A = τ
ζ2 diag(1,−2, 1), B = − ε

τ
A, L(Un) =

τλ(xi)
(
h(xi)− un

i
)
, G(Un) = 1

ε f
(
un

i
)
, and with boundary conditions un+1

0 = un+1
M+1 = 0,

µn+1
0 = µn+1

M+1 = 0.

Definition 1. Consider vector v = (v1, v2, . . . , vM) in RM. Say that v is positive and write
v > 0 if and only if vi > 0, for all i = 1, . . . , m.

Theorem 1. B is positive definite.

Proof. Let u = (u1, u2, . . . , uM)T ∈ RM, then

ζ2

ε
〈Bu, u〉 = uT Bu = 2

M

∑
i=1

u2
i −

M

∑
i=2

ui−1ui −
M−1

∑
i=1

uiui+1

= u2
M +

M−1

∑
i=1

u2
i +

M−1

∑
i=1

u2
i+1 − 2

M−1

∑
i=1

uiui+1

= u2
M +

M−1

∑
i=1

(
u2

i − 2uiui+1 + u2
i+1

)
= u2

M +
M−1

∑
i=1

(ui − ui+1)
2 ≥ 0.

Moreover, if 〈Bu, u〉 = 0, then
M−1

∑
i=1

(ui − ui+1)
2 + u2

M = 0, which implies that uM = 0 and

ui = ui+1 for all i = 1, 2, . . . , M− 1, and hence u1 = u2 = · · · = uM−1 = uM. Since uM = 0,
infer that u1 = u2 = · · · = uM−1 = uM = 0 so that u = 0RM . Therefore, B is a symmetric
positive definite matrix.

Corollary 1. B and B−1 are symmetric positive definite matrices.

Corollary 2. A and A−1 are symmetric negative definite matrices.



Mathematics 2023, 11, 4952 4 of 31

2.1.1. Existence of the Steady State

Consider steady state system{
U∗ = U∗ + Aµ∗ + L(U∗)

µ∗ = BU∗ + G(U∗)
, where B = − ε

τ
A. (5)

So, { τ

ε
Bµ∗ = L(U∗),

µ∗ = BU∗ + G(U∗).

But
Bµ∗ = B(BU∗ + G(U∗)),

which implies that

L(U∗) =
τ

ε
B2U∗ +

τ

ε
BG(U∗), (6)

and hence
τ

ε
B2U∗ = −τ

ε
BG(U∗) + L(U∗),

which is similar to
BU∗ = −G(U∗) +

ε

τ
B−1L(U∗).

Consequently, since B is invertible and positive definite, and B = −∆ζ , the discrete form,

then the minimum eigenvalue of −∆ζ is equal to 2π2

(b−2)2 , and
∥∥B−1

∥∥ equals to the inverse of

the least eigenvalue of operator −∆ζ , such that∥∥∥B−1
∥∥∥ =

(b− a)2

2π2 .

Solving (6) for U∗, obtain the following two equivalent forms:

U∗ =
(

λ +
1
λ

B2
)−1(

λh +
1
ε

B f (U∗)
)

,

or
U∗ = −B−1G(U∗) +

ε

τ
B−2L(U∗).

Now, define operator H as

H(V) =

(
λ +

1
λ

B2
)−1(

λh +
1
ε

B f (V)

)
,

so that
U∗ = H(U∗).

In the following, consider sequence

Vk+1 = H
(

Vk
)

, with V0 = 1.

Then,
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V1 = H
(

V0
)

=

(
λ +

1
λ

B2
)−1(

λh +
1
ε

B f
(

V0
))

=

(
λ +

1
λ

B2
)−1

λ h

≥ 0.

Suppose that Vk ≥ 0, then

Vk+1 = H
(

Vk
)
=

(
λ +

1
λ

B2
)−1(

λh +
1
ε

B f
(

Vk
))
≥ 0, if λ is large enough.

Hence,
{

VK} is a positive sequence for a large enough λ.

Lemma 1. Suppose that λ is large enough; then,
{

VK} is a decreasing sequence such
that 0 ≤

∥∥VK
∥∥

∞ ≤ 1.

Proof. Suppose that Vk ≤ Vk+1. Then,

H
(

Vk+1
)
− H

(
Vk
)
=

(
λ +

1
ε

B2
)−1(

λh− 1
ε

B f
(

Vk+1
))
−
(

λ +
1
ε

B2
)−1(

λh− 1
ε

B f
(

Vk
))

= −1
ε

B
(

λ +
1
ε

B2
)−1[

f
(

Vk+1
)
− f

(
Vk
)]

= −1
ε

B
(

λ +
1
ε

B2
)−1(

Vk+1 −Vk
)[

4
(

Vk+1 − 3
4

)2
+ 4
(

Vk − 3
4

)2

+4Vk+1Vk +
14
16

]
≤ 0.

Hence,
{

VK} is a decreasing sequence for all k ∈ N.
However, V0 = 1, then Vk 6 1. It then follows that

0 ≤
∥∥∥VK

∥∥∥
∞
≤ 1.

Corollary 3. Under assumption (H) that λ0 ≥ 4π4δ

ε(1−δ)(b−a)4 for some δ ∈ (0, 1), system

BU∗ = −G(U∗) +
ε

τ
B−1L(U∗)

admits solution U∗ such that 0 ≤ U∗ < 1.

Proof. It is clear that

‖H(θ)‖∞ =

∥∥∥∥ ε

τ
B−2L(θ)− 1

ε
B−1G(θ)

∥∥∥∥
∞

≥ ε

τ

∥∥∥B−2L(θ)
∥∥∥

∞
− 1

ε

∥∥∥B−1G(θ)
∥∥∥

∞
.
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But 0 ≤ θi ≤ 1, for all 1 ≤ i ≤ M, which implies that −6 ≤ 4θ3
i − 6θ2

i + 2θi ≤ 6. Therefore,

‖G(θ)‖∞ =
1
ε
‖ f (θ)‖∞ =

1
ε

(
max

1≤i≤M

∣∣∣4θ3
i − 6θ2

i + 2θi

∣∣∣) ≤ 6
ε

.

In addition, 0 ≤ θi ≤ 1 implies that 0 ≤ ‖θ − h‖∞ ≤ 1− δ, where δ ∈ (0, 1). Thus,

0 ≤ U∗ < 1.

In addition, there is

‖L(θ)‖∞ =
∥∥∥τλ0χΩ\D(x)(θ − h)

∥∥∥
∞
≤ τλ0χΩ\D(1− δ).

It then follows from assumption (H) that

‖H(θ)‖∞ ≥
ε

τ

∥∥∥B−1
∥∥∥2

∞
‖L(θ)‖∞ −

1
ε

∥∥∥B−1
∥∥∥

∞
‖G(θ)‖∞

≥ ε

τ

(b− a)4

4π4 τλ0χΩ\D(1− δ)− 6
ε2

(b− a)2

2π2

≥ ελ0χΩ\D
(b− a)4

4π4 (1− δ)− 3
ε2

(b− a)2

π2 ≥ δ.

2.1.2. Convergence of the Solution

Suppose that
∥∥B−1

∥∥ = (b−a)2

2π2 , and let U∗ and µ∗ be the steady states of system{
Un+1 = Un + Aµn+1 + L(Un)

µn+1 = BUn+1 + G(Un)
, where A = −τ

ε
B. (7)

Then, {
0 = −τ

ε
Bµ∗ + L(U∗),

µ∗ = BU∗ + G(U∗).
(8)

Subtracting (7) from (8), obtain the following system:{
Un+1 = Un − τ

ε
B
(
µn+1 − µ∗

)
+ (L(Un)− L(U∗)),

µn+1 − µ∗ = B
(
Un+1 −U∗

)
+ (G(Un)− G(U∗)).

This implies that

Un+1 = Un − τ

ε
B
[

B
(

Un+1 −U∗
)
+ (G(Un)− G(U∗))

]
+ (L(Un)− L(U∗))

= Un − τ

ε
B2
(

Un+1 −U∗
)
− τ

ε
B(G(Un)− G(U∗)) + (L(Un)− L(U∗)).

Hence, (
Un+1 −U∗

)
− (Un −U∗) = −τ

ε
B2
(

Un+1 −U∗
)
− τ

ε
B(G(Un)− G(U∗))

+ (L(Un)− L(U∗)).

Let Vn+1 = Un+1 −U∗ and Vn = Un −U∗. Then,

Vn+1 −Vn = −τ

ε
B2Vn+1 − τ

ε
B(G(Un)− G(U∗)) + (L(Un)− L(U∗)),
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which is equivalent to(
B−2 +

τ

ε
I
)

Vn+1 = B−2Vn − τ

ε
B−1(G(Un)− G(U∗)) + B−2(L(Un)− L(U∗))

= B−2Vn + τ

[
−1
ε

B−1(G(Un)− G(U∗))
]
+

ε

τ
B−2(L(Un)− L(U∗))

= B−2Vn + τ[H(Un)− H(U∗)].

Now, since B−2 is symmetric and positive definite, then B−2 + τ
ε I is also symmetric positive

definite and invertible such that
(

B−2 + τ
ε I
)−1 ≥ 0.

Hence,

Vn+1 =
(

B−2 +
τ

ε
I
)−1[

B−2Vn + τ(H(Un)− H(U∗))
]
.

Moreover, since H(U) is an increasing function and 0 ≤ Un ≤ U∗ < 1, then

0 ≤ H(Un) ≤ H(U∗) < 1.

