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Abstract: Acharjee et al. have created a new structure in mathematics called a primal. Therefore,
the primary goal of this research was to introduce and explore more primal space features. Addi-
tionally, we studied some of the fundamental characteristics of two novel operators that we define
using primal spaces. Using these new operators, we were able to create a weaker version of the
original topology. Finally, we provide some examples to further illustrate our discussion of some of
their characteristics.
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1. Introduction
Topology is important in many fields of mathematics and computer science. Many

topological principles have been applied to solve numerous natural problems, attracting
scholars from various disciplines of the natural and social sciences. In topology, several
novel ideas have been introduced, resulting in various new areas of research. Filters are
among the most significant structures in classical topology [1], alongside ideals [2] and
grills [3]. Ideals were defined for the first time by Kuratowski [2]. On the other hand, the
concept of a grill was introduced in [3]. It is worth noting that the concept of an ideal is
the dual of a filter; however, ideal topological spaces have assisted scholars in introducing
several new fields of topological space [4].

To the best of our knowledge, before [5], there was no literature on the dual construc-
tion of a grill.

Recently, Acharjee et al. [5] introduced a new structure called a ‘primal’. This structure
presents not only several primal-related fundamental features, but also some links between
primal topological spaces and topological spaces. Primals [5] appear to be the dual of
the concept of grills, while the dual of filters are ideals. Later, in [6], we used primals
to establish several new operators in primal topological spaces. Proximity space is one
of the common topics mathematics, computer science, and pattern recognition. Recently,
Al-Omari et al. [7] introduced a new structure named a primal proximity space. In addition,
two new operators were implemented via primal proximity spaces to define and investigate
some of their fundamental properties.

As a logical extension of the primal crisp topologies defined in [5], Al-shami et al. [8]
proposed the new structure of a primal soft topology, and Ameen et al. [9] introduced
a novel fuzzy structure called a fuzzy primal. The rationale for the creation of a unique
framework that enables the establishment of new soft ideas and attributes is to enhance
research on soft settings. Next, we devise a novel method for creating a soft topology,
drawing inspiration from certain soft operators. In conclusion, we validate the signifi-
cance of soft environments in offering several types of analogs for each classical notion.
That is, different forms of belonging connections between soft sets and ordinary points
may be used to create different kinds of soft operators and then generate certain types of
soft topologies.
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In Section 3 of this document, we discuss an innovative category of operator called a
primal local closure operator. We define the primal local closure operator and investigate
some of its fundamental properties in Section 4. In addition, we describe some of its basic
topological features that are appropriate for a primal and define one more operator via the
local closure operator. Furthermore, a weaker topology compared to the previous one is
obtained via these new operators.

The class of θ-open sets was established by Veličko [10] in 1968. A set U is a θ-open set
if each point in U has an open neighborhood and U contains its closure. The union of all
θ-open subsets of U in G is the θ-interior of a U, denoted as Intθ(U). Naturally, a θ-open
set’s counterpart is referred to as a θ-closed set. A set U is θ-closed iff Clθ(U) = {x ∈ G :
V ∩U 6= ∅ for every V ∈ T (x)} specifically if U = Clθ(U), which is the complement of
a θ-open set, is said to be θ-closed. It should be emphasized that a space τ = τθ iff (G, τ)
is regular. Moreover, all θ-open sets form a topology on G that is coarser than τ and is
denoted by τθ . More fundamental properties of primal spaces and primal soft topological
spaces were introduced in [7,8,11–14].

2. Preliminaries
Throughout this entire document, (G, T ) and (X, σ) (briefly, G and X) represent

topological spaces unless otherwise stated. For any subset A of a space G, cl(A) = A and
int(A) denote the closure and interior of A, respectively. The powerset of a set G will be
symbolized by 2G. The group of all open neighborhoods of a point x of G is denoted by
T (x). Also, the family of all closed subsets of a space G will be symbolized by C(G). Now,
we procure the following notions and results, which will be required in the next section:

Definition 1 ([3]). A collection G of 2G is called a grill on G if G fulfills the requirements listed below:
1. ∅ /∈ G;

2. If H ∪ K ∈ G, then H ∈ G or K ∈ G;

3. If H ∈ G and H ⊆ K, then K ∈ G.

Definition 2 ([5]). A collection P ⊆ 2G is called a primal on G, where G is a nonempty set, if the
below conditions hold:
1. G /∈ P ;

2. If H ∩ K ∈ P , then K ∈ P or H ∈ P ;

3. If K ∈ P and H ⊆ K, then H ∈ P .

Corollary 1 ([5]). A collection P ⊆ 2G is a primal on G iff the conditions below hold:
1. G /∈ P ;

2. If K /∈ P and H /∈ P , then H ∩ K /∈ P ;

3. If K /∈ P and K ⊆ H, then H /∈ P .

A primal P [5] on G with a topological space (G, T ) is called a primal topological
space (G, T ,P) and denoted by PTS.

Definition 3 ([5]). Let (G, T ,P) be a PTS. We consider a map (·)� : 2G → 2G as A�(G, T ,P) =
{x ∈ G : (∀U ∈ T (x))(Ac ∪Uc ∈ P)} for any subset A of G and T (x) is the family of all
open neighbourhoods of x ∈ G. We can also write A�P as A�(G, T ,P) to specify the primal as per
our requirements.

Definition 4 ([5]). Let (G, T ,P) be a PTS. We consider a map cl� : 2G → 2G as cl�(A) =
A ∪ A�, where A is any subset of G.

Definition 5 ([5]). Let (G, T ,P) be a PTS. Then, the family T � = {A ⊆ G|cl�(Ac) = Ac} is
a topology on G induced by topology T and primal P . It is called a primal topology on G. More
details on T � can be found in [5].
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3. Primal Local Closure Operators
This section is allocated to displaying a novel primal structure, namely a primal local

closure operator. The basic characteristics of this structure are demonstrated.

Definition 6. Let (G, T ,P) be a PTS. For K ⊆ G, we define a map Π : 2G → 2G as Π(K)(P , T )
= {g ∈ G : Kc ∪ (V)c ∈ P for every V ∈ T (g)}, where T (g) = {V ∈ T : g ∈ V}. To be clear,
Π(K)(P , T ) is denoted as Π(K) for brevity and is called the primal local closure operator of K with
respect to T and P .

