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1. Introduction

One of the most fundamental techniques in stochastic multivariate analysis is the
concept of a family of multivariate distributions. Families of bivariate distributions with
known marginals have drawn attention for many years. The Farlie–Gumbel–Morgenstern
(FGM) family is regarded as one of the world’s first bivariate distribution families. When
the FGM family turns into a copula (i.e., when the marginals are uniform), the correlation
coefficient between the FGM family’s marginals reaches its minimum value of −0.33
and highest value of 0.33. The FGM distribution is, therefore, best suited for data with
low correlation coefficients. Despite this constraining restriction, the FGM family has
increasingly replaced conventional multivariate normal models in various applications
and is now extensively used in several different fields. In a study by Ghosh et al. [1],
the FGM family was applied to model the interdependence between environmental and
biological variables. In another study by Shrahili and Alotaibi [2], variants of this copula
were employed to simulate real-world datasets with symmetric characteristics.

Numerous modifications to the FGM copula that have been discussed in the literature
aim to improve the correlation between the inner marginals. Ebaid et al. [3] presented the
symmetric generalization of the FGM copula, and Barakat et al. [4] have since considered
it. They discovered that the admissible range and correlation claims made by Ebaid
et al. [3] were false. Barakat et al. [4] revised the copula’s allowable range. The symbol
for this extension is EFGM, and it has a more straightforward function than many known
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generalizations of the FGM family, such as Bairamov–Kotz–Becki–FGM, Huang–Kotz FGM
(see [5,6]), and iterated FGM (see Barakat and Husseiny, [7]). Recently, Abd Elgawad
et al. [8] revealed and discussed some distributional traits of concomitants of order statistics
(OSs) arising from the EFGM family. The work by Abd Elgawad et al. [8] is expanded upon
in this research to include K−record values in the perspective of some recent information
measures. The cumulative distribution function (CDF) and probability density function
(PDF) of the EFGM family, denoted by EFGM(c, d), are given, respectively, by (cf. [4])

HT,W(t, w) = HT(t)HW(w)
[
1 + cHT(t)HW(w)(1 + dHT(t))(1 + dHW(w))

]
(1)

and

hT,W(t, w)=hT(t)hW(w)
{

1 + c
[
1 + 2(d− 1)HT(t)− 3dH2

T(t)
][

1 + 2(d− 1)HW(w)− 3dH2
W(w)

]}
, (2)

where the marginals HT(t) and HW(w) are continuous, and HX(.) = 1− HX(.). Barakat
et al. [4] clarified that the natural parameter space Λ (the admissible set of parameters
c and d that ensure HT,W(t, w) is a bonafide CDF) is convex. The set Λ is given by
Λ = Λ+ ∪Λ−, where

Λ+ =

{
(c, d) : 0 ≤ d ≤ 1,− 1

(1 + d)2 ≤ c ≤ 1
(1 + d)

; or d > 1,− 1
(1 + d)2 ≤ c ≤ 1

(1 + d)2

}
,

Λ− =

{
(c, d) : −2 ≤ d ≤ 0, − 1 ≤ c ≤ 0; or d < −2,− 1

(1 + d)2 ≤ c ≤ 1
(1 + d)2

}
.

Let {Ti, i ≥ 1} be a set of independent random variables (RVs) with the same continuous
CDF HT(.) and PDF hT(.). The observation Tj is called an upper record value when Tj > Ti
for every i < j. A similar definition can be given for lower record values. Due to the rarity
of upper record values, which restricts their use in various applications, we can switch to a
more flexible model, which is K−record upper values (KRVs), where we can always expect
the occurrence of KRVs more frequently than upper record values. Considering the KRV
model, refer to Dziubdziela and Kopociński [9]. For a fixed K ≥ 1, the PDF of the Nth KRV
is given by

gTN,k (t) =
KN

Γ(N)

[
− ln HT(t)

]N−1HK−1
T (t)hT(t), N ≥ 1, (3)

where Γ(.) is the gamma function. For more details about this model and its applications,
refer to [10–13].