Therefore,
0 ≤ Vn+1 < 1 and 0 ≤ Un+1 < U∗.

Moreover, since
(

B−2 + τ
ε I
)−1 is positive definite and 0 ≤ Un < 1, then 0 ≤ Un+1 < 1.

This implies that Un is well defined and 0 ≤ Un ≤ U∗ < 1 for all n ∈ N∪ {0}.

Theorem 2. {Vn+1} converges to 0 if

λ0 >
4π2

ε2(1− δ)

(
επ2 − 3(b− a)2

(b− a)4

)
.

Proof. Consider sequence {Vn+1}, matrix K = I +
τ

ε
B2, Euclidean inner product 〈.〉, and

associate norm ‖.‖. Then,〈
KVn+1, Vn+1

〉
=
〈

Vn − τ

ε
B(G(Un)− G(U∗)) + (L(Un)− L(U∗)), Vn+1

〉
≤
∥∥∥Vn − τ

ε
B(G(Un)− G(U∗)) + (L(Un)− L(U∗))

∥∥∥
∞

∥∥∥Vn+1
∥∥∥

∞
.

Hence,1 +
τ

ε

(
2π2

(b− a)2

)2
∥∥∥Vn+1

∥∥∥
∞
≤
∥∥ Vn − τ

ε B(G(Un)− G(U∗)) + (L(Un)− L(U∗))
∥∥

∞

≤ ‖Vn‖∞ +
τ

ε
‖B‖∞‖G(Un)− G(U∗)‖∞ + ‖L(Un)− L(U∗)‖∞

≤ ‖Vn‖∞ +
τ

ε

2π2

(b− a)2 ‖G(Vn)‖∞ + ‖L(Vn)‖∞

≤ ‖Vn‖∞ +
τ

ε

2π2

(b− a)2 ‖G‖∞‖V
n‖∞ + ‖L‖∞‖V

n‖∞

≤ ‖Vn‖∞

(
1 +

τ

ε2
12π2

(b− a)2 + τλ0(1− δ)

)
.

This implies that∥∥∥Vn+1
∥∥∥

∞
≤
(

1 +
τ

ε

4π4

(b− a)4

)−1(
1 +

τ

ε2
12π2

(b− a)2 + τλ0(1− δ)

)
‖Vn‖∞.
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Therefore, {Vn+1} converges to 0 if(
1 +

τ

ε

4π4

(b− a)4

)−1(
1 +

τ

ε2
12π2

(b− a)2 + τλ0χΩ\D(1− δ)

)
< 1,

which is equivalent to

1 +
τ

ε2
12π2

(b− a)2 + τλ0χΩ\D(1− δ) > 1 +
τ

ε

4π4

(b− a)4 , f or χΩ\D < 1.

Therefore,

λ0 >
4π2

ε2(1− δ)

(
επ2 − 3(b− a)2

(b− a)4

)
.

2.2. 1D—Implicit Fully Discretized Scheme

The fully discretized implicit 1D system scheme, (3), can be written as follows:
un+1

i − un
i

τ
=

µn+1
i+1 − 2µn+1

i + µn+1
i−1

ζ2 + λ(xi)
(

h(xi)− un+1
i

)
,

µn+1
i = −ε

un+1
i+1 − 2un+1

i + un+1
i−1

ζ2 + 1
ε f
(

un+1
i

)
,

which is similar to
un+1

i = un
i +

τ

ζ2

(
µn+1

i+1 − 2µn+1
i + µn+1

i−1

)
+ τλ(xi)

(
h(xi)− un+1

i

)
,

µn+1
i = − ε

ζ2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
+ 1

ε f
(

un+1
i

)
.

The matrix form of the scheme is as follows:{
Un+1 = Un + Aµn+1 + L

(
Un+1),

µn+1 = BUn+1 + G
(
Un+1),

where B is an invertible and positive definite matrix, and A = − τ
ε B is a negative definite

matrix. Moreover, B−1 ≥ 0 and A−1 ≤ 0. The system is equivalent to{
Un+1 −Un + τ

ε Bµn+1 − L
(
Un+1) = 0,

µn+1 − BUn+1 − G
(
Un+1) = 0,

and hence {
Q
(
Un+1, µn+1) = 0,

H
(
Un+1, µn+1) = 0,

where {
Q
(
Un+1, µn+1) = Un+1 −Un + τ

ε Bµn+1 − L
(
Un+1),

H
(
Un+1, µn+1) = µn+1 − BUn+1 − G

(
Un+1),

with un+1
0 = un+1

1 = 0, µn+1
0 = µn+1

1 = 0, L
(
Un+1) = τλ(xi)

(
h(xi)− un+1

i

)
,

and G
(
Un+1) = 1

ε f
(

un+1
i

)
.
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Existence of Roots of Q and H Such That Q(U∗, µ∗) = 0 and H(U∗, µ∗) = 0

Let U∗ and µ∗ be the roots of Q and H such that{
Q(U∗, µ∗) = 0,
H(U∗, µ∗) = 0,

which is equivalent to {
U∗ = U∗ − τ

ε Bµ∗ + L(U∗),
µ∗ = BU∗ + G(U∗),

and implies that
τ

ε

(
B2U∗ + BG(U∗)

)
− L(U∗) = 0,

where B and B2 are positive definite matrices. Hence,

U∗ = −B−1G(U∗) +
ε

τ
B−2L(U∗) . (9)

Theorem 3. Assume that λ0 > 4π2δ

ε(1−δ)(b−a)4 for some δ ∈ (0, 1), then Equation (9) admits solution

U∗ such that 0 ≤ U∗ < 1.

Proof. Conducted in Corollary 3.

Theorem 4. Assume that

λ0 ≥ 2

√
2
3

(
π3δ

(1− δ)(b− a)3

)
for some δ ∈ (0, 1), then µ∗ = BU∗ + G(U∗) admits solution µ∗.

Proof. It is clear that

‖µ∗‖∞ = ‖BU∗ − G(U∗)‖∞

≥ ‖BU∗‖∞ − ‖G(θi)‖∞, f or 0 ≤ θi ≤ 1

≥ ‖B‖∞‖U
∗‖∞ −

1
ε
‖ f (θi)‖∞, with 0 ≤ ‖U∗‖∞ ≤ 1

≥ ‖B‖∞ −
1
ε
‖ f (θi)‖∞

≥ 2π2

(b− a)2 −
1
ε

max
1≤i≤N

∣∣∣4θ3
i − 6θ2

i + 2θi

∣∣∣
≥ 2π2

(b− a)2 −
6
ε2 .

But

‖µ∗‖∞ =

∥∥∥∥− ε

ζ2

(
u∗i+1 − 2u∗i + u∗i−1

)
+

1
ε

f (u∗i )
∥∥∥∥

∞

≤ ε

ζ2

∥∥u∗i+1 − 2u∗i + u∗i−1
∥∥

∞ +
1
ε
‖ f (u∗i )‖∞

≤ 6
ε2 .

This implies that
6
ε2 ≥

2π2

(b− a)2 −
6
ε2 ,
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and hence
12
ε2 ≥

2π2

(b− a)2 .

But
1
ε
≤ λ0(1− δ)(b− a)4

4π2δ
,

which implies that
12λ2

0(1− δ)2(b− a)4

16π4δ2 ≥ 2π2

(b− a)2 .

Therefore,

λ2
0 ≥

8π6δ2

3(1− δ)2(b− a)6 .

Now, in order to find Un+1 and µn+1 such that Q
(
Un+1, µn+1) = Un+1 −Un − τ

ε
Bµn+1 + τλ(xi)

(
h(xi)− un+1

i

)
,

H
(
Un+1, µn+1) = µn+1 − BUn+1 − 1

ε f
(

un+1
i

)
,

which is equivalent to
Q
(

un+1
i , µn+1

i

)
= un+1

i − un
i −

τ

ζ2

(
µn+1

i+1 − 2µn+1
i + µn+1

i−1

)
+ τλ(xi)

(
h(xi)− un+1

i

)
= 0,

H
(

un+1
i , µn+1

i

)
= µn+1

i +
ε

ζ2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
− 1

ε f
(

un+1
i

)
= 0,

let

F
(

un+1
i , µn+1

i

)
= Q

(
un+1

i , µn+1
i

)
+ H

(
un+1

i , µn+1
i

)
= un+1

i − un
i −

τ

ζ2

(
µn+1

i+1 − 2µn+1
i + µn+1

i−1

)
+ τλ(xi)

(
h(xi)− un+1

i

)
+ µn+1

i +
ε

ζ2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
− 1

ε
f
(

un+1
i

)
.

Let Un+1−Un = ψ, and µn+1− µn = ϕ for all n ∈ N∪ {0}. Then, using Newton’s method,
it is obtained that the sequence (Un+1, µn+1) for all n ∈ N converges to (U?, µ?)such that
(U?, µ?) is the root of F, so that F(U?, µ?) = 0.

Moreover, by Newton’s Method, there is(
Un+1, µn+1

)
= −DF−1(Un, µn)F(Un, µn) + (Un, µn).