Lemma 1. Let (G, T ,P) be a PTS. Then, for any K ⊆ G we have K�P ⊆ Π(K).

Proof. Let g ∈ K�P . Then, Kc ∪Vc ∈ P for all V ∈ T and g ∈ V. Since Kc ∪ (V)c ⊆ Kc ∪Vc,
we obtain Kc ∪ (V)c ∈ P and hence g ∈ Π(K).

Example 1. Let T = {∅, G, {a}, {b}, {a, b}}with G = {a, b, c} andP = {∅, {a}, {b}, {a, b}}.
Let K = {a, c}. We have Π(K) = {a, b, c} and K� = {c}.

Example 2. Let R be the real numbers with topology T = {(−∞, a) : a ∈ R} ∪ {R, ∅}. Let P f
be the primal of all finite subsets of the real line whose complement is not finite. Let H = R−{0, 1}.
Then, Π(H) = {a ∈ R : Hc ∪ (V)c = Hc ∈ P f for all V ∈ T (a)} = R and −1 /∈ H�, which
shows that H� ⊂ Π(H).

Lemma 2. Let (G, T ) be a topological space. If the subset H ⊆ G is:
1. Open, then H = Clθ(H).

2. Closed, then Int(H) = Intθ(H).

Theorem 1. Let (G, T ,P) and (G, T ,J ) be two PTSs and let K, H ⊆ G. Thus, the properties
below hold:
(1) If H ⊆ K, then Π(H) ⊆ Π(K).

(2) If J ⊆ P , then Π(H)(J ) ⊆ Π(H)(P).

(3) Π(H) = Π(H) ⊆ Clθ(H), and Π(H) is closed.

(4) If K ⊆ Π(K) and Π(K) is open, then Π(K) = Clθ(K).

(5) If Hc /∈ P , then Π(H) = ∅.

Proof.
(1) Let g /∈ Π(K). Then, there exists V ∈ T (g) such that Kc ∪ (V)c /∈ P . Since Kc ∪ (V)c ⊆

Hc ∪ (Cl(V))c, Hc ∪ (V)c /∈ P . Hence, g /∈ Π(H). Thus, G \Π(K) ⊆ G \Π(H) or
Π(H) ⊆ Π(K).

(2) Let g /∈ Π(H)(P). Now, there exists V ∈ T (g) such that Hc ∪ (V)c /∈ P . Since
J ⊆ P , Hc ∪ (V)c /∈ J and g /∈ Π(H)(J ). Therefore, Π(H)(J ) ⊆ Π(H)(P).

(3) We have Π(H) ⊆ Π(H) in general. Let g1 ∈ Π(H). Then, Π(H) ∩ V 6= ∅ for
every V ∈ T (g1). Therefore, there exist some g2 ∈ Π(H) ∩V and V ∈ T (g2). Since
g2 ∈ Π(H), Hc ∪ (V)c ∈ P , and hence g1 ∈ Π(H). Therefore, we have Π(H) ⊆ Π(H),
and hence Π(H) = Π(H). Again, let g1 ∈ Π(H) = Π(H); then, Hc ∪ (V)c ∈ P for all
V ∈ T (g1). This means that H ∩ V 6= ∅ for all V ∈ T (g1). Therefore, g1 ∈ Clθ(H).
This shows that Π(H) = Π(H) ⊆ Clθ(H).

(4) For any subset K of G, by (3) we have Π(K) = Π(K) ⊆ Clθ(K). Since Π(K) is open
and K ⊆ Π(K), by Lemma 2, Clθ(K) ⊆ Clθ(Π(K)) = Π(K) = Π(K) ⊆ Clθ(K), and
hence Π(K) = Clθ(K).
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(5) Suppose that g ∈ Π(H). Then, for all V ∈ T (g), Hc ∪ (V)c ∈ P . However, Hc /∈ P
and Hc ∪ (V)c /∈ P for all V ∈ T (g). This is a logical contradiction. Hence, Π(H) = ∅.

Lemma 3. Let (G, T ,P) be a PTS. If K ∈ Tθ , then K ∩Π(M) = K ∩Π(K ∩M) ⊆ Π(K ∩M)
for any M ⊆ G.

Proof. Let g ∈ K ∩Π(M) and K ∈ Tθ . Then, g ∈ K and g ∈ Π(M). Since K ∈ Tθ , then
there exists H ∈ T such that g ∈ H ⊆ H ⊆ K. Let V be an open set, such that g ∈ V.
Then, V ∩ H ∈ T (g) and [V ∩ H]c ∪Mc ∈ P , and (V)c ∪ (K ∩M)c = Kc ∪ (V)c ∪Mc ⊆
(H)c ∪ (V)c ∪ Mc ⊆ Mc ∪ (V ∩ H)c ⊆ [V ∩ H]c ∪ Mc; hence, (K ∩ M)c ∪ (V)c ∈ P . We
obtain g ∈ Π(K ∩M), and as a result we have K ∩Π(M) ⊆ Π(K ∩M). Also, K ∩Π(M) ⊆
K ∩Π(K ∩M), and by Theorem 1 Π(M ∩ K) ⊆ Π(M) and Π(K ∩M) ∩ K ⊆ Π(M) ∩ K.
Thus, Π(M) ∩ K = Π(K ∩M) ∩ K.

Theorem 2. Let K, H ⊆ G and (G, T ,P) be a PTS. The subsequent properties hold:
1. Π(∅) = ∅.

2. Π(H) ∪Π(K) = Π(H ∪ K).