Let a random bivariate sample (Ti, Wi), i = 1, 2, . . . , have a common continuous CDF
HT,W(t, w) = P(T ≤ t, W ≤ w). When the investigator is just interested in studying the
sequence of K−records, TN,K, of the first component T, the second component associated
with the KRV of the first one is termed as the concomitant of that KRV, denoted by W[N,K].
Several papers, including [14–17], discussed the PDF of CKRV W[N,K]. This concomitant’s
PDF is provided by

h[N,K](w) =
∫ ∞

−∞
hW|T(w|t)gTN,K (t)dt, (4)

where hW|T(w|t) is the conditional PDF of W, given T.
The extropy (EX) was proposed by Lad et al. [18]. Earlier in academic literature, EX

was used to contrast with entropy. The EX refers to an organism’s intelligence, functional
order, vitality, energy, life, experience, and capacity for growth and improvement. The EX
of an RV T with PDF hT(t) is defined as (see [18,19])

EX(T) = −1
2

∫ ∞

0
h2

T(t)dt = −1
2

∫ 1

0
hT(H−1

T (u))du ≤ 0. (5)
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Qiu [20] reviewed several characterizations, as well as the EX-lower bounds for OSs and
record values. Qiu and Jia [21] examined residual EX using OSs. Irshad et al. [22] refined
the concept of past EX for concomitants of OSs from the FGM family. In addition, they
studied the cumulative past EX and dynamic cumulative past EX for the concomitant of
rth OS. There have been many studies of EX measures in conjunction with generalized
OSs, such as Almaspoor et al. [23], Husseiny and Syam [24], and Husseiny et al. [25].
Additionally, Jahanshahi et al. [26] proposed a measure of uncertainty for RVs, known as
cumulative residual extropy, abbreviated by CREX, which is given by

CREX(T) = −1
2

∫ ∞

0
H2

T(t)dt = −1
2

∫ 1

0

(1− u)2

hT(H−1
T (u))

du, (6)

which is always negative. Consequently, the negative CREX (NCREX) shall be

ζR(T) =
1
2

∫ ∞

0
H2

T(t)dt =
1
2

∫ 1

0

(1− u)2

hT(H−1
T (u))

du. (7)

Recently, Hashempour et al. [27] proposed a new information measure called weighted
CREX (WCREX), which assigns more importance to large values of the considered RV, as
well as EX and CREX; this measure is permanently negative and is defined by

CREXw(T) = −1
2

∫ ∞

0
tH2

T(t)dt = −1
2

∫ 1

0

H−1
T (u)(1− u)2

hT(H−1
T (u))

du. (8)

Thus, the positive one would be called weighted negative cumulative residual extropy
(WNCREX) and is expressed as

ζRw(T) =
1
2

∫ ∞

0
tH2

T(t)dt =
1
2

∫ 1

0

H−1
T (u)(1− u)2

hT(H−1
T (u))

du. (9)

Also, a negative cumulative extropy (NCEX) has been introduced, similar to (7), by Tah-
masebi and Toomaj [28]; that is,

ζ(T) =
1
2

∫ ∞

0
(1− H2

T(t))dt =
1
2

∫ 1

0

1− u2

hT(H−1
T (u))

du. (10)

Furthermore, Chaudhary et al. [29] investigated another new information measure called
weighted negative cumulative extropy (WNCEX), which is defined by

ζw(T) =
1
2

∫ ∞

0
t(1− H2

T(t))dt =
1
2

∫ 1

0

H−1
T (u)(1− u2)

hT(H−1
T (u))

du. (11)

Motivations of the Work

This study builds upon the work of Abd Elgawad et al. [8] regarding the OSs model,
developing a significant parallel model about record values. Numerous real-world exper-
iments lead to the concomitants of record values. These concomitants offer a practical
and effective method for organizing and analyzing bivariate record data. One of the main
motivations for this work is the practicality and realism of the KRV model, especially
considering the rarity of record values. Another driving factor is the application of recent
uncertainty measures to our model, which have broad implications across various scientific
fields.

This paper is organized as follows: In Section 2, we derive the marginal distribution
of CKRV based on the EFGM family and obtain the EX, NCREX, WNCREX, NCEX, and
WNCEX for CKRV. In addition, in Section 3, numerical studies based on some well-known
distributions are carried out. Moreover, Section 4 introduces the issue of non-parametric
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estimation of the mentioned measures through simulation studies. Finally, Section 5
presents the study’s conclusion.

2. CKRV Based on EFGM(c,d) and EX, with Some of Its Associated Measures

In this section, we derive the marginal distribution of CKRV based on the EFGM
family. Moreover, the EX, NCREX, WNCREX, NCEX, and WNCEX for CKRV are obtained.

2.1. The Marginal Distribution of CKRV Based on EFGM(c,d)

In the next theorem, we obtain a useful representation for the PDF of W[N,K]. We use
the notation T ∼ HT to signify that T is distributed as HT .

Theorem 1. Let V1 ∼ H2
W and V2 ∼ H3

W . Then

h[N,K](w) = hW(w)
{

1 + η[1 + 2(d− 1)HW(w)− 3dH2
W(w)]

}
= (1 + η)hW(w) + (d− 1)ηhV1(w)− dηhV2(w), (12)

where

η = −c(d + 1) + 2c(2d + 1)
(

K
K + 1

)N
− 3cd

(
K

K + 2

)N
.