Hence, in order to find Un+1 and µn+1, the Jacobian block matrix of F(Un, µn) has to be
computed at each iteration of n ∈ N. This implies that

F
(

un+1
i , µn+1

i

)
= Q

(
Un+1, µn+1

)
+ H

(
Un+1, µn+1

)
= un+1

i − un
i −

τ

ζ2

(
µn+1

i+1 − 2µn+1
i + µn+1

i−1

)
+ τλ(xi)

(
h(xi)− un+1

i

)
+ µn+1

i +
ε

ζ2

(
un+1

i+1 − 2un+1
i + un+1

i−1

)
− 1

ε

(
4
(

un+1
i

)3
− 6
(

un+1
i

)2
+ 2
(

un+1
i

))
.
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The Jacobian of F is

∂Fi
∂uj

=


1− τλ(xi)− 2

ε

ζ2 −
1
ε

(
12
(

un+1
i

)2
− 12un+1

i + 2
)

, if j = i,
ε

ζ2 , if j = i± 1,

0, otherwise,

and

∂Fi
∂µj

=


1 + 2

τ

ζ2 , if j = i,

− τ

ζ2 , if j = i± 1,

0, otherwise.
Now, let 0 ≤ U∗, µ∗ ≤ 1 be the roots of F such that F(U∗, µ∗) = 0. This implies that

Fi(U∗, µ∗) = − τ

ζ2

(
µ∗i+1 − 2µ∗i + µ∗i−1

)
+ τλ(xi)

(
h(xi)− u∗i

)
+ µ∗i

+
ε

ζ2

(
u∗i+1 − 2u∗i + u∗i−1

)
− 1

ε
f
(
u∗i
)
= 0,

and

DFi(U∗, µ∗) =
∂Fi
∂uj

∂u +
∂Fi
∂µj

∂µ =

(
1− τλ(xi)− 2

ε

ζ2 + 2
τ

ζ2

)
I − J,

where I is the identity matrix with ‖I‖∞ = 1, and

J = diag
(

τ

ζ2 −
ε

ζ2 ,
1
ε

(
12(u∗)2 − 12U∗ + 2

)
,

τ

ζ2 −
ε

ζ2

)
,

with

‖J‖∞ = max
{

2
τ

ζ2 − 2
ε

ζ2 ,
1
ε

(
12(u∗)2 − 12u∗ + 2

)}
= 2

τ

ζ2 − 2
ε

ζ2 +
1
ε

,

since max
0≤U∗≤1

{
12(u∗)2 − 12u∗ + 2

}
= 1.

Theorem 5. DF(U∗, µ∗) is invertible if and only if λ0 >
1− 2ε

ετ
.

Proof.

DF(U∗, µ∗) is invertible i f f
∥∥∥∥2− τλ0χΩ\D − 2

ε

ζ2 + 2
τ

ζ2

∥∥∥∥
∞
< ‖J‖∞

i f f 2− τλ0χΩ\D − 2
ε

ζ2 + 2
τ

ζ2 < 2 τ
ζ2 − 2 ε

ζ2 +
1
ε

i f f τλ0χΩ\D >
1
ε
− 2, where χΩ\D ≤ 1

i f f λ0 >
1− 2ε

ετ
.

Moreover,
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∥∥∥DF(U∗, µ∗)−1
∥∥∥

∞
=

1

1− ‖J‖−1
∞

∥∥∥∥2− τλ0χΩ\D − 2
ε

ζ2 + 2
τ

ζ2

∥∥∥∥
∞

=
1

1−
(

2(τ − ε)

ζ2 +
1
ε

)−1∥∥∥∥2− τλ0χΩ\D − 2
ε

ζ2 + 2
τ

ζ2

∥∥∥∥
∞

.

Corollary 4. If F ∈ C2(a, b) for all 0 ≤ U∗ ≤ r1, then DF(U, µ) is invertible and∥∥∥DF(U, µ)−1
∥∥∥

∞
≤ k

k−1

∥∥∥DF(U∗, µ∗)−1
∥∥∥ = r1, where k > 1.

Proof.

DF(U, µ) = DF(U, µ)− DF(U∗, µ∗) + DF(U∗, µ∗)

= DF(U∗, µ∗)
[

I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))
]
.

Since F ∈ C2(a, b), then DF ∈ C1(a, b); in particular, DF is continuous at (U∗, µ∗), and by
the definition of continuity of DF at (U∗, µ∗), there exist υ > 0, and r1 > 0 such that
υ = 1

k
∥∥∥DF(U∗ ,µ∗)−1

∥∥∥
∞

; and for any 0 ≤ U∗ ≤ r1, there is

‖DF(U, µ)− DF(U∗, µ∗)‖∞ < υ,

and ∥∥∥DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))
∥∥∥

∞

≤
∥∥∥DF(U∗, µ∗)−1

∥∥∥
∞
‖(DF(U, µ)− DF(U∗, µ∗))‖∞

≤ 1
k
< 1,

hence, I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗)) is invertible (Von-Neumann Lemma).
Then, for every U∗ ≤ U ≤ r1, there is∥∥∥DF(U, µ)−1

∥∥∥
∞
=

∥∥∥∥DF(U∗, µ∗)
[

I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))
]−1
∥∥∥∥

∞

=
∥∥∥I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))

∥∥∥−1

∞
‖F(U∗, µ∗)‖−1

∞

=
1∥∥∥I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))

∥∥∥
∞

‖F(U∗, µ∗)‖−1
∞

≤ 1
1− ‖DF(U∗, µ∗)‖∞‖DF(U, µ)− DF(U∗, µ∗)‖∞

‖F(U∗, µ∗)‖−1
∞

≤ 1
1− 1

K
‖F(U∗, µ∗)‖−1

∞

≤ k
k− 1

∥∥∥DF(U∗, µ∗)−1
∥∥∥

∞
.
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Lemma 2. If F ∈ C2(a, b) and U∗ ≤ Un ≤ r1, then∥∥∥DF(Un, µ∗)
(

Un+1 −U∗
)∥∥∥

∞
≤ r2|Un −U∗|,

where r2 = 1
2 sup

U∗≤θ≤r1

∥∥D2F(θ, µ∗)
∥∥

∞.

Proof. Let

φ(t) = F(Un + t(U∗ −Un), µ∗)− F(Un, µ∗)− t DF(Un, µ∗)(U∗ −Un),

so that

φ′(t) = DF(Un + t(U∗ −Un), µ∗)(U∗ −Un)− DF(Un, µ∗)(U∗ −Un).

By the fundamental theorem of calculus, there is φ(1)− φ(0) =
∫ 1

0 φ′(t)dt. Hence,

F(U∗, µ∗)− F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)

=
∫ 1

0
[DF(Un + t(U∗ −Un), µ∗)(U∗ −Un)− DF(Un, µ∗)(U∗ −Un)] dt.

But F(U∗, µ∗) = 0, so if norms of the previous equality are taken, there appears

‖−F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)‖∞

≤
∫ 1

0
‖DF(Un + t(U∗ −Un), µ∗)(U∗ −Un)− DF(Un, µ∗)(U∗ −Un)‖∞ dt

≤
∫ 1

0
‖DF(Un + t(U∗ −Un), µ∗)− DF(Un, µ∗)‖∞‖(U

∗ −Un)‖∞ dt,

since DF ∈ C1(a, b); then, by the mean value theorem, there is

‖DF(Un + t(U∗ −Un), µ∗)− DF(Un, µ∗)‖∞ ≤ ‖t (U
∗ −Un)‖∞. sup

U∗≤θ≤r1

∥∥∥D2F(θ, µ∗)
∥∥∥

∞
.

Hence,

‖−F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)‖∞ ≤ ‖(U
∗ −Un)‖2

∞ sup
U∗≤θ≤r1

∥∥∥D2F(θ, µ∗)
∥∥∥

∞

∫ 1

0
tdt

≤ 1
2
‖(U∗ −Un)‖2

∞ sup
U∗≤θ≤r1

∥∥∥D2F(θ, µ∗)
∥∥∥

∞
.

If r2 = 1
2 sup

U∗≤θ≤r1

∥∥D2F(θ, µ∗)
∥∥

∞ is taken, then

‖−F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)‖∞ ≤ r2‖(U∗ −Un)‖2
∞.

By Newton’s Raphson method, there is(
Un+1, µ∗

)
= −DF(Un, µ∗)−1F(Un, µ∗) + (Un, µ∗),

which implies that
Un+1 −Un = −DF(Un, µ∗)−1F(Un, µ∗),

and
DF(Un, µ∗)

(
Un+1 −Un

)
= −F(Un, µ∗).
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Hence, ∥∥∥DF(Un, µ∗)
(

Un+1 −Un
)
− DF(Un, µ∗)(U∗ −Un)

∥∥∥
∞
≤ r2‖U∗ −Un‖2

∞,

which is equivalent to∥∥∥DF(Un, µ∗)
(

Un+1 −U∗
)∥∥∥

∞
≤ r2‖U∗ −Un‖2

∞.

Theorem 6. Let U∗ ≤ U0 ≤ r3 ≤ r1. Then, DF
(
Un+1, µ∗

)
is invertible and {

(
Un+1, µ∗

)
}

converges to (U∗, µ∗).

Proof. If U∗ ≤ U0 ≤ r3 ≤ r1, then DF
(
U0, µ∗

)
is invertible and∥∥∥DF

(
U0, µ∗

)−1
∥∥∥

∞
≤ r1. Thus,

(
U1, µ∗

)
is well defined. By Newton’s method, obtain

(
U1, µ∗

)
=
(

U0, µ∗
)
− DF

(
U0, µ∗

)−1
F
(

U0, µ∗
)

,

which implies that (
U1 −U0, µ∗

)
DF
(

U0, µ∗
)
= −F

(
U0, µ∗

)
.