Proof.
(1) The proof is obvious.
(2) According to Theorem 1, we have Π(H ∪ K) ⊇ Π(H) ∪Π(K). Let us demonstrate the
reverse inclusion, if g /∈ Π(H) ∪Π(K). Then, g belongs to neither Π(H) nor Π(K). So,
there exist Ug, Vg ∈ T (g) such that [Ug]c ∪ Hc /∈ P and [Vg]c ∪ Kc /∈ P . Since P is additive,
([Ug]c ∪ Hc) ∩ ([Vg]c ∪ Kc) /∈ P . Moreover, since P is hereditary and

([Ug]
c ∪ Hc) ∩ ([Vg]

c ∪ Kc) = [([Ug]
c ∪ Hc) ∩ [Vg]

c] ∪ [([Ug]
c ∪ Hc) ∩ Kc]

= [[Ug]
c∩[Vg]

c] ∪ [Hc ∩ [Vg]
c] ∪ [[Ug]

c ∩ Kc] ∪ [Hc ∩ Kc]

⊆ [[Ug]
c∩[Vg]

c] ∪ [Vg]
c ∪ [Ug]

c ∪ [Hc ∩ Kc]

⊆ [Ug ∩Vg]
c ∪ (H ∪ K)c,

then [Ug ∩Vg]c ∪ (H ∪ K)c /∈ P . Since Ug ∩ Vg ∈ T (g), g /∈ Π(H ∪ K). Hence, (G \
Π(H)) ∩ (G \ Π(K) ⊆ G \ Π(H ∪ K) or Π(H ∪ K) ⊆ Π(H) ∪ Π(K). Thus, we obtain
Π(H) ∪Π(K) = Π(H ∪ K).

Lemma 4. Let K, H ⊆ G and (G, T ,P) be a PTS. Then, Π(H)−Π(K) = Π(H − K)−Π(K).

Proof. We have by Theorem 2 Π(H) = Π[(H − K) ∪ (H ∩ K)] = Π(H − K) ∪ Π(H ∩
K) ⊆ Π(H − K) ∪ Π(K). Thus, Π(H) − Π(K) ⊆ Π(H − K) − Π(K). By Theorem 1,
Π(H − K) ⊆ Π(H), and hence Π(H − K)−Π(K) ⊆ Π(H)−Π(K). Therefore, Π(H)−
Π(K) = Π(H − K)−Π(K).

Corollary 2. Let (G, T ,P) be a PTS and H, K ⊆ G with Kc /∈ P . Then, Π(H ∪ K) = Π(H) =
Π(H − K).

Proof. Since Kc /∈ P , by Theorem 1 Π(K) = ∅. By Lemma 4, Π(H) = Π(H − K), and by
Theorem 2 Π(H ∪ K) = Π(H) ∪Π(K) = Π(H).

4. Topology Suitable for a Primal Space
This section serves to introduce the topology suitable for a primal in a PTS and

investigate some of its properties.

Definition 7 ([6]). Let (G, T ,P) be a PTS. Then, T is said to be suitable for the primal P if
Hc ∪ H� /∈ P for all H ⊆ G.



Mathematics 2023, 11, 4946 5 of 13

Definition 8. Let (G, T ,P) be a PTS. We say that T is Π-suitable for the primal P if, for every
H ⊆ G and g ∈ H, there exists V ∈ T (g), such that Vc ∪ Hc /∈ P ; then, Hc /∈ P .

If T is suitable for P , then T is Π-suitable for P .

Example 3. Let G = {a, b, c} with topology T = {∅, G, {a}, {b}, {a, b}} and the primal
P = {∅, {a}, {b}, {a, b}}. It is clear that T is Π-suitable for the primal P , as shown by the
following table. If A ⊆ G:

A Π(A) A−Π(A) [A−Π(A)]c ∈ P or /∈ P
∅ ∅ ∅ G /∈ P
G G ∅ G /∈ P
{a} ∅ {a} {b, c} /∈ P
{b} ∅ {b} {a, c} /∈ P
{c} G ∅ {G} /∈ P
{a, b} ∅ {a, b} {c} /∈ P
{a, c} G ∅ {G} /∈ P
{b, c} G ∅ {G} /∈ P

We now give some equivalent descriptions of this definition.

Theorem 3. Let (G, T ,P) be a PTS. The following properties are equivalent for Π-suitable:
(1) T is Π-suitable for the primal P ;

(2) If a subset Q ⊆ G includes a cover of open sets, and whose complements of its own closure
union with Qc are in P , then Qc /∈ P ;

(3) For every Q ⊆ G, Q ∩Π(Q) = ∅ implies that Qc /∈ P ;

(4) For every Q ⊆ G, (Q−Π(Q))c /∈ P ;

(5) For every Q ⊆ G, if there is no nonempty subset K in Q with K ⊆ Π(K), then Qc /∈ P .

Proof.
(1)⇒ (2): The proof is obvious.
(2) ⇒ (3): Let x ∈ Q ⊆ G. Since Q ∩Π(Q) = ∅, then x /∈ Π(Q) and there exists

Vx ∈ T (x) such that (Vx)c ∪ Qc /∈ P . Thus, we have Q ⊆ ∪{Vx : x ∈ Q} and Vx ∈ T (x),
and by (2) Qc /∈ P .

(3) ⇒ (4): For any Q ⊆ G, Q − Π(Q) ⊆ Q and (Q − Π(Q)) ∩ Π(Q − Π(Q)) ⊆
(Q−Π(Q)) ∩Π(Q) = ∅. By (3), (Q−Π(Q))c /∈ P .

(4)⇒ (5): By (4), for every Q ⊆ G, (Q−Π(Q))c /∈ P . Let Q−Π(Q) = J /∈ P ; then,
Q = J ∪ (Q ∩Π(Q)), and by Theorem 2 (2) and Theorem 1 (5), Π(Q) = Π(J) ∪Π(Q ∩
Π(Q)) = Π(Q ∩ Π(Q)). Therefore, we have K = Q ∩ Π(Q) = Q ∩ Π(Q ∩ Π(A)) ⊆
Π(Q ∩ Π(Q)) = Π(K) and K = Q ∩ Π(Q) ⊆ Q. By the assumption Q ∩ Π(Q) = ∅,
(Q−Π(Q))c = Qc /∈ P .

(5) ⇒ (1): Let Q ⊆ G and assume for x ∈ Q that there exists U ∈ T (x) such that
Uc ∪ Qc /∈ P . Then, Q ∩Π(Q) = ∅ (if x ∈ Q ∩Π(Q), then for every U ∈ T (x) we have
Uc ∪ Qc ∈ P , which is a contradiction). Suppose that Q contains K such that K ⊆ Π(K).
Then, K = K ∩Π(K) ⊆ Q ∩Π(Q) = ∅. Thus, Q contains no nonempty subset K with
K ⊆ Π(K). Hence, Qc /∈ P . Thus, T is Π-suitable for the primal P .