Proof. The PDF of CKRV is derived, starting with (4) as follows:

h[N,K](w) =
∫ ∞

−∞
hW|T(w|t)gTN,K (t)dt

=
∫ ∞

−∞
hW(w)

{
1 + c[1 + 2(d− 1)HT(t)− 3dH2

T(t)]

× [1 + 2(d− 1)HW(w)− 3dH2
W(w)]

}
gTN,K (t)dt

= hW(w)
{

1 + η[1 + 2(d− 1)HW(w)− 3dH2
W(w)]

}
,

where

η = c
∫ ∞

−∞

[
1 + 2(d− 1)HT(t)− 3dH2

T(t)
]

gTN,K (t)dt.

Using HT(t) = 1− HT(t) and simple algebra, we have

η = −c(d + 1) + 2c(2d + 1)I1 − 3cdI2, (13)

such that, for p = 1, 2

Ip =
∫ ∞

−∞
Hp

T(t)gTN,K (t)dt.

Taking the transformation HT(t) = e−z, we have

Ip =
KN

Γ(N)

∫ ∞

0
zN−1e−z(K+p)dz =

(
K

K + p

)N
. (14)

Finally, by using (13) with (14). The proof is completed.

Remark 1. If K = 1 in Theorem 1, we obtain the case of upper record values.

Remark 2. When the value of K is large, we can use the approximation η ≈ c. Moreover, when the
value of N is large, we can use the approximation η ≈ −c(d + 1). Finally, when both K and N are
large, such that K ∼ N, we have η ≈ −c(d + 1) + 2c(2d + 1)e−1 − 3cde−2.



Mathematics 2023, 11, 4934 5 of 25

Corollary 1. By using Theorem 1, the marginal CDF of CKRV and its survival function satisfy
the following two elegant symmetry relationships:

H[N,K](w) = (1 + η)HW(w) + (d− 1)ηHV1(w)− dηHV2(w) (15)

and
H[N,K](w) = (1 + η)HW(w) + (d− 1)ηHV1(w)− dηHV2(w). (16)

2.2. EX and Some of Its More Recent Related Measures

In this section, the measures EX, NCREX, WNCREX, NCEX, and WNCEX for CKRV
W[N,K] based on EFGM(c, d) are derived.

2.2.1. EX of CKRV for EFGM(c,d)

Using (5) and (12), the EX of W[N,K] is given by

EX[N,K](W) = −1
2

∫ ∞

0
h2
[N,K](w)dw

= −1
2

∫ ∞

0
h2

W(w)
[

A2
1 + A2

2H2
W(w) + A2

3H4
W(w) + 2A1 A2HW(w)

+ 2A1 A3H2
W(w) + 2A2 A3H3

W(w)
]
dw (17)

= A2
1EX(W)− A1 A2E[hW(w)HW(w)]−

(
1
2

A2
2 + A1 A3

)
E[hW(w)H2

W(w)]

− A2 A3E[hW(w)H3
W(w)]− 1

2
A2

3E[hW(w)H4
W(w)],

where A1 = 1 + η, A2 = 2(d− 1)η, and A3 = −3dη.
We can write EX[N,K](W) in terms of the quantile function (QF). Let the QF be

Q(u) = H−1
W (u), then the quantile density function is given by q(u) = 1/hW(Q(u)),

where the derivative of Q(u) is respect to u and is denoted by q(u) (i.e., Q′(u) = q(u)).
Thus, EX[N,K](W) is given by

EX[N,K](W) = A2
1EX(W)− A1 A2E

[
U

q(u)

]
−
(

1
2

A2
2 + A1 A3

)
E
[

U2

q(u)

]
− A2 A3E

[
U3

q(u)

]
− 1

2
A2

3E
[

U4

q(u)

]
,

where EX(W) is the EX of W, and U is a uniformly distributed RV on (0, 1).