Now, suppose that the previous equality holds for every n ∈ N. So, DF(Un, µ∗) is invertible
and

∥∥∥DF(Un, µ∗)−1
∥∥∥

∞
≤ r1, where U∗ ≤ Un ≤ r3. This implies that

(
Un+1, µ∗

)
is well

defined and
DF(Un, µ∗)

(
Un+1 −Un

)
= −F(Un, µ∗).

But ∥∥∥Un+1 −U∗
∥∥∥

∞
=
∥∥∥DF(Un, µ∗)−1DF(Un, µ∗)

(
Un+1 −U∗

)∥∥∥
∞

≤
∥∥∥DF(Un, µ∗)−1

∥∥∥
∞

∥∥∥DF(Un, µ∗)
(

Un+1 −U∗
)∥∥∥

∞

≤ r1r2‖U∗ −Un‖2
∞

≤ r1r2r2
3, since(Un, µ∗) ∈ B((U∗, µ∗), r3)

≤ (r1r2r3)r3

≤ r3.

Therefore, U∗ ≤ Un ≤ r3 ≤ r1, and DF
(
Un+1, µ∗

)
is invertible such that∥∥∥∥DF

(
Un+1, µ∗

)−1
∥∥∥∥

∞
≤ r1.

Moreover, U∗ ≤ Un ≤ r3 ≤ r1 and DF(Un, µ∗) is invertible for every n ∈ N. So, sequence
{(Un, µ∗)}n∈N is well defined and∥∥∥Un+1 −U∗

∥∥∥
∞
≤ r1r2‖Un −U∗‖2

∞ ≤ β‖Un −U∗‖2
∞, where β = r1r2.

This implies that

β
∥∥∥Un+1 −U∗

∥∥∥
∞
≤ 1

β
(β‖Un −U∗‖∞)2 ≤ . . . ≤ 1

β

(
β
∥∥∥U0 −U∗

∥∥∥
∞

)2n

.

But U∗ ≤ U0 ≤ r3, which implies that β
∥∥U0 −U∗

∥∥
∞ ≤ βr3 < 1. Therefore, β

∥∥Un+1 −U∗
∥∥

∞
→ 0, and hence {

(
Un+1, µ∗

)
} converges to (U∗, µ∗).
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3. Two-Dimensional Discretization
3.1. 2D—Semi-Implicit Fully Discretized Scheme

Consider two-dimensional system
ut = ∆µ + λ(x, y)(h− u), in Ω× [0, T],

µ = −ε∆u + 1
ε f (u), in Ω× [0, T],

u = ∆u = 0 on ∂Ω× [0, T],
u(0, x, y) = u0(x, y) in Ω,

(10)

where u ≡ u(x, y, t), h ≡ h(x, y), λ(x, y) = λ0χΩ\D(x, y) for t ≥ 0, a ≤ x, y ≤ b, and Ω =

{(x, y)|a ≤ x, y ≤ b}. Let M ∈ N ∪ {0} and let ζ = γ = b−a
M+1 be the uniform step on

the x and y axes, respectively, such that xi+1 = xi + ζ ∀i = 0, 1, . . . M, yj+1 = yj + γ
∀j = 0, 1, . . . M, a = x0 < x 1 < · · · < xM < xM+1 = b, and a = y0 < y 1 < · · · < yM <
yM+1 = b. In addition, let τ be the time step such that tn+1 = tn + τ for t ∈ N ∪ {0}.
Then, the fully discretized semi-implicit 2D system scheme, (10), can be written in the
following form:

un+1
i,j − un

i,j

τ
=

µn+1
i+1,j − 2µn+1

i,j + µn+1
i−1,j

ζ2 +
µn+1

i,j+1 − 2µn+1
i,j + µn+1

i,j−1

γ2 + λi,j

(
hi,j − un

i,j

)
,

µn+1
i,j = −ε

(
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

ζ2

)
− ε

(
un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1

γ2

)
+ 1

ε f
(

un
i,j

)
,

(11)

with boundary conditions{
un+1

0,j = un+1
M+1,j = un+1

i,0 = un+1
i,M+1 = 0,

µn+1
0,j = µn+1

M+1,j = µn+1
i,0 = µn+1

i,M+1 = 0,
∀ i, j = 0, 1, . . . M,

where µn
i,j ≈ µ

(
tn, xi, yj

)
, un

i,j ≈ u
(
tn, xi, yj

)
, λi,j ≈ λ

(
xi, yj

)
, and hi,j ≈ h

(
xi, yj

)
. Scheme (11)

can also be written in the following form:
un+1

i,j = un
i,j +

τ

ζ2

(
µn+1

i+1,j − 2µn+1
i,j + µn+1

i−1,j

)
+

τ

γ2

(
µn+1

i,j+1 − 2µn+1
i,j + µn+1

i,j−1

)
+ τλi,j

(
hi,j − un

i,j

)
,

µn+1
i,j = − ε

ζ2

(
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

)
− ε

γ2

(
un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1

)
+

1
ε

f
(

un
i,j

)
,

Since ζ = γ, the system is equivalent to
un+1

i,j −
τ

ζ2

(
µn+1

i+1,j + µn+1
i−1,j − 4µn+1

i,j + µn+1
i,j+1 + µn+1

i,j−1

)
= un

i,j + τλi,j

(
hi,j − un

i,j

)
,

µn+1
i,j +

ε

ζ2

(
un+1

i+1,j + un+1
i−1,j − 4un+1

i,j + un+1
i,j+1 + un+1

i,j−1

)
=

1
ε

f
(

un
i,j

)
.

(12)

The matrix form of Scheme (12) is as follows:{
Un+1 + Aµn+1 = Un + L(Un),

µn+1 + EUn+1 = G(Un),

with

Un+1 =
(

un+1
1,1 , un+1

2,1 , . . . , un+1
M,1 , . . . , un+1

1,M , un+1
2,M , . . . , un+1

M,M

)t
,

µn+1 =
(

µn+1
1,1 , µn+1

2,1 , . . . , µn+1
M,1 , . . . , µn+1

1,M , µn+1
2,M , . . . , µn+1

M,M

)t
,
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where A and E are M2 ×M2 symmetric tridiagonal block matrices such that

A =



B C 0 . . . 0
C B C 0 . .
0 C B C 0 .
. 0 . . . . .
. . . . . . .
. 0 C B C 0
. 0 C B C
0 . . . . 0 C B


M2×M2

,

where
(

Bij
)

M×M =
τ

ζ2


−1 i f i < j

4 i f i = j
−1 i f i > j

, and C = − τ

ζ2 IM×M.

E =



D K 0 . . . 0
K D K 0 . .
0 K D K 0 .
. 0 . . . . .
. . . . . . .
. 0 K D K 0
. 0 K D K
0 . . . . 0 K D


M2×M2

,

where
(

Dij
)

M×M =
ε

ζ2


1 i f i < j
−4 i f i = j
1 i f i > j

, and K = − ε

ζ2 IM×M.

G(Un) =



un
1,1 + τλ1,1

(
un

1,1 − h1,1

)
...

un
M,1 + τλM,1

(
un

M,1 − hM,1

)
...
...

un
1,M + τλ1,M

(
un

1,M − h1,M

)
...

un
M,M + τλM,M

(
un

M,M − hM,M

)



,

and

L(Un) =
1
ε



f
(

un
1,1

)
...

f
(

un
M,1

)
...
...

f
(

un
1,M

)
...

f
(

un
M,M

)



.

Lemma 3. Block matrix A is positive definite.
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Proof. Let u =
(
u1

1, u1
2, . . . , u1

M ; u2
1, u2

2, . . . , u2
M ; uM

1 , uM
2 , . . . , uM

M
)T ∈ RM2

; then, making
some calculations, obtain

〈Au, u〉 = 4τ

ζ2

M

∑
i=1

M

∑
j=1

(
ui

j

)2
− 2τ

ζ2

M

∑
i=1

M−1

∑
j=1

ui
ju

i
j+1 −

2τ

ζ2

M−1

∑
i=1

M

∑
j=1

ui
ju

i+1
j

=
τ

ζ2

(
4

M

∑
i=1

M

∑
j=1

(
ui

j

)2
− 2

M

∑
i=1

M−1

∑
j=1

ui
ju

i
j+1 − 2

M−1

∑
i=1

M

∑
j=1

ui
ju

i+1
j

)

=
τ

ζ2

(
M

∑
i=1

M

∑
j=1

(
ui

j

)2
− 2

M

∑
i=1

M−1

∑
j=1

ui
ju

i
j+1 +

M

∑
i=1

M

∑
j=1

(
ui+1

j

)2
)

+
τ

ζ2

(
4

M

∑
i=1

M

∑
j=1

(
ui

j

)2
− 2

M−1

∑
i=1

M

∑
j=1

ui
ju

i+1
j − 2

M

∑
i=1

M

∑
j=1

(
ui

j

)2
)

=
τ

ζ2

[(
M

∑
i=1

M−1

∑
j=1

(
ui

j

)2
− 2

M

∑
i=1

M−1

∑
j=1

ui
ju

i
j+1 +

M

∑
i=1

M−1

∑
j=1

(
ui

j+1

)2
)
+

M

∑
i=1

(
ui

1

)2
+

M

∑
i=1

(
ui

M

)2
]

+
τ

ζ2

[(
M−1

∑
i=1

M

∑
j=1

(
ui

j

)2
− 2

M−1

∑
i=1

M

∑
j=1

ui
ju

i+1
j +

M−1

∑
i=1

M

∑
j=1

(
ui+1

j

)2
)
+

M

∑
j=1

(
uM

j

)2
+

M

∑
j=1

(
u1

j

)2
]

=
τ

ζ2

[
M

∑
i=1

M−1

∑
j=1

(
ui

j − ui
j+1

)2
+

M−1

∑
i=1

M

∑
j=1

(
ui

j − ui+1
j

)2

+
M

∑
i=1

(
ui

1

)2
+

M

∑
i=1

(
ui

M

)2
+

M

∑
j=1

(
uM

j

)2
+

M

∑
j=1

(
u1

j

)2
+

M

∑
i=1

]
≥ 0.