Theorem 4. Let (G, T ,P) be a PTS if T is Π-suitable for the primal P . The following
are equivalent:
(1) For every M ⊆ G, M ∩Π(M) = ∅ implies that Π(M) = ∅;

(2) For every M ⊆ G, Π(M−Π(M)) = ∅;

(3) For every M ⊆ G, Π(M ∩Π(M)) = Π(M).
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Proof. First, we demonstrate that (1) holds if T is Π-suitable for the primal P . Let M ⊆ G
and M ∩Π(M) = ∅. Then, by Theorem 3, Mc /∈ P , and by Theorem 1 (5) Π(M) = ∅.

(1)⇒ (2): Assume that for every M ⊆ G, M ∩Π(M) = ∅ implies Π(M) = ∅. Let
K = M−Π(M); then,

K ∩Π(K) = (M−Π(M)) ∩Π(M−Π(M))

= (M ∩ (G−Π(M))) ∩Π(M ∩ (G−Π(M)))

⊆ [M ∩ (G−Π(M))] ∩ [Π(M) ∩ (Π(G−Π(M)))] = ∅.

By (1), we have Π(K) = ∅. Hence, Π(M−Π(M)) = ∅.
(2)⇒ (3): Assume for every M ⊆ G, Π(M−Π(M)) = ∅.

M = (M−Π(M)) ∪ (M ∩Π(M))

Π(M) = Π[(M−Π(M)) ∪ (M ∩Π(M))]

= Π(M−Π(M)) ∪Π(M ∩Π(M))

= Π(M ∩Π(M)).

(3)⇒ (1): Assume for every M ⊆ G, Π(M) ∩M = ∅ and Π(Π(M) ∩M) = Π(M).
This implies that ∅ = Π(∅) = Π(M).

Theorem 5. Let (G, T ,P) be a PTS, so the following properties are equivalent:
(a) T − {G} ⊆ P ;

(b) If Ic /∈ P , then Intθ(I) = ∅;

(c) For every clopen H, H ⊆ Π(H);

(d) G = Π(G).

Proof.
(a)⇒ (b): Let Ic /∈ P and T − {G} ⊆ P . Assume that x ∈ Intθ(I). Then, there exists

U ∈ T such that x ∈ U ⊆ U ⊆ I and Ic ⊆ (U)c. Since Ic /∈ P , (U)c /∈ P . This is contrary
to the statement that T − {G} ⊆ P . Therefore, Intθ(I) = ∅.

(b) ⇒ (c): Let x ∈ H. Suppose x /∈ Π(H); then, there exists Ux ∈ T (x) such that
Hc ∪ (Ux)c /∈ P , and hence (H ∩ Ux)c /∈ P . Since H is clopen, by (b) and Lemma 2,
x ∈ H ∩ Ux = Int(Ux ∩ H) ⊆ Int(Ux ∩ H) = Intθ(Ux ∩ H) = ∅. This is a logical
contradiction. Hence, x ∈ Π(H) and H ⊆ Π(H).

(c)⇒ (d): Since G is clopen, we have G = Π(G).
(d)⇒ (a): G = Π(G) = {a ∈ G : (U)c ∪ Gc = (U)c ∈ P for each a ∈ U ∈ T }. Hence,

T − {G} ⊆ P .

Theorem 6. Let (G, T ,P) be a PTS. If T − {G} ⊆ P , then U ⊆ Π(U) for all U ∈ Tθ .

Proof. In the case U = ∅, we obviously have Π(U) = ∅ = U. Now note that if T − {G} ⊆
P , then Π(G) = G. In fact, since x /∈ Π(G), then there exists V ∈ T (x) such that
(V)c ∪ Gc /∈ P . Hence, (V)c /∈ P is a contradiction. Now, by using Lemma 3, we have for
any U ∈ Tθ , U = Π(G) ∩U ⊆ Π(G ∩U) = Π(U). Thus, U ⊆ Π(U).

Theorem 7. Let (G, T ,P) be a PTS. T is Π-suitable for the primal P . Then, for every H ∈ Tθ

and any subset Q of G, Π(H ∩Q) = Π(H ∩Q) ⊆ Π(H ∩Π(Q)) ⊆ Clθ(H ∩Π(Q)).

Proof. By Theorem 1 and (3) of Theorem 4, we determine that Π(Q ∩ H) = Π((Q ∩
H) ∩Π(Q ∩ H)) ⊆ Π(H ∩Π(Q)). Moreover, by Theorem 1, (Π(H ∩Q) = Π(H ∩ Q) ⊆
Π(H ∩Π(Q)) ⊆ Clθ(H ∩Π(Q)).

5. New Primal Space Operator

In this section, the new operator in primal space is presented, denoted as
−→
Π . The basic

characteristics of this structure are demonstrated.
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Definition 9. Let (G, T ,P) be a PTS. An operator
−→
Π : 2G → 2G is defined as

−→
Π (A) = {x ∈

G : ∃U ∈ T (x) and (U − A)c /∈ P} for every A ⊆ G.

Example 4. Let G = {a, b, c} with topology T = {∅, G, {a}, {b}, {a, b}, {b, c}} and the primal
P = {∅, {b}, {c}, {b, c}}. It is clear that:

1. If A = {a, b}, then
−→
Π (A) = G.

2. If A = {c}, then
−→
Π (A) = {b, c}.

The following theorem includes a number of fundamental truths about the behavior
of the operator

−→
Π .

Theorem 8. Let (G, T ,P) be a PTS. Then, the below characteristics hold:

(1) If Q ⊆ G, then
−→
Π (Q) = [Π(Qc)]c.

(2) If Q ⊆ G, then
−→
Π (Q) is open.

(3) If Q ⊆ K, then
−→
Π (Q) ⊆ −→Π (K).

(4) If Q, K ⊆ G, then
−→
Π (Q ∩ K) =

−→
Π (Q) ∩−→Π (K).

(5) If Q ⊆ G, then
−→
Π (Q) =

−→
Π (
−→
Π (Q)) iff Π(Qc) = Π(Π(Qc)).

(6) If Qc /∈ P , then
−→
Π (Q) = G−Π(G).

(7) If Q ⊆ G and Ic /∈ P , then
−→
Π (Q− I) =

−→
Π (Q).

(8) If Q ⊆ G and Ic /∈ P , then
−→
Π (Q ∪ I) =

−→
Π (Q).

(9) If [(Q− K) ∪ (K−Q)]c /∈ P , then
−→
Π (Q) =

−→
Π (K).