Example 1. Assume that the random vector (T, W) follows the extended Weibull family (denoted
by EWF). As mentioned in [30], the EWF has its CDF and PDF described as follows

HT(t) = 1− e−$G(t;τ),

hT(t) = $g(t; τ)e−$G(t;τ), (18)

respectively, where $ > 0, τ is a vector of parameters, and G(t, τ) is a non-negative, continuous,
monotonically increasing, differentiable function of t, dependent on the parameter vector τ, such
that G(t, τ)→ 0+ as t→ 0+ and G(t, τ)→ +∞ as t→ +∞. g(t; τ) is the derivative of G(t; τ).
Using (18) in (1), the CDF of EFGM with EWF (denoted by EFGM-EWF) is given by

HT,W(t, w) =
(

1− e−$1G(t;τ1)
)(

1− e−$2G(w;τ2)
)[

1 + ce(−$1G(t;τ1)−$2G(w;τ2))

×
(

1 + d
(

1− e−$1G(t;τ1)
))(

1 + d
(

1− e−$2G(w;τ2)
))]

. (19)



Mathematics 2023, 11, 4934 6 of 25

According to (17), the EX of W[N,K] is

EX[N,K](W) = A2
1EX(W)− A1 A2E

[
$2g(w; τ2)e−$2G(w;τ2)

(
1− e−$2G(w;τ2)

)]
−

(
1
2

A2
2 + A1 A3

)
E
[

$2g(w; τ2)e−$2G(w;τ2)
(

1− e−$2G(w;τ2)
)2
]

(20)

− A2 A3E
[

$2g(w; τ2)e−$2G(w;τ2)
(

1− e−$2G(w;τ2)
)3
]

− 1
2

A2
3E
[

$2g(w; τ2)e−$2G(w;τ2)
(

1− e−$2G(w;τ2)
)4
]

.

Example 2. Based on Example 1, by using $iG(x, τi) = −log(1 − x) (i.e., $i = 1) and
$ig(x, τi) =

1
1−x for x = t, w and i = 1, 2, respectively, with (19), we obtain the joint uniform dis-

tribution with parameters 0 and 1 as EFGM (denoted by EFGM-UD), which is
given by

HT,W(t, w) = tw[1 + c(1− t)(1− w)(1 + dt)(1 + dw)]. (21)

According to (20), the EX of W[N,K] is

EX[N,K](W) = −1
2

A2
1 −

1
6

A2
2 −

1
10

A2
3 −

1
2

A1 A2 −
1
3

A1 A3 −
1
4

A2 A3

= −1
2
−
(

1
6
+

1
6

d +
1

15
d2
)

η2.

Example 3. Based on Example (1), by putting $iG(x, τi) =
x
λi

(i.e., $i =
1
λi

) for x = t, w and
i = 1, 2, respectively, and $ig(x, τ) = 1

λi
, in (19), we obtain the joint exponential distribution with

parameters λi > 0 as the EFGM family (denoted by EFGM-ED), which is given as

HT,W(t, w)=

(
1− e−

t
λ1

)(
1− e−

w
λ2

)[
1 + ce−

(
t

λ1
+ w

λ2

)(
1 + d

(
1−e−

t
λ1

))(
1 + d

(
1−e−

w
λ2

))]
. (22)

Moreover, in view of (20), we have

EX[N,K](W) = −λ2

[
1
4

A2
1 +

1
24

A2
2 +

1
60

A2
3 −

1
6

A1 A2 +
1

12
A1 A3 +

1
20

A2 A3

]
= −λ2

[
1
4
+

(
1
6
+

1
12

d
)

η +

(
1

12
+

1
20

d +
1

60
d2
)

η2
]

.

2.2.2. NCREX of CKRV for EFGM(c,d)

We can obtain ζR[N,K](W) by using (7) and (16) as

ζR[N,K](W) =
1
2

∫ ∞

0
H2

[N,K](w)dw

=
1
2

∫ ∞

0

[
(1 + η)2H2

W(w) + (d− 1)2η2H2
V1
(w) + d2η2H2

V2
(w)

+ 2(d− 1)(1 + η)ηHW(w)HV1(w)− 2d(1 + η)ηHW(w)HV2(w)

− 2d(d− 1)η2HV1(w)HV2(w)
]
dw.

Then,
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ζR[N,K](W) = (1 + η)2ζR(W) + (d− 1)2η2ζR(V1) + d2η2ζR(V2)

+ (d− 1)(1 + η)ηE

[
HW(w)HV1(w)

hW(w)

]
− d(1 + η)ηE

[
HW(w)HV2(w)

hW(w)

]
(23)

− d(d− 1)η2E

[
HV1(w)HV2(w)

hW(w)

]
.

Also, it can be expressed in another form using QF as

ζR[N,K](W) =
1
2
(1 + η)2E

[
(1−U)2q(u)

]
+

1
2
(d− 1)2η2E

[(
1−U2

)2
q(u)

]
+

1
2

d2η2E
[(

1−U3
)2

q(u)
]
+ (d− 1)(1 + η)ηE

[
(1−U)

(
1−U2

)
q(u)

]
− d(1 + η)ηE

[
(1−U)

(
1−U3

)
q(u)

]
− d(d− 1)η2E

[(
1−U2

)(
1−U3

)
q(u)

]
.