Now, if 〈Au, u〉 = 0, then

M

∑
i=1

(
ui

1

)2
+

M

∑
i=1

(
ui

M

)2
+

M

∑
j=1

(
uM

j

)2
+

M

∑
j=1

(
u1

j

)2
+

M

∑
i=1

M−1

∑
j=1

(
ui

j − ui
j+1

)2
+

M−1

∑
i=1

M

∑
j=1

(
ui

j − ui+1
j

)2
= 0,

which implies that ui
1 = ui

M = 0 ∀i = 0, 1, . . . M, uM
j = u1

j = 0 ∀j = 0, 1, . . . M , ui
j = ui

j+1

and ui
j = ui+1

j ∀i, j = 0, 1, . . . M. So, ui
1 = ui

2 = · · · = ui
M−1 = ui

M = 0 ∀i = 0, 1, . . . M,

and hence u = (0, 0, · · · 0)t
1×M2 .

Therefore, A is a symmetric positive definite block matrix.

Corollary 5. Using the fact that A is a symmetric positive definite block matrix, A is invertible
and A−1 ≥ 0.

Corollary 6. Since A is a symmetric positive definite block matrix, and E = − ε

τ
A, where

ε

τ
> 0,

E is invertible such that E ≤ 0 and E−1 ≤ 0.

3.1.1. Existence of the Steady State

Consider the system which is the centered divided difference scheme of the steady state,{
U∗ + Aµ∗ = U∗ + L(U∗),

µ∗ + EU∗ = G(U∗),

which is equivalent to

Aµ∗ = τλ0χΩ\D(h−U∗) with µ∗ =
ε

τ
AU∗ +

1
ε

f (u∗).
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But

Aµ∗ = A
(

ε

τ
AU∗ +

1
ε

f (u∗)
)
=

ε

τ
A2U∗ +

1
ε

A f (u∗).

Hence,

A2U∗ = − τ

ε2 A f (u∗) +
τ2

ε
λ0χΩ\D(h−U∗). (13)

Since A is invertible and positive definite, A−1 is also positive definite and A = −∆ζ,γ is

the discrete form, where the minimum eigenvalue of −∆ζ,γ is equal to 2π2

(b−2)2 . Hence,

‖A‖∞ =
2π2

(b− a)2 .

Solving (13) for U∗, obtain two equivalent forms as follows:

U∗ = − τ

ε2 A−1 f (u∗) +
τ2

ε
λ0χΩ\D A−2(h−U∗)

or

U∗ =
(

I +
τ2

ε
λ0χΩ\D A−2

)−1[
τ

ε
A−1

(
τλ0χΩ\D A−1h− 1

ε
f (u∗)

)]
.

Now, define operator H as

H(V) =

(
I +

τ2

ε
λ0χΩ\D A−2

)−1[
τ

ε
A−1

(
τλ0χΩ\D A−1h− 1

ε
f (V)

)]
so that

U∗ = H(U∗)

and consider sequence
Vk+1 = H

(
Vk
)

, with V0 = 1.

Thus,

V1 = H
(

V0
)
=

(
I +

τ2

ε
λ0χΩ\D A−2

)−1[
τ

ε
A−1

(
τλ0χΩ\D A−1h− 1

ε
f
(

V0
))]

=

(
I +

τ2

ε
λ0χΩ\D A−2

)−1[
τ2

ε
A−2λ0χΩ\Dh

]
≥ 0.

Moreover, if Vk ≥ 0, then

Vk+1 = H
(

Vk
)

=

(
I +

τ2

ε
λ0χΩ\D A−2

)−1[
τ2

ε
λ0χΩ\D A−2h +

1
ε

E−1 f
(

Vk
)]

≥ 0, if λ is large enough.

Hence,
{

Vk
}

is a positive sequence for all k ∈ N if λ is large enough.

Lemma 4.
{

Vk
}

is a decreasing sequence such that 0 ≤
∥∥∥Vk

∥∥∥ ≤ 1.
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Proof. Suppose that Vk ≤ Vk+1. Then,

H
(

Vk+1
)
− H

(
Vk
)
=

(
I +

τ2

ε
λ0χΩ\D A−2

)−1[
τ2

ε
λ0χΩ\D A−2h +

1
ε

E−1 f
(

Vk
)]
−

−
(

I +
τ2

ε
λ0χΩ\D A−2

)−1[
τ2

ε
λ0χΩ\D A−2h +

1
ε

E−1 f
(

Vk
)]

=
1
ε

E−1
(

I +
τ2

ε
λ0χΩ\D A−2

)−1(
f
(

Vk+1
)
− f

(
Vk
))

= − τ

ε2 A−1
(

I +
τ2

ε
λ0χΩ\D A−2

)−1(
Vk+1 −Vk

)[
4
(

Vk+1 − 3
4

)2

+4
(

Vk − 3
4

)2
+ 4Vk+1Vk +

14
16

]
≤ 0.

Hence,
{

Vk
}

is a decreasing sequence for all k ∈ N. Note that V0 = 1; infer that

0 ≤
∥∥∥Vk

∥∥∥ ≤ 1.

Now, let 0 ≤ θ ≤ 1, which implies that 0 ≤ ‖h(x)− θ‖∞ ≤ 1− δ, where δ ∈ (0, 1), so that

0 ≤ U∗ < 1.

In addition, there is
−6 ≤ 4θ3 − 6θ2 + 2θ ≤ 6,

which yields

‖G(θ)‖∞ =
1
ε
‖ f (θ)‖∞ =

1
ε

(
max

1≤i≤M

∣∣∣4θ3 − 6θ2 + 2θ
∣∣∣) ≤ 6

ε
,

and

‖H(θ)‖∞ =

∥∥∥∥− τ

ε2 A−1 f (θ) +
τ2

ε
λ0χΩ\D A−2 (h− θ)

∥∥∥∥
∞

≥ τ2

ε
λ0χΩ\D

∥∥∥A−2 (h− θ)
∥∥∥

∞
− τ

ε2

∥∥∥A−1 f (θ)
∥∥∥

∞

≥ τ2

ε
λ0χΩ\D

∥∥∥A−2
∥∥∥

∞
‖(h− θ)‖∞ −

τ

ε2

∥∥∥A−1
∥∥∥

∞
‖ f (θ)‖∞

≥ τ2

ε
λ0χΩ\D

(b− a)4

4π4 (1− δ)− τ

ε2
3(b− a)2

2π2

≥ τ2λ0(1− δ)(b− a)4

4επ4 − 3τ(b− a)2

2ε2π2

≥
τ2λ0χΩ\D(1− δ)(b− a)4

4επ4 − 3τ(b− a)2

2ε2π2 ,

where the assumption (H’) (given in the next corollary) is used as well as the fact that
‖H(θ)‖∞ > δ for some δ ∈ (0, 1), and χΩ\D < 1.
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Corollary 7. Under assumption (H’) that is λ0 ≥ 4π4εδ+12π2τ2(b−a)2

ετ2(1−δ)(b−a)4 for some δ ∈ (0, 1), find

that

A2U∗ = − τ

ε2 A f (u∗) +
τ2

ε
λ0χΩ\D(U

∗ − h)

admits solution U∗ such that 0 ≤ U∗ < 1.

3.1.2. Convergence of the Solution

Suppose that
∥∥A−1

∥∥
∞ = (b−a)2

2π2 , and let U∗and µ∗ be steady states of the system Un+1 + Aµn+1 = Un + τλ0χΩ\D(h−Un),

µn+1 + EUn+1 =
1
ε

f (un).
(14)

Then,  Aµ∗ = τλ0χΩ\D(h−U∗),

µ∗ + EU∗ =
1
ε

f (u∗).
(15)

Subtracting (15) from (14), obtain the following system: Un+1 + A
(
µn+1 − µ∗

)
= Un + τλ0χΩ\D((h−Un)− (h−U∗)),

µn+1 − µ∗ + E
(
Un+1 −U∗

)
=

1
ε
( f (un)− f (u∗)),

which is equivalent to the following difference equation:

Un+1 + A
[
−E
(

Un+1 −U∗
)
+

1
ε
( f (un)− f (u∗))

]
= Un + τλ0χΩ\D((h−Un)− (h−U∗)).

Hence,

Un+1 −Un = A
[

E
(

Un+1 −U∗
)
− 1

ε
( f (un)− f (u∗))

]
+ τλ0χΩ\D((h−Un)− (h−U∗)),

which yields(
Un+1 −U∗

)
− (Un −U∗) = − ε

τ
A2
(

Un+1 −U∗
)
− 1

ε
A( f (un)− f (u∗))

+ τλ0χΩ\D((h−Un)− (h−U∗)).