Proof.
(1) Let x ∈ −→Π (Q). Then, there exists U ∈ T (x) such that (U)c ∪Q = (U ∩ (Qc))c =

(U − Q)c /∈ P . Thus, x /∈ Π(Qc) and x ∈ [Π(Qc)]c. Conversely, let x ∈ [Π(Qc)]c; then,
x /∈ Π(Qc), and there exists U ∈ T (x) such that (U)c ∪ (Qc)c = (U − Q)c /∈ P . Hence,
x ∈ −→Π (Q) and

−→
Π (Q) = [Π(Qc)]c.

(2) This derives from Theorem 1 (3).
(3) This derives from Theorem 1 (1).
(4) It derives from (3) that

−→
Π (Q ∩ K) ⊆ −→Π (Q) and

−→
Π (Q ∩ K) ⊆ −→Π (K). Hence,

−→
Π (Q ∩ K) ⊆ −→Π (Q) ∩−→Π (K). Now, let x ∈ −→Π (Q) ∩−→Π (K). Then, there exists U, V ∈ T (x)
such that (U −Q)c /∈ P and (V − K)c /∈ P . Let M = U ∩V ∈ T (x), and we obtain (M−
Q)c /∈ P and (M−K)c /∈ P by heredity. Thus, [M− (Q∩K)]c = (M−Q)c ∩ (M−K)c /∈ P
by Corollary 1, and hence x ∈ −→Π (Q∩K). We have shown that

−→
Π (Q)∩−→Π (K) ⊆ −→Π (Q∩K),

and the proof is completed.
(5) This follows from the fact that:

(a)
−→
Π (Q) = [Π(Qc)]c.

(b)
−→
Π (
−→
Π (Q)) = G−Π[G− (G−Π(Qc))] = [Π(Π(Qc))]c.

(6) By Corollary 2, we determine that Π(Qc) = Π(G) if Qc /∈ P . Then,
−→
Π (Q) =

[Π(Qc)]c = [Π(G)]c.
(7) This follows from Corollary 2 and

−→
Π (Q− I) = G−Π[G− (Q− I)] = G−Π[(G−

Q) ∪ I] = G−Π(G−Q) =
−→
Π (Q).

(8) This follows from Corollary 2 and
−→
Π (Q∪ I) = G−Π[G− (Q∪ I)] = G−Π[(G−

Q)− I] = G−Π(G−Q) =
−→
Π (Q).

(9) Assume that [(Q− K) ∪ (K− Q)]c /∈ P . Let Q− K = I and K− Q = J. Observe
that Ic, Jc /∈ P by heredity. Also, we note that K = (Q− I)∪ J. Thus,

−→
Π (Q) =

−→
Π (Q− I) =

−→
Π [(Q− I) ∪ J] =

−→
Π (K) by (7) and (8).
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Corollary 3. Let (G, T ,P) be a PTS. Then, A ⊆ −→Π (A) for every A ∈ Tθ .

Proof. We know that
−→
Π (A) = G−Π(G− A). Now, Π(G− A) ⊆ Clθ(G− A) = G− A,

since G− A is θ-closed. Therefore, A = G− (G− A) ⊆ G−Π(G− A) =
−→
Π (A).

Theorem 9. Let (G, T ,P) be a PTS and H ⊆ G. Then, the below properties hold:

1.
−→
Π (H) =

⋃{N ∈ T : (N − H)c /∈ P};

2.
−→
Π (H) ⊇ ⋃{N ∈ T : (N − H)c ∪ (H − N)c /∈ P}.

Proof.
(1) This comes logically from the definition of the

−→
Π -operator.

(2) Since P is hereditary, it is clear that
⋃{N ∈ T : (N − H)c ∪ (H − N)c /∈ P} ⊆⋃{N ∈ T : (N − H)c /∈ P} = −→Π (H) for every H ⊆ G.

We will conclude this part with some technical results relating to the idempotency of
the primal local closure operator and the

−→
Π -operator.

Lemma 5. For H ⊆ G and a PTS (G, T ,P), we have
−→
Π (Hc) ⊆ −→Π [

−→
Π (Hc)] iff Π(Π(H)) ⊆

Π(H).

Proof. For H ⊆ G, we have

Π(Π(H)) ⊆ Π(H) iff [Π(H)]c ⊆ [Π(Π(H))]c

iff [Π((Hc)c)]c ⊆ [Π([Π((Hc)c]c)c]c

iff
−→
Π (Hc) ⊆ [Π(

−→
Π (Hc))c]c

iff
−→
Π (Hc) ⊆ −→Π [

−→
Π (Hc)].

Corollary 4. Let (G, T ,P) be a PTS. The following criteria are equivalent:
1. For all H ⊆ G, we have Π(Π(H)) ⊆ Π(H);

2. For all H ⊆ G, we have
−→
Π (H) ⊆ −→Π (

−→
Π (H)).

6. New Topology via Primal Spaces
Now, we introduce a new topology induced by the primal local closure operator.

Theorem 10. Let (G, T ,P) be a PTS. If β = {H ⊆ G : H ⊆ −→Π (H)}, then β is a topology on G.

Proof. Let β = {H ⊆ G : H ⊆ −→Π (H)}. Since G /∈ P , by Theorem 1 (5) Π(∅) = ∅ and
−→
Π (G) = G−Π(G−G) = G−Π(∅) = G. Moreover,

−→
Π (∅) = G−Π(G−∅) = G−G =

∅. Therefore, we determine that ∅ ⊆ −→Π (∅) and G ⊆ −→Π (G) = G, and thus ∅ and G ∈ β.
Now, if H, K ∈ β, then H ∩ K ⊆ −→Π (H) ∩ −→Π (K) =

−→
Π (K ∩ H). This implies that

H ∩ K ∈ β.
If {Hα : α ∈ ∆} ⊆ σ, then Hα ⊆

−→
Π (Hα) ⊆

−→
Π (
⋃

α∈∆ Hα) for every α ∈ ∆, and hence⋃
Hα ⊆

−→
Π (
⋃

α∈∆ Hα). This shows that β is a topology on G.

Lemma 6. Let (G, T ,P) be a PTS. A set F is closed in (G, β) if and only if Π(F) ⊆ F.