Example 4. Let (T, W) follow EFGM.

• According to EFGM-EWF, which is defined by (19), using (23), the NCREX of W[N,K] is
given by

ζR[N,K](W) =
1
2
(1 + η)2E

[
e−$2G(w;τ2)

$2g(w; τ2)

]

+
1
2
(d− 1)2η2E

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)2
]

+
1
2

d2η2E

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)2
]

(24)

+ (d− 1)(1 + η)ηE
[

1
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)]

− d(1 + η)ηE
[

1
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)]

− d(d− 1)η2E

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)(

1−
(

1− e−$2G(w;τ2)
)3
)]

.

• For EFGM-UD, which is given by (21), using (24), NCREX of W[N,K] is given by

ζR[N,K](W) =
1
6
−
(

1
12

+
1

30
d
)

η +

(
1

60
+

1
60

d +
1

210
d2
)

η2.

• By choosing $iG(x, τi) = −log
(
1− wβi

)
(i.e., $i = 1) in EFGM-EWF, we obtain the EFGM

with power function distribution marginals (denoted by EFGM-PFD), which is given by

HT,W(t, w) = tβ1 wβ2 [1 + c
(

1− tβ1
)(

1− wβ2
)
(1 + dtβ1)(1 + dwβ2)], βi > 0, i = 1, 2. (25)

Also, by using $iG(x, τi) and $ig(x, τi) into (24), we have
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ζR[N,K](W) = β2
2

{
1

1 + 3β2 + 2β2
2

+

[
−2

1 + 6β2 + 11β2
2 + 6β3

2
− 2

1 + 9β2 + 26β2
2 + 24β2

2
d

]
η

+

[
1

1 + 9β2 + 26β2
2 + 24β3

2
+

1
1 + 12β2 + 47β2

2 + 60β3
2

d

+
1

1 + 15β2 + 74β2
2 + 120β3

2
d2

]
η2

}
.

• For EFGM-ED with parameters λi, i = 1, 2, whose CDF is (22), the ζR[N,K](W) is given by

ζR[N,K](W) =
1

λ2

[
1
4
−
(

1
6
+

1
12

d
)

η +

(
1

24
+

1
20

d +
1
60

d2
)

η2
]

.

2.2.3. WNCREX of CKRV for EFGM(c,d)

Using (9) and (16), the WNCREX of W[N,K] can be simply obtained as follows:

ζRw
[N,K](W) =

1
2

∫ ∞

0
wH2

[N,K](w)dw

=
1
2

∫ ∞

0
w[(1 + η)2H2

W(w) + (d− 1)2η2H2
V1
(w) + d2η2H2

V2
(w)

+ 2(d− 1)(1 + η)ηHW(w)HV1(w)− 2d(1 + η)ηHW(w)HV2(w)

− 2d(d− 1)η2HV1(w)HV2(w)]dw.

Then,

ζRw
[N,K](W) = (1 + η)2ζRw(W) + (d− 1)2η2ζRw(V1) + d2η2ζRw(V2)

+ (d− 1)(1 + η)ηE

[
WHW(w)HV1(w)

hW(w)

]
− d(1 + η)ηE

[
WHW(w)HV2(w)

hW(w)

]
(26)

− d(d− 1)η2E

[
WHV1(w)HV2(w)

hW(w)

]
.

In addition, it can be written in terms of QF. Thus, the corresponding ζRw
[N,K](W) based on

the QF is given by

ζRw
[N,K](W) =

(1 + η)2

2
E
[
(1−U)2q(u)Q(u)

]
+

(d− 1)2η2

2
E
[(

1−U2
)2

q(u)Q(u)
]

+
d2η2

2
E
[(

1−U3
)2

q(u)Q(u)
]
+ (d− 1)(1 + η)ηE

[
(1−U)

(
1−U2

)
q(u)Q(u)

]
− d(1 + η)ηE

[
(1−U)

(
1−U3

)
q(u)Q(u)

]
− d(d− 1)η2E

[(
1−U2

)(
1−U3

)
q(u)Q(u)

]
.

Example 5. Let T and W follow EFGM.

• According to EFGM-EWF, which is defined by (19), and by using (26), the WNCREX of
W[N,K] is
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ζRw
[N,K](W) =

1
2
(1 + η)2E

[
We−$2G(w;τ2)

$2g(w; τ2)

]

+
1
2
(d− 1)2η2E

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)2
]

+
1
2

d2η2E

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)2
]

+ (d− 1)(1 + η)ηE
[

W
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)]

(27)

− d(1 + η)ηE
[

W
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)]

− d(d− 1)η2E

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)(

1−
(

1− e−$2G(w;τ2)
)3
)]

.