Let Vn+1 = Un+1 −U∗ and Vn = Un −U∗, then

Vn+1 −Vn = − ε

τ
A2Vn+1 − 1

ε
A( f (un)− f (u∗)) + τλ0χΩ\D((h−Un)− (h−U∗)),

which is equivalent to
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( ε

τ
I + A−2

)
Vn+1 = A−2Vn − 1

ε
A−1( f (un)− f (u∗))

+ τλ0χΩ\D A−2((h−Un)− (h−U∗))

= A−2Vn +
ε

τ

 − τ

ε2 A−1( f (un)− f (u∗))

+λ0χΩ\D
τ2

ε
A−2((h−Un)− (h−U∗))



= A−2Vn +
ε

τ


(
− τ

ε2 A−1 f (un) + λ0χΩ\D
τ2

ε
A−2(h−Un)

)
−
(
− τ

ε2 A−1 f (u∗) + λ0χΩ\D
τ2

ε
A−2(h−U∗)

)


= A−2Vn +
ε

τ
[H(Un)− H(U∗)].

Now, since A−2 is a symmetric and positive definite block matrix, then A−2 + ε
τ I is also

symmetric positive definite, and it is invertible such that
(

A−2 + ε
τ I
)−1 ≥ 0. Therefore,

Vn+1 =
(

A−2 +
ε

τ
I
)−1(

A−2Vn +
ε

τ
[H(Un)− H(U∗)]

)
.

Moreover, since H(Un) is a decreasing function, and 0 ≤ U∗ ≤ Un < 1, then

0 ≤ H(Un) ≤ H(U∗) < 1.

This implies that
0 ≤ Un+1 < 1 and 0 ≤ Vn+1 < 1.

Therefore, Un is well defined and 0 ≤ U∗ ≤ Un < 1 for all n ∈ N∪ {0}.

Theorem 7. {Vn+1} converges to 0 if

λ0 >
4π4ε2 + 12π2τ2(b− a)2

ετ2(1− δ)(b− a)4 .

Proof. Consider sequence {Vn+1}, matrix K = I +
ε

τ
A2, Euclidean inner product 〈.〉, and

associate norm ‖.‖∞. Then, for L(Un) = τλ0χΩ\D(h− un), and G(Un) = 1
ε f (un)〈

KVn+1, Vn+1
〉

=
〈

Vn − τ

ε
A(G(Un)− G(U∗)) +

τ

ε
(L(Un)− L(U∗)), Vn+1

〉
≤

∥∥∥Vn − τ

ε
A(G(Un)− G(U∗)) +

τ

ε
(L(Un)− L(U∗))

∥∥∥
∞

∥∥∥Vn+1
∥∥∥

∞
.

Hence,
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1 +
ε

τ

(
2π2

(b− a)2

)2
∥∥∥Vn+1

∥∥∥
∞
≤
∥∥∥Vn − τ

ε
A(G(Un)− G(U∗)) +

τ

ε
(L(Un)− L(U∗))

∥∥∥
∞

≤ ‖Vn‖∞ +
τ

ε
‖A‖∞‖G(Un)− G(U∗)‖∞ +

τ

ε
‖L(Un)− L(U∗)‖∞

≤ ‖Vn‖∞ +
τ

ε

2π2

(b− a)2 ‖G(Vn)‖∞ +
τ

ε
‖L(Vn)‖∞

≤ ‖Vn‖∞ +
τ

ε

2π2

(b− a)2 ‖G‖∞‖V
n‖∞ +

τ

ε
‖L‖∞‖V

n‖∞

≤ ‖Vn‖∞

(
1 +

τ

ε2
12π2

(b− a)2 +
τ2

ε
λ0(1− δ)

)
.

This implies that∥∥∥Vn+1
∥∥∥

∞
≤
(

1 +
ε

τ

4π4

(b− a)4

)−1(
1 +

τ

ε2
12π2

(b− a)2 +
τ2

ε
λ0(1− δ)

)
‖Vn‖∞.

Therefore, {Vn+1} converges to 0 if(
1 +

ε

τ

4π4

(b− a)4

)−1(
1 +

τ

ε2
12π2

(b− a)2 +
τ2

ε
λ0(1− δ)

)
< 1,

which is equivalent to

1 +
τ

ε2
12π2

(b− a)2 +
τ2

ε
λ0(1− δ) > 1 +

ε

τ

4π4

(b− a)4 ,

and hence

λ0 >
4π4ε2 + 12π2τ2(b− a)2

ετ2(1− δ)(b− a)4 .

3.2. 2D Implicit Fully Discretized Scheme

The semi-implicit 2D time discretization of System (1) is given as follows:

un+1
i,j − un

i,j

τ
−
(

µn+1
i+1,j − 2µn+1

i,j + µn+1
i−1,j

ζ2

)
−
(

µn+1
i,j+1 − 2µn+1

i,j + µn+1
i,j−1

γ2

)
−λ(xi, yi)

(
hi,j − un+1

i,j

)
= 0,

µn+1
i,j + ε

(
un+1

i+1,j − 2un+1
i,j + un+1

i−1,j

ζ2

)
+ ε

(
un+1

i,j+1 − 2un+1
i,j + un+1

i,j−1

γ2

)
− 1

ε
f
(

un+1
i,j

)
= 0,

with i, j = 1, 2, · · · , M, and boundary conditions{
un+1

0,j = un+1
M+1,j = un+1

i,0 = un+1
i,M+1 = 0

µn+1
0,j = µn+1

M+1,j = µn+1
i,0 = µn+1

i,M+1 = 0
, ∀i, j = 0, 1, . . . M,

where µn
i,j ≈ µ

(
tn, xi, yj

)
, un

i,j ≈ u
(
tn, xi, yj

)
. Now, if ζ = γ, then the scheme can be written

in the following form:
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un+1

i,j − un
i,j −

τ

ζ2

(
µn+1

i+1,j + µn+1
i−1,j − 4µn+1

i,j + µn+1
i,j+1 + µn+1

i,j−1

)
− τλ0χΩ\D

(
hi,j − un+1

i,j

)
= 0,

µn+1
i,j +

ε

ζ2

(
un+1

i+1,j + un+1
i−1,j − 4un+1

i,j + un+1
i,j+1 + un+1

i,j−1

)
− 1

ε
f
(

un
i,j

)
= 0.

Since ζ = γ, the system is equivalent to
un+1

i,j +
τ

ζ2

(
−µn+1

i+1,j − µn+1
i−1,j + 4µn+1

i,j − µn+1
i,j+1 − µn+1

i,j−1

)
= un

i,j + τλ0χΩ\D

(
hi,j − un

i,j

)
,

µn+1
i,j +

ε

ζ2

(
un+1

i+1,j + un+1
i−1,j − 4un+1

i,j un+1
i,j+1 + un+1

i,j−1

)
=

1
ε

f
(

un
i,j

)
.

Now, if L
(

un+1
i,j

)
= τλ0χΩ\D

(
hi,j − un+1

i,j

)
and G

(
un+1

i,j

)
=

1
ε

f
(

un+1
i,j

)
, then the matrix

form of the scheme is as follows:{
Un+1 −Un + Aµn+1 − L

(
Un+1) = 0,

µn+1 + EUn+1 − G
(
Un+1) = 0,

where A is symmetric positive definite block invertible matrix such that A−1 ≥ 0, and E =

− ε

τ
A is also symmetric and negative definite invertible block matrix such that E−1 ≤

0. Define Qi,j

(
un+1

i,j , µn+1
i,j

)
: [0, 1]M

2
−→ RM2

and Hi,j

(
un+1

i,j , µn+1
i,j

)
: [0, 1]M

2
−→ RM2

such that  Qi,j

(
un+1

i,j , µn+1
i,j

)
= un+1

i,j − un
i,j + Aµn+1

i,j − L
(

un+1
i,j

)
= 0,

Hi,j

(
un+1

i,j , µn+1
i,j

)
= µn+1

i,j + Eun+1
i,j − G

(
un+1

i,j

)
= 0,

which have the following matrix form:{
Qi,j
(
Un+1, µn+1) = 0,

Hi,j
(
Un+1, µn+1) = 0,

where

Un+1 =
(

un+1
1,1 , un+1

2,1 , . . . , un+1
M,1 , . . . , un+1

1,M , un+1
2,M , . . . , un+1

M,M

)t
,

µn+1 =
(

µn+1
1,1 , µn+1

2,1 , . . . , µn+1
M,1 , . . . , µn+1

1,M , µn+1
2,M , . . . , µn+1

M,M

)t
,

with{
Q(U, µ) = (Q1,1(U, µ), Q2,1(U, µ), . . . , Q1,M(U, µ); . . . ; Q1,M(U, µ), Q2,M(U, µ), . . . , QM,M(U, µ))t,
H(U, µ) = (H1,1(U, µ), H2,1(U, µ), . . . , H1,M(U, µ); . . . ; H1,M(U, µ), H2,M(U, µ), . . . , HM,M(U, µ))t.

Existence of Roots of Q and H Such That Q(U∗, µ∗) = 0 and H(U∗, µ∗) = 0

Let U∗ and µ∗ be the roots of Q and H such that{
Qi,j(U∗, µ∗) = 0,
Hi,j(U∗, µ∗) = 0,

and  u∗i,j − u∗i,j + Aµ∗i,j − τλ0χΩ\D

(
hi,j − u∗i,j

)
= 0,

µ∗ = −Eu∗i,j +
1
ε

f
(

u∗i,j
)

.