Proof. F is closed in (G, β) iff Fc is open in (G, β); Fc ⊆ −→Π (Fc); Fc ⊆ [Π[(Fc)c]]c;
Fc ⊆ [Π(F)]c; and Π(F) ⊆ F.

The following example shows that the topology β exists.
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Example 5. Let G = {a, b, c} with topology T = {∅, G, {a}, {b}, {a, b}} and the primal
P = {∅, {a}, {b}, {a, b}}. It is clear that β = {∅, G, {c}, {b, c}, {a, c}}, as shown by the
following table. If A ⊆ G,

A Π(G− A)
−→
Π (A)

∅ G ∅
G ∅ G
{a} G ∅
{b} G ∅
{c} ∅ G
{a, b} G ∅
{a, c} ∅ G
{b, c} ∅ G

Corollary 5. For a PTS (G, T ,P), we have β ⊆ T �.

Proof. Consider the above lemma and the reality that for every H we have H� ⊆ Π(H).

Theorem 11. Let (G, T ,P) be a PTS. If for each H ⊆ G we have H� = Π(H), then β = T �.

Proof. F is closed in T � iff F = F ∪ F�; F� ⊆ F; Π(F) ⊆ F; and F is closed in β by
Lemma 6.

Theorem 12. Let (G, T ,P) be a PTS. If there exists a set H such that Π(Π(H)) * Π(H), then
T � * β, and therefore β and T � are not the same.

Proof. Since Π(H) is closed in T by Theorem 1, but for any subset H such that Π(Π(H)) *
Π(H), then by Lemma 6 Π(H) is not closed in β, implying that T � * β.

If the primal closure operator is idempotent, then the closure operator in β can be
defined similarly to the closure operator in T �.

Theorem 13. Let (G, T ,P) be a PTS. If for each H ⊆ G we have Π(Π(H)) ⊆ Π(H), then
Clβ(H) = H ∪Π(H).

Proof. Since Π(H ∪ Π(H)) = Π(H) ∪ Π(Π(H)) = Π(H) ⊆ H ∪ Π(H), by Lemma 6
we know that H ∪Π(H) is a closed set in topology β containing H. Let us prove that
H ∪Π(H) is a minimal closed set in topology β containing H. Let x ∈ Π(H) ∪ H. If x ∈ H,
then x ∈ Clβ(H). If x ∈ Π(H), then for each open set A ∈ T (x), and Hc ∪ (A)c ∈ P .
From [Clβ(H)]c ⊆ Hc and the property of a primal space we have (A)c ∪ [Clβ(H)]c ∈ P .
Therefore, x ∈ Π[Clβ(H)], and since Clβ(H) is closed in β, Π[Clβ(H)] ⊆ Clβ(H), and we
have x ∈ Clβ(H). Hence, Clβ(H) = H ∪Π(H) for each H ⊆ G.

Theorem 14. Let (G, T ,P) be a PTS. Then, T is Π-suitable for the primal P if and only if
[
−→
Π (H)− H]c /∈ P for every H ⊆ G.

Proof. Necessity. Assume that T is Π-suitable for the primal P and let H ⊆ G. Notice
that x ∈ −→Π (H)− H iff x /∈ H, x /∈ Π(G− H) iff x /∈ H, and there exists Ux ∈ T (x) such
that (Ux − H)c = (Ux)c ∪ H /∈ P (since T is Π-suitable for the primal P , then H /∈ P) iff
there exists Ux ∈ T (x) such that x ∈ [Ux − H]c /∈ P . Now, for all x ∈ −→Π (H)− H and
Ux ∈ T (x), [Ux ∩ (

−→
Π (H)− H)]c = [Ux]c ∪ [(

−→
Π (H)− H)]c /∈ P by heredity, and hence

[
−→
Π (H)− H]c /∈ P by the assumption that T is Π-suitable with the primal P .

Sufficiency. Let H ⊆ G and assume that for all x ∈ H, there exists Ux ∈ T (x) such that
(Ux)c ∪ Hc /∈ P . Notice that

−→
Π (Hc)− (Hc) = H −Π(H) = {x : there exists Ux ∈ T (x)
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such that x ∈ (Ux)c ∪ Hc /∈ P}. Thus, we obtain [H −Π(H)]c = [
−→
Π (Hc)− (Hc)]c /∈ P ,

and hence T is Π-suitable for the primal P .

Theorem 15. Let (G, T ,P) be a PTS such that T is Π-suitable for the primal P and the primal
closure operator is idempotent; then, β = {−→Π (H)− I : H ⊆ G, Ic /∈ P}.

Proof. By Theorem 8, we know that
−→
Π [
−→
Π (H)− I] =

−→
Π [
−→
Π (H)] ⊇ −→Π (H) ⊇ −→Π (H)− I

according to Corollary 4. Thus, all sets of the form
−→
Π (H) − I are in β according to

Theorem 10.
Let H ∈ β. Therefore, H ⊆ −→Π (H). However, form T is Π-suitable for the primal P .

By Theorem 14, we have [
−→
Π (H)− H]c /∈ P , that is, there exists I such that I =

−→
Π (H)− H.

Hence, H =
−→
Π (H)− I and Ic /∈ P . Thus, H ∈ {−→Π (H)− I : H ⊆ G, Ic /∈ P} = β.

Lemma 7. Let (G, T ) be a TS. If either H ∈ T or K ∈ T , Int((H ∩ K)) = Int(H) ∩ Int(K).

Proof. This is the direct result of Lemma 3.5 of [15].

Theorem 16. Let (G, T ,P) be a PTS. Let ϕ = {H ⊆ G : H ⊆ Int
(
−→
Π (H)

)
}; then, ϕ is a form

of topology on G.

Proof. For Theorem 8, H ⊆ G,
−→
Π (H) is an open set, and β ⊂ ϕ. Thus, ∅, G ∈ ϕ. Let

H, K ∈ ϕ. Then, using Theorem 8 and Lemma 7, we obtain H ∩ K ⊂ Int
(
−→
Π (H)

)
∩

Int
(
−→
Π (K)

)
= Int

(
−→
Π (H) ∩−→Π (K)

)
= Int

(
−→
Π (H ∩ K)

)
. Therefore, H ∩ K ∈ ϕ. Let

Hα ∈ ϕ for each α ∈ ∆. By Theorem 8, for each α ∈ ∆, Hα ⊆ Int
[
−→
Π (Hα)

]
⊆ Int

[
−→
Π (∪Hα)

]
,

and hence ∪Hα ⊂ Int
[
−→
Π (∪Hα)

]
. Hence ∪Hα ∈ ϕ. Therefore, ϕ is a topology on X.