• For EFGM-UD, which is defined by (21), and by using (27), the WNCREX of W[N,K] is

ζRw
[N,K](W) =

1
24
−
(

1
30

+
1

60
d
)

η +

(
1

120
+

1
105

d +
1

336
d2
)

η2.

• For EFGM-PFD, which is defined in (25), and by using (27), the WNCREX of W[N,K]
would be

ζRw
[N,K](W) = β2

2

{
1

8 + 12β2 + 4β2
2

+

[
−1

4 + 12β2 + 11β2
2 + 3β3

2
− 1

4 + 18β2 + 26β2
2 + 12β2

2
d

]
η

+

[
1

8 + 36β2 + 52β2
2 + 24β3

2
+

1
4 + 24β2 + 47β2

2 + 30β3
2

d

+
1

8 + 60β2 + 148β2
2 + 120β3

2
d2

]
η2

}
.

• According to EFGM-ED, which is described in (22), and by using (27), the WNCREX of
W[N,K] is given by

ζRw
[N,K](W) =

1
λ2

2

[
1
8
−
(

5
36

+
13

144
d
)

η +

(
13

288
+

77
1200

d +
29

1200
d2
)

η2
]

.

• Putting $iG(x, τi) =
x2

2λi
(i.e., $i =

1
2λi

) in EFGM-EWF, we obtain EFGM with Rayleigh
distribution marginals (denoted by EFGM-RD), which is given by

HT,W(t, w) =

(
1− e−

t2
2λ1

)(
1− e−

w2
2λ2

)[
1 + ce−

(
t2

2λ1
+ w2

2λ2

)(
1 + d

(
1− e−

t2
2λ1

))(
1 + d

(
1− e−

w2
2λ2

))]
.

Therefore, the WNCREX of W[N,K] would be

ζRw
[N,K](W) = λ2

2

[
1
4
+

(
−1
6
− 1

12
d
)

η +

(
1

24
+

1
20

d +
1

60
d2
)

η2
]

.
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• Choosing $iG(x, τi) = −αilog
( σi

x
)

(i.e., $i = −αi), in EFGM- EWF, we obtain EFGM with
Pareto type-I distribution marginals (denoted by EFGM-PID), as follows

HT,W(t, w) =
(

1−
(σ1

t

)α1
)(

1−
(σ2

w

)α2
)[

1 + c
σα1

1 σα2
2

tα1 wα2

(
1 + d

(
1−

(σ1

t

)α1
))(

1 + d
(

1−
(σ2

w

)α2
))]

, (28)

Further, by using (27), we have

ζRw
[N,K](W) = σ2

2

{
1

−4 + 4α2
+

[
−4α2

4− 10α2 + 6α2
2
−

α2
2

−4 + 18α2 − 26α2
2 + 12α3

d

]
η

+

[
α2

2
−8 + 36α2 − 52α2

2 + 24α3
+

3α3
2

8− 56α2 + 142α2
2 − 154α3 + 60α4

2
d

+
3α4

2
−8 + 80α2 − 310α2

2 + 580α3 − 522α4
2 + 180α5

2
d2

]
η2

}
.

Figure 1a,b depicts the WNCREX of W[N,K] from EFGM-PFD for various values of N
and K at d = −3. The following properties can be extracted from Figure 1.

ζRw(W[N,1]) ζRw(W[N,2])

ζRw(W[N,3]) ζRw(W[N,4])

ζRw(W[N,5])

5 10 15 20
N

0.083

0.084

0.085

0.086

0.087

ζRw(W[N,K])

(a) c=0.2,β=2, and K =1, 2, 3, 4, 5

ζRw(W[1,K]) ζRw(W[3,K])

ζRw(W[5,K]) ζRw(W[7,K])

ζRw(W[9,K])

10 20 30 40
k

0.1120

0.1122

0.1124

0.1126

0.1128

0.1130

ζRw(W[N,k])

(b) c= -0.2, β=3,and N=1, 3, 5, 7, 9

Figure 1. WNCREX of W[N,K] from EFGM-PFD.

1. With fixed N, c, and β, the value of ζRw
[N,K](W) increases as K decreases (see Figure 1a)

and stability occurs for large N.
2. For the fixed large K, the value of ζRw

[N,K](W) increases with the increasing N; see
Figure 1b.