Hence,

A
(
−Eu∗i,j +

1
ε

f
(

u∗i,j
))
− τλ0χΩ\D

(
hi,j − u∗i,j

)
= 0.
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If E = − ε
τ A is substituted, the following difference equation can be obtained:

ε

τ
A2u∗i,j +

1
ε

A f
(

u∗i,j
)
− τλ0χΩ\D

(
hi,j − u∗i,j

)
= 0,

where A and A2 are positive definite matrices. Hence,

u∗i,j = −
τ

ε
A−1 f

(
u∗i,j
)
+

τ2

ε
λ0χΩ\D A−2

(
u∗i,j − hi,j

)
. (16)

Theorem 8. Assume that λ0 > 4π4ε2+12π2τ2(b−a)2

ετ2(1−δ)(b−a)4 for some δ ∈ (0, 1); then, (16) admits solution

(U∗, µ∗) such that 0 ≤ U∗ < 1.

Proof. Performed in Corollary 7.

Theorem 9. Assume that λ0 ≥
2π4(π2ε2δ+3τ2(b−a)2)

3τ3(1−δ)(b−a)6 for some δ ∈ (0, 1); then, µ∗ = −Eu∗i,j +

1
ε

f
(

u∗i,j
)

admits solution (U∗, µ∗) such that 0 ≤ U∗ < 1.

Proof. Since µ∗i,j = −Eu∗i,j +
1
ε

f
(

u∗i,j
)

,

‖µ∗‖∞ =

∥∥∥∥−Eu∗i,j +
1
ε

f
(

u∗i,j
)∥∥∥∥

∞

≥
∥∥∥Eu∗i,j

∥∥∥
∞
− 1

ε

∥∥ f
(
θi,j
)∥∥

∞, for 0 ≤ θi,j ≤ 1

≥ ‖E‖∞

∥∥∥u∗i,j
∥∥∥

∞
− 1

ε
‖ f (θi)‖∞, with 0 ≤

∥∥∥u∗i,j
∥∥∥

∞
≤ 1

≥ 2π2

(b− a)2 −
1
ε

max
1≤i≤N

∣∣∣4θ3
i − 4θ2

i + 2θi

∣∣∣
≥ 2π2

(b− a)2 −
6
ε

.

But

‖µ∗‖∞ =

∥∥∥∥− ε

ζ2

(
u∗i+1,j + u∗i−1,j − 4u∗i,j + u∗i,j+1 + u∗i,j−1

)
+

1
ε

f (u∗i )
∥∥∥∥

∞

≤ ε

ζ2

∥∥∥u∗i,j + u∗i,j − 4u∗i,j + u∗i,j + u∗i,j
∥∥∥

∞
+

1
ε
‖ f (u∗i )‖∞

≤ 6
ε

.

This implies that
6
ε
≥ 2π2

(b− a)2 −
6
ε

,

and hence
12
ε
≥ 2π2

(b− a)2 .

But
1
ε
≤ λ0(1− δ)(b− a)4τ2

4π4ε2δ + 12π2τ2(b− a)2 ,

which implies that
12λ0(1− δ)(b− a)4τ2

4π4ε2δ + 12π2τ2(b− a)2 ≥
2π2

(b− a)2 .
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Therefore,

λ0 ≥
2π2

(
4π4ε2δ + 12π2τ2(b− a)2

)
12(1− δ)(b− a)6τ2

≥
2π4

(
π2ε2δ + 3τ2(b− a)2

)
3(1− δ)(b− a)6τ2

.

Now, in order to find Un+1 and µn+1 such that Qi,j
(
Un+1, µn+1) = 0 and

Hi,j
(
Un+1, µn+1) = 0, let

Fi,j

(
Un+1, µn+1

)
= Qi,j

(
Un+1, µn+1

)
+ Hi,j

(
Un+1, µn+1

)
= un+1

i,j − un
i,j + Aµn+1

i,j − τλ0χΩ\D

(
hi,j − un+1

i,j

)
+ µn+1

i,j + Eun+1
i,j −

1
ε

f
(

un+1
i,j

)
= 0,

which is equivalent to

Fi,j

(
Un+1, µn+1

)
= un+1

i,j − un
i,j −

τ

ζ2

(
+µn+1

i+1,j + µn+1
i−1,j − 4µn+1

i,j + µn+1
i,j+1 + µn+1

i,j−1

)
− τλ0χΩ\D

(
hi,j − un

i,j

)
+ µn+1

i,j +
ε

ζ2

(
un+1

i+1,j + un+1
i−1,j − 4un+1

i,j un+1
i,j+1 + un+1

i,j−1

)
− 1

ε
f
(

un
i,j

)
= 0.

Let un+1
i,j − un

i,j = ψi,j, and µn+1
i,j − µn

i,j = ϕi,j for all n ∈ N ∪ {0}. Then, using Taylor series
expansion, obtain

Fi,j

(
un+1

i,j , µn+1
i,j

)
= Fi,j

(
un

i,j + ψi,j, µn
i,j + ϕi,j

)
≈ Fi,j

(
un

i,j, µn
i,j

)
+
(

ψi,jDQi,j

(
un

i,j, µn
i,j

)
+ ϕi,jDHi,j

(
un

i,j, µn
i,j

))
≈ Fi,j

(
un

i,j, µn
i,j

)
+ Φi,jDF

(
un

i,j, µn
i,j

)
,

where Φi,j is a function in ψi,j and ϕi,j.

But un+1
i,j and µn+1

i,j are roots of Fi,j
(
Un+1, µn+1) so that Fi,j

(
un+1

i,j , µn+1
i,j

)
= 0. So, using

Newton’s Method, obtain(
un+1

i,j , µn+1
i,j

)
= −DF−1

(
un

i,j, µn
i,j

)
Fi,j

(
un

i,j, µn
i,j

)
+
(

un
i,j, µn

i,j

)
.

So, in order to find Un+1 and µn+1, compute the Jacobian block matrix of F
(

un
i,j, µn

i,j

)
at

each iteration of n ∈ N. Since

Fi,j

(
un+1

i,j , µn+1
i,j

)
= un+1

i,j − un
i,j −

τ

ζ2

(
µn+1

i+1,j + µn+1
i−1,j − 4µn+1

i,j µn+1
i,j+1 + µn+1

i,j−1

)
+

τλ0χΩ\D

(
hi,j − un

i,j

)
+ µn+1

i,j +
ε

ζ2

(
un+1

i+1,j + un+1
i−1,j − 4un+1

i,j un+1
i,j+1 + un+1

i,j−1

)
−1

ε

(
4
(

un+1
i,j

)3
− 6
(

un+1
i,j

)2
+ 2
(

un+1
i,j

))
,
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the Jacobian of F is

Ji,j,r,s =



∂Fi,j
∂ur,s

=



1− 4
ε

ζ2 − τλ0χΩ\D

−1
ε

(
12
(

un+1
i,j

)2
− 12un+1

i,j + 2
)

,
i f r = i and s = j,

ε

ζ2 ,
i f r = i± 1, s = j,

and i f r = i, s = j± 1,
0, otherwise.

∂Fi,j
∂µr,s

=


1 + 4

τ

ζ2 , i f r = i and s = j,

− τ

ζ2 ,
i f r = i± 1, s = j,

and i f r = i, s = j± 1,
0, otherwise.

This implies that for all i, j = 1, 2, . . . , M, there is

DFi,j(U∗, µ∗) =

(
∂Fi,j

∂ur
∂ur +

∂Fi,j

∂us
∂us

)
+

(
∂Fi,j

∂µr
∂µr +

∂Fi,j

∂µs
∂µs

)
=

(
2− τλ0χΩ\D − 4

ε

ζ2 + 4
τ

ζ2

)
I − K,

where

K =



Li,1

(
τ
ζ2 − ε

ζ2

)
IM×M 0 . . 0(

τ
ζ2 − ε

ζ2

)
IM×M Li,2 . . .

0 . . . . .
. . . 0

. Li,M−1

(
τ
ζ2 − ε

ζ2

)
IM×M

0
(

τ
ζ2 − ε

ζ2

)
IM×M Li,M


M2×M2

= diag
((

τ

ζ2 −
ε

ζ2

)
IM×M, Li,j,

(
τ

ζ2 −
ε

ζ2

)
IM×M

)
,

such that ∀i, j = 1, 2, . . . , M,

Li,j =



−(12(u∗)2−12u∗+2)
ε

τ
ζ2 − ε

ζ2 0 . . 0
τ
ζ2 − ε

ζ2 . . . .
0 . . . . .

. . . 0
. . τ

ζ2 − ε
ζ2

τ
ζ2 − ε

ζ2
−(12(u∗)2−12u∗+2)

ε


M2×M2

= diag
(

τ

ζ2 −
ε

ζ2 ,−1
ε

(
12(u∗)2 − 12U∗ + 2

)
,

τ

ζ2 −
ε

ζ2

)
.

Moreover, for i = 1, M and j = 1, 2, . . . , M, s = 1, M and t = 2, 3, . . . , M− 1, d = 2, . . . , M− 1 and

k = 1, 2, . . . , M, and max
0≤U∗≤1

{
12(u∗)2 − 12u∗ + 2

}
= 1, obtain

‖K‖∞ = max


− 1

ε

(
12
(

u∗i,j
)2
− 12u∗i,j + 2

)
+ 2
(

τ
ζ2 − ε

ζ2

)
; − 1

ε

(
12
(

u∗l,k
)2
− 12u∗l,k + 2

)
+4
(

τ
ζ2 − ε

ζ2

)
; − 1

ε

(
12
(

u∗l,k
)2
− 12u∗l,k + 2

)
+ 4
(

τ
ζ2 − ε

ζ2

)


= 4
τ

ζ2 − 4
ε

ζ2 +
1
ε

.
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Theorem 10. DF(U∗, µ∗) is invertible if and only if λ0 >
2ε− 1

ετ
.

Proof.