The strict inequality between these two topologies has a required condition, which is
provided by the lemma below.

Lemma 8. Let (G, T ,P) be a PTS. If β $ ϕ, then there exist a set H and a point x ∈ H such that
1. [K− H]c ∈ P for each K ∈ T (x);

2. There exist F ∈ T (x) and an open set M ⊆ F such that: [M− H]c /∈ P .

Proof. If β $ ϕ, then there exists H ∈ ϕ− β. Since H /∈ β, there exists x ∈ H such that

x /∈ −→Π (H)⇐⇒ x /∈ G−Π[G− H]

⇐⇒ x ∈ Π[G− H]

⇐⇒ ∀ K ∈ T (x), Kc ∪ H ∈ P
⇐⇒ ∀ K ∈ T (x), [K ∩ Hc]c ∈ P
⇐⇒ ∀ K ∈ T (x), [K− H]c ∈ P .
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Since H ∈ ϕ, for each y ∈ H, we have

y ∈ Int
(
−→
Π (H)

)
⇐⇒ ∃D ∈ T (y), D ⊆ −→Π (H)

⇐⇒ ∃D ∈ T (y), ∀ z ∈ D, ∀ F ∈ T (z), F ∩−→Π (H) 6= ∅

⇐⇒ ∃D ∈ T (y), ∀ F ⊆ D, [F ∈ T ⇒ F ∩−→Π (H) 6= ∅]

⇐⇒ ∃D ∈ T (y), ∀ F ⊆ D, [F ∈ T ⇒ F ∩ [G−Π(G− H)] 6= ∅]

⇐⇒ ∃D ∈ T (y), ∀ F ⊆ D, [F ∈ T ⇒ F−Π(G− H) 6= ∅]

⇐⇒∃D ∈ T (y), ∀ F ⊆ D, [F ∈ T ⇒ [∃M ⊆ F (M ∈ T ⇒ [M− H]c /∈ P)].

7. Π-Suitability via Primal Spaces
Now, we consider certain characteristics of a suitable structure via primal spaces and

explore its major properties.

Proposition 1. Let (G, T ,P) be a PTS, where T is Π-suitable for the primal P and H ⊆ G. If
N ⊆ Π(H) ∩−→Π (H) and N 6= ∅ is open, then [N − H]c /∈ P and (N)c ∪ Hc ∈ P .

Proof. If N ⊆ Π(H) ∩−→Π (H), then [
−→
Π (H)− H]c ⊆ [N − H]c by Theorem 14, and hence

[N− H]c /∈ P by heredity. Since N ∈ T − {∅} and N ⊆ Π(H), we have (N)c ∪ Hc ∈ P by
the definition of Π(H).

We note that H = K [mod P] if [(H − K) ∪ (K − H)]c /∈ P , where = [mod P] is an
equivalence relation. By (9) of Theorem 8, we determine that if H = K [mod P], then
−→
Π (H) =

−→
Π (K).

Lemma 9. Let (G, T ,P) be a PTS such that T is Π-suitable for the primal P . If N, M ∈ Tθ , and
−→
Π (N) =

−→
Π (M), then N = M [mod P].

Proof. Since N ∈ Tθ , by Corollary 3 we have N ⊆ −→Π (N), and hence N −M ⊆ −→Π (N)−
M =

−→
Π (M) − M and [

−→
Π (M) − M]c /∈ P by Theorem 14. Therefore, [N − M]c /∈ P .

Similarly, [M− N]c /∈ P . Now, (N −M)c ∩ (M− N)c = [(N −M) ∪ (M− N)]c /∈ P by
additivity. Hence, N = M [mod P].

Definition 10. Let (G, T ,P) be a PTS. A subset A of G is a Baire set with respect to T and P ,
symbolized by A ∈ Bθ , if there exists a θ-open set U such that A = U [mod P].

Example 6. Let G = {a, b, c} with topology T = {∅, G, {a}, {b}, {a, b}, {b, c}} and the primal
P = {∅, {b}, {c}, {b, c}}. Then, Tθ = {∅, G}. It is clear that for any A /∈ P , A is a Baire set
with respect to T and P . That is:
1. If A = {a, b}, the only θ-open set U is G and [(G − A) ∪ (A − G)]c = A /∈ P ; hence,

A = U [mod P]. Thus, A is a Baire set with respect to T and P .
2. If A = {b, c}, the only θ-open set U is G and [(G − A) ∪ (A − G)]c = A ∈ P ; hence,

A 6= U [mod P]. Thus, A is not a Baire set with respect to T and P .

Theorem 17. Let (G, T ,P) be a PTS such that T is Π-suitable for the primal P . If H, K ∈ Bθ ,
and
−→
Π (H) =

−→
Π (K), then H = K [mod P].

Proof. Let N, M ∈ Tθ such that H = N [mod P] and K = M [mod P]. Now,
−→
Π (H) =

−→
Π (N) and

−→
Π (K) =

−→
Π (M) by Theorem 8 (9).

−→
Π (H) =

−→
Π (K) implies that

−→
Π (N) =

−→
Π (M), and hence N = M [mod P] by Lemma 9. Thus, H = K [mod P] by transitivity.
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Proposition 2. Let (G, T ,P) be a PTS:
1. If B ∈ Bθ and Bc ∈ P , then there exists H ∈ Tθ − {∅} such that B = H [mod P].

2. Let T − {G} ⊆ P ; then, B ∈ Bθ and Bc ∈ P iff there exists H ∈ Tθ − {∅} such that
B = H [mod P].

Proof.
(1) Assume that B ∈ Bθ and Bc ∈ P . Hence, there exists H ∈ Tθ such that B = H [mod

P]. If H = ∅, then we obtain B = ∅ [mod P] and [(B−∅) ∪ (∅− B)]c /∈ P . This means
that Bc /∈ P , which contradicts itself.