Figure 2a,b depicts the WNCREX of W[N,K] from EFGM-RD for various values of N
and K at d = 2. The following properties can be extracted from Figure 2.

1. Stability occurs for large N and K, see Figure 2a,b.
2. With fixed c and σ, the values of ζRw

[N,K](W) are very near to each other as N and
K rise.
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ζRw(W[N,1]) ζRw(W[N,2])

ζRw(W[N,3]) ζRw(W[N,4])

ζRw(W[N,5])

5 10 15 20
N

0.70

0.75

0.80

0.85

0.90

0.95

ζRw(W[N,K])

(a) c=0.1,σ=1, and K =1, 2, 3, 4, 5

ζRw(W[1,K]) ζRw(W[3,K])

ζRw(W[5,K]) ζRw(W[7,K])

ζRw(W[9,K])

2 4 6 8 10 12 14
k

1.0

1.5

2.0

2.5

3.0

3.5

ζRw(W[N,k])

(b) c= -0.1, σ=2,and N=1, 3, 5, 7, 9

Figure 2. WNCREX of W[N,K] from EFGM-RD.

2.2.4. NCEX of CKRV for EFGM(c,d)

We can calculate the NCEX of CKRV W[N,K] as follows:

ζ[N,K](W) =
1
2

∫ ∞

0

[
1− H2

[N,K](w)
]
dt

=
∫ ∞

0
H[N,K](w)dw− ζR[N,K](W)

=
∫ ∞

0
[(1 + η)HW(w) + (d− 1)ηHV1(w)− dηHV2(w)]dw− ζR[N,K](W).

Using (23) and simple algebra, we have

ζ[N,K](W) = (1 + η)E
[

HW(w)

hW(w)

]
+ (d− 1)ηE

[
HV1(w)

hW(w)

]
− dηE

[
HV2(w)

hW(w)

]
− (1 + η)2ζR(W)− (d− 1)2η2ζR(V1)− d2η2ζR(V2)

− (d− 1)(1 + η)ηE

[
HW(w)HV1(w)

hW(w)

]
+ d(1 + η)ηE

[
HW(w)HV2(w)

hW(w)

]

+ d(d− 1)η2E

[
HV1(w)HV2(w)

hW(w)

]
.

According to QF, ζ[N,K](W) is given by

ζ[N,K](W) = (1 + η)E[(1−U)q(u)] + (d− 1)ηE
[(

1−U2
)

q(u)
]
− dηE

[(
1−U3

)
q(u)

]
− 1

2
(1 + η)2E

[
(1−U)2q(u)

]
− 1

2
(d− 1)2η2E

[(
1−U2

)2
q(u)

]
− 1

2
d2η2E

[(
1−U3

)2
q(u)

]
− (d− 1)(1 + η)ηE

[
(1−U)

(
1−U2

)
q(u)

]
+ d(1 + η)ηE

[
(1−U)

(
1−U3

)
q(u)

]
+ d(d− 1)η2E

[(
1−U2

)(
1−U3

)
q(u)

]
. (29)

Example 6. Let T and W follow the EFGM family

• For EFGM-EWF, which is defined by (19), and by using (29), the NCEX of W[N,K] is
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ζ[N,K](W) = (1 + η)E
[

1
$2g(w; τ2)

]
+ (d− 1)ηE

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)]

− dηE

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)]
− 1

2
(1 + η)2E

[
e−$2G(w;τ2)

$2g(w; τ2)

]

− 1
2
(d− 1)2η2E

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)2
]

− 1
2

d2η2E

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)2
]

(30)

− (d− 1)(1 + η)ηE
[

1
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)]

+ d(1 + η)ηE
[

1
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)]

+ d(d− 1)η2E

[
e$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)(

1−
(

1− e−$2G(w;τ2)
)3
)]

.

• For EFGM-UD, as clarified in (21), the following equation is derived using (30):

ζ[N,K](W) =
1
3
−
(

1
12

+
1
20

d
)

η −
(

1
60

+
1
60

d +
1

210
d2
)

η2.

• For EFGM-ED, with parameters as defined in (22), the equation using (30) is given by

ζ[N,K](W) =
1

λ2

[
3
4
−
(

1
3
+

1
4

d
)

η −
(

1
24

+
1
20

d +
1
60

d2
)

η2
]

.

• For EFGM-PID, with parameters as mentioned in (28), by using (30), then

ζ[N,K](W) = σ2

{
−1 + 3α2

2− 6α2 + 4α2
2

[
2α2

2
−1 + 6α2 − 11α2

2 + 6α3
2
+

6α3
2

1− 10α2 + 35α2
2 −50α3 + 24α4

2
d

]
η

−
[

α2
2

−1 + 9α2 − 26α2
2 + 24α3

+
6α3

2
1− 14α2 + 71α2

2 − 154α3 + 120α4
2

d

+
3α4

2
−1 + 20α2 − 155α2

2 + 580α3 − 1044α4
2 + 720α5

2
d2

]
η2

}
.