DF(U∗, µ∗) is invertible i f f || 2− τλ0χΩ\D − 4
ε

ζ2 + 4
τ

ζ2 I ||∞ < ||K||∞

i f f 2− λ0τ − 4
ε

ζ2 + 4
τ

ζ2 < ‖K‖∞

i f f 2− λ0τ − 4
ε

ζ2 + 4
τ

ζ2 <
1
ε
− 4

ε

ζ2 + 4
τ

ζ2

i f f λ0τ > 2− 1
ε

i f f λ0 >
2ε − 1

ετ
.

Corollary 8. If F ∈ C2(a, b) for all B((U∗, µ∗), r1), then DF(U, µ) is invertible and∥∥∥DF(U, µ)−1
∥∥∥

∞
≤ k

k− 1

∥∥∥DF(U∗, µ∗)−1
∥∥∥ = r1, where k > 1.

Proof.

DF(U, µ) = DF(U, µ)− DF(U∗, µ∗) + DF(U∗, µ∗)

= DF(U∗, µ∗)
[

I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))
]
.

Since F ∈ C2(a, b), then DF ∈ C1(a, b); in particular, DF is continuous at (U∗, µ∗),
and by the definition of continuity of DF at (U∗, µ∗), there exist ε > 0, and r1 > 0 such that
ε = 1

k
∥∥∥DF(U∗ ,µ∗)−1

∥∥∥
∞

, and for any U ∈ B((U∗, µ∗), r1), there is

‖DF(U, µ)− DF(U∗, µ∗)‖∞ < ε,

and ∥∥∥DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))
∥∥∥

∞

≤
∥∥∥DF(U∗, µ∗)−1

∥∥∥
∞
‖(DF(U, µ)− DF(U∗, µ∗))‖∞

≤ 1
k
< 1,

and hence, I +DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗)) is invertible (Von-Neumann Lemma).
Then, for every (U, µ) ∈ B((U∗, µ∗), r1), there is
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∥∥∥DF(U, µ)−1
∥∥∥

∞
=

∥∥∥∥DF(U∗, µ∗)
[

I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))
]−1
∥∥∥∥

∞

=
∥∥∥I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))

∥∥∥−1

∞
‖F(U∗, µ∗)‖−1

∞

=
1∥∥∥I + DF(U∗, µ∗)−1(DF(U, µ)− DF(U∗, µ∗))

∥∥∥
∞

‖F(U∗, µ∗)‖−1
∞

≤ 1
1− ‖DF(U∗, µ∗)‖∞‖DF(U, µ)− DF(U∗, µ∗)‖∞

‖F(U∗, µ∗)‖−1
∞

≤ 1
1− 1

K
‖F(U∗, µ∗)‖−1

∞

≤ k
k− 1

∥∥∥DF(U∗, µ∗)−1
∥∥∥

∞
.

Lemma 5. If F ∈ C2(a, b) and (Un, µ∗) ∈ B((U∗, µ∗), r1), then∥∥∥DF(Un, µ∗)
(

Un+1 −U∗
)∥∥∥

∞
≤ r2|Un −U∗|,

where
r2 =

1
2

sup
θ∈B(U∗ ,r1)

∥∥∥D2F(θ, µ∗)
∥∥∥

∞
.

Proof. Let

φ(t) = F(Un + t(U∗ −Un), µ∗)− F(Un, µ∗)− t DF(Un, µ∗)(U∗ −Un),

so that

φ′(t) = DF(Un + t(U∗ −Un), µ∗)(U∗ −Un)− DF(Un, µ∗)(U∗ −Un).

By the fundamental theorem of calculus, there is φ(1)− φ(0) =
∫ 1

0 φ′(t)dt. Hence,

F(U∗, µ∗)− F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)

=
∫ 1

0
[DF(Un + t(U∗ −Un), µ∗)(U∗ −Un)− DF(Un, µ∗)(U∗ −Un)] dt.

But F(U∗, µ∗) = 0, so if norms of the previous equality are taken, the following can be
obtained:

‖−F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)‖∞

≤
∫ 1

0
‖DF(Un + t(U∗ −Un), µ∗)(U∗ −Un)− DF(Un, µ∗)(U∗ −Un)‖∞ dt

≤
∫ 1

0
‖DF(Un + t(U∗ −Un), µ∗)− DF(Un, µ∗)‖∞‖(U

∗ −Un)‖∞ dt,

since DF ∈ C1(a, b), by the mean value theorem, there is

‖DF(Un + t(U∗ −Un), µ∗)− DF(Un, µ∗)‖∞ ≤ ‖t (U
∗ −Un)‖∞. sup

θ∈B(U∗ ,r1)

∥∥∥D2F(θ, µ∗)
∥∥∥

∞
.

Hence,
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‖−F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)‖∞ ≤ ‖(U
∗ −Un)‖2

∞ sup
θ∈B(U∗ ,r1)

∥∥∥D2F(θ, µ∗)
∥∥∥

∞

∫ 1

0
tdt

≤ 1
2
‖(U∗ −Un)‖2

∞ sup
θ∈B(U∗ ,r1)

∥∥∥D2F(θ, µ∗)
∥∥∥

∞
.

If r2 = 1
2 sup

θ∈B(U∗ ,r1)

∥∥D2F(θ, µ∗)
∥∥

∞ is taken, then

‖−F(Un, µ∗)− DF(Un, µ∗)(U∗ −Un)‖∞ ≤ r2‖(U∗ −Un)‖2
∞.

By Newton’s Raphson method, there is(
Un+1, µ∗

)
= −DF(Un, µ∗)−1F(Un, µ∗) + (Un, µ∗),

which implies that
Un+1 −Un = −DF(Un, µ∗)−1F(Un, µ∗),

and
DF(Un, µ∗)

(
Un+1 −Un

)
= −F(Un, µ∗).

Hence, ∥∥∥DF(Un, µ∗)
(

Un+1 −Un
)
− DF(Un, µ∗)(U∗ −Un)

∥∥∥
∞
≤ r2‖U∗ −Un‖2

∞,

which is equivalent to∥∥∥DF(Un, µ∗)
(

Un+1 −U∗
)∥∥∥

∞
≤ r2‖U∗ −Un‖2

∞.

Theorem 11. Let
(
U0, µ∗

)
∈ B((U∗, µ∗), r3) ⊂ B((U∗, µ∗), r1); then, DF

(
Un+1, µ∗

)
is invert-

ible and {
(
Un+1, µ∗

)
} converges to (U∗, µ∗).

Proof. Suppose that
(
U0, µ∗

)
∈ B((U∗, µ∗), r3) ⊂ B((U∗, µ∗), r1); then, DF

(
U0, µ∗

)
is

invertible and
∥∥∥DF

(
U0, µ∗

)−1
∥∥∥

∞
≤ r1. Thus,

(
U1, µ∗

)
is well defined and, by Newton’s

method, there is
(
U1, µ∗

)
=
(
U0, µ∗

)
− DF

(
U0, µ∗

)−1F
(
U0, µ∗

)
which implies that(

U1 −U0, µ∗
)

DF
(

U0, µ∗
)
= −F

(
U0, µ∗

)
.

Suppose that the previous equality holds for n ∈ N, so that DF(Un, µ∗) is invertible and∥∥∥DF(Un, µ∗)−1
∥∥∥

∞
≤ r1, where (Un, µ∗) ∈ B((U∗, µ∗), r3). Then,

(
Un+1, µ∗

)
is well defined

and hence
DF(Un, µ∗)

(
Un+1 −Un

)
= −F(Un, µ∗).

But ∥∥∥Un+1 −U∗
∥∥∥

∞
=
∥∥∥DF(Un, µ∗)−1DF(Un, µ∗)

(
Un+1 −U∗

)∥∥∥
∞

≤
∥∥∥DF(Un, µ∗)−1

∥∥∥
∞

∥∥∥DF(Un, µ∗)
(

Un+1 −U∗
)∥∥∥

∞

≤ r1r2‖U∗ −Un‖2
∞,
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and (Un, µ∗) ∈ B((U∗, µ∗), r3), which implies that∥∥∥Un+1 −U∗
∥∥∥

∞
≤ r1r2r2

3

≤ (r1r2r3)r3

≤ r3.

Therefore, Un+1 ∈ B((U∗, µ∗), r3) ⊂ B(U∗, r1), and DF
(
Un+1, µ∗

)
is invertible such that∥∥∥∥DF

(
Un+1, µ∗

)−1
∥∥∥∥

∞
≤ r1.

Moreover, (Un, µ∗) ∈ B((U∗, µ∗), r3) ⊂ B(U∗, r1), and DF(Un, µ∗) is invertible for every
n ∈ N . So, sequence {(Un, µ∗)}n∈N is well defined and∥∥∥Un+1 −U∗

∥∥∥
∞
≤ r1r2‖Un −U∗‖2

∞

≤ β‖Un −U∗‖2
∞, where β = r1r2,

which implies that

β
∥∥∥Un+1 −U∗

∥∥∥
∞
≤ 1

β
(β‖Un −U∗‖∞)2 ≤ · · · ≤ 1

β

(
β
∥∥∥U0 −U∗

∥∥∥
∞

)2n

.

But
(
U0, µ∗

)
∈ B((U∗, µ∗), r3), which implies that β

∥∥U0 −U∗
∥∥

∞ ≤ βr3 < 1. Therefore,
β
∥∥Un+1 −U∗

∥∥
∞ → 0, and hence {

(
Un+1, µ∗

)
} converges to (U∗, µ∗).
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