(2) Suppose that there exists H ∈ Tθ − {∅} such that B = H [mod P]. Thus, by
Definition 10, B ∈ Bθ . Then, H = (B − J) ∪ I, where J = B − H, I = H − B, and so
(H− B)c and (B−H)c /∈ P . If Bc /∈ P , then (B− J)c /∈ P and Hc /∈ P . Since H ∈ Tθ −{∅},
H 6= ∅ and there exists U ∈ T such that ∅ 6= U ⊆ U ⊆ H. Since Hc /∈ P , then Uc /∈ P and
Uc is open. This contradicts the statement that T − {G} ⊆ P .

Proposition 3. Let (G, T ,P) be a PTS with T − {G} ⊆ P . If B ∈ Bθ and Bc ∈ P , then
−→
Π (B) ∩ Intθ(Π(B)) 6= ∅.

Proof. Assume that B ∈ Bθ and Bc ∈ P ; then, by Proposition 2 (1), there exists U ∈ Tθ −
{∅} such that B = U [mod P]. By Theorem 5 and Lemma 3, U = U ∩ G = U ∩Π(G) ⊆
Π(U ∩ G) = Π(U). This means that ∅ 6= U ⊆ Π(U) = Π((B− J) ∪ I) = Π(B), where
Jc = (B−U)c, Ic = (U − B)c /∈ P by Corollary 2. Since U ∈ Tθ , U ⊆ Intθ(Π(B)). Also,
∅ 6= U ⊆ −→Π (U) by Corollary 3, and B = U [mod P]. This implies that [(U − B) ∪ (B−
U)]c /∈ P , and hence U ⊆ −→Π (U) =

−→
Π (B) by Theorem 8 (9). Consequently, we obtain

U ⊆ −→Π (B) ∩ Intθ(Π(B)).

Proposition 4. Let (G, T ,P) be a PTS with T − {G} ⊆ P . If T = Tθ , then the following
statements are equivalent:
(1) There exist B ∈ Bθ and Bc ∈ P such that B ⊆ Q;

(2)
−→
Π (Q) ∩ Intθ(Π(Q)) 6= ∅;

(3)
−→
Π (Q) ∩Π(Q) 6= ∅;

(4)
−→
Π (Q) 6= ∅;

(5)
−→
Π (Q) ∩Q 6= ∅;

(6) There exists a nonempty open set M such that [M−Q]c /∈ P and [M ∩Q]c ∈ P .

Proof.
(1)⇒ (2): Let B ∈ Bθ and Bc ∈ P such that B ⊆ Q. Then, Intθ(Π(B)) ⊆ Intθ(Π(Q)) and

−→
Π (B) ⊆ −→Π (Q), and hence Intθ(Π(B)) ∩ −→Π (B) ⊆ Intθ(Π(Q)) ∩ −→Π (Q). By Proposition 3,
−→
Π (Q) ∩ Intθ(Π(Q)) 6= φ.

(2)⇒ (3): The evidence is clear.
(3)⇒ (4): The evidence is clear.
(4)⇒ (5): If

−→
Π (Q) 6= φ, then there exists an open set M 6= ∅ such that [M− Q]c /∈

P . Since Mc ∈ P and Mc
= [(M − Q) ∪ (M ∩ Q)]c = [M − Q]c ∩ [M ∩ Q]c, we have

[M ∩ Q]c ∈ P . By Theorem 8 and Corollary 3, ∅ 6= (M ∩ Q) ⊆ −→Π (M) ∩ Q =
−→
Π ((M−

Q) ∪ (M ∩Q)) ∩Q =
−→
Π (M ∩Q) ∩Q ⊆ −→Π (Q) ∩Q. Hence,

−→
Π (Q) ∩Q 6= ∅.

(5)⇒ (6): If
−→
Π (Q) ∩ Q 6= ∅, then

−→
Π (Q) 6= ∅ and there exists an open set M 6= ∅

such that [M−Q]c /∈ P , Mc
= [(M−Q)∪ (M ∩Q)]c = [M−Q]c ∩ [M ∩Q]c and Mc ∈ P .

This means that [M ∩Q]c ∈ P .
(6) ⇒ (1): Let Bc = [M ∩ Q]c ∈ P , where M is a nonempty θ-open set and (M −

Q)c /∈ P . Then, B ∈ Bθ and Bc ∈ P , since [(B− M) ∪ (M − B)]c = [M − Q]c /∈ P and
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[(B−M) ∪ (M− B)]c ⊆ [(B−M) ∪ (M− B)]c, that is, B = M [mod P]. Then, there exists
B ∈ Bθ and Bc ∈ P such that B ⊆ Q.

Theorem 18. Let (G, T ,P) be a PTS where T − {G} ⊆ P and T is Π-suitable for the primal P .
Then, for any subset H,

−→
Π (H) ⊆ Π(H).

Proof. Let x ∈ −→Π (H) and x /∈ Π(H). Then, there exists an open set Ux 6= ∅ such that
[Ux ∩ H]c /∈ P . Since x ∈ −→Π (H), by Theorem 9, x ∈ ∪{U ∈ T : [U − H]c /∈ P} and
there exist V ∈ T (x) and [V − H]c /∈ P . Thus, Ux ∩ V ∈ T (x), [Ux ∩V ∩ H]c /∈ P and
[Ux ∩V − H]c /∈ P by heredity. Therefore, by finite additivity we obtain [Ux ∩V]c =
[Ux ∩V ∩ H]c ∩ [Ux ∩V − H]c /∈ P . Since [Ux ∩V]c ∈ T (x), this is in opposition to
T − {G} ⊆ P . Thus, x ∈ Π(H). This means that

−→
Π (H) ⊆ Π(H).

8. Conclusions and Future Work
The concept of a primal topology, as demonstrated by Acharjee et al. [5] and Al-Omari

et al. [6,7], is a continuation of the classical (crisp) topology. This topological generalization
is becoming increasingly interesting to research. Primal space areas formed the foundation
of our study. Several basic operations on primal spaces were discussed. An outline of
their features was provided, along with an outline of some new primal space operators.
Additionally, we identified the fundamental qualities of appropriate spaces and the linkages
among other factors. The results of this work are preliminary; other features of the primal
resolvable space will be investigated in future studies. Through the integration of these two
methodologies, our work opens up prospects for possible contributions to the resolvability
of soft topologies [16] in classical and soft settings, as well as the resolvability of primal
soft topologies and the primal hyper-connectedness and resolvability of structures with
generalized rough approximation spaces.
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