2.2.5. WNCEX of CKRV for EFGM(c,d)

Similar to ζ, we can obtain ζw of W[N,K] as
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ζw
[N,K](W) = (1 + η)E[(1−U)q(u)Q(u)] + (d− 1)ηE

[(
1−U2

)
q(u)Q(u)

]
− dηE

[(
1−U3

)
q(u)Q(u)

]
− 1

2
(1 + η)2E

[
(1−U)2q(u)Q(u)

]
− 1

2
(d− 1)2η2E

[(
1−U2

)2
q(u)Q(u)

]
− 1

2
d2η2E

[(
1−U3

)2
q(u)Q(u)

]
− (d− 1)(1 + η)ηE

[
(1−U)

(
1−U2

)
q(u)Q(u)

]
(31)

+ d(1 + η)ηE
[
(1−U)

(
1−U3

)
q(u)Q(u)

]
+ d(d− 1)η2E

[(
1−U2

)(
1−U3

)
q(u)Q(u)

]
.

Example 7. Suppose that T and W follow the EFGM family

• For EFGM-EWF, which is defined by (19), by using (31), the WNCEX of W[N,K] is

ζw
[N,K](W) = (1 + η)E

[
W

$2g(w; τ2)

]
+ (d− 1)ηE

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)]

− dηE

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)]
− 1

2
(1 + η)2E

[
We−$2G(w;τ2)

$2g(w; τ2)

]

− 1
2
(d− 1)2η2E

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)2
]

− 1
2

d2η2E

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)2
]

(32)

− (d− 1)(1 + η)ηE
[

W
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)]

+ d(1 + η)ηE
[

W
$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)3
)]

+ d(d− 1)η2E

[
We$2G(w;τ2)

$2g(w; τ2)

(
1−

(
1− e−$2G(w;τ2)

)2
)(

1−
(

1− e−$2G(w;τ2)
)3
)]

.

• For EFGM-UD, we have

ζw
[N,K](W) =

1
8
−
(

1
20

+
1

30
d
)

η −
(

1
120

+
1

105
d +

1
336

d2
)

η2.

• For EFGM-ED, we have

ζw
[N,K](W) =

1
λ2

2

[
7
8
−
(

11
18

+
25
48

d
)

η −
(

13
288

+
77

1200
d +

29
1200

d2
)

η2
]

.

• For EFGM-RD, we have

ζRw
[N,K](W) = λ2

2

[
3
4
−
(

1
3
+

1
4

d
)

η −
(

1
24

+
1

20
d +

1
60

d2
)

η2
]

.
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3. Numerical Study for the EX, NCREX, WNCREX, NCEX, and WNCEX

Tables 1–6 display the EX, NCREX, and WNCREX of W[N,K] from EFGM. The following
properties can be extracted:

Table 1 displays the EX of W[N,K] from the EFGM copula.

• The value of EX(W[N,K]; c) = EX(W[N,K];−c), at d = −3, 0.9, 2.
• For N > 1, large K (K ≥ 40), and d = −3,−1, 0.9, the value of EX(W[N,K]; |c|) increases

as the value of N increases.
• For N > 1, large K (K ≥ 40), and d = 2, the value of EX(W[N,K]; |c|) decreases as the

value of N increases.

Table 2 displays the EX of W[N,K] based on EFGM-UD.

• For N > 1 and large K (K ≥ 40), the value of EX(W[N,K]; c) increases as the value of
N increases along with the values of parameters (c, d) as (−0.2,−3), (0.2, 0.9), and
(−0.1, 2).

• For N > 1 and large K (K ≥ 40), the value of EX(W[N,K]; c) decreases as the value
of N increases along with the values of parameters (c, d) as (0.2,−3), (−0.75,−1),
(−0.25,−1), (0.9,−0.2), and (0.1, 2).

NCREX in W[N,K] based on EFGM copula, NCREX in W[N,K] based on EFGM-ED,
WNCREX in W[N,K] based on EFGM copula, and WNCREX in W[N,K] based on EFGM-
ED all satisfy the same asymmetry properties extracted for EX in W[N,K] from EFGM-ED
(Table 2).

Moreover, in the earlier version of this paper, we presented an extra four tables for
NCEX in W[N,K] based on EFGM copula, NCEX in W[N,K] based on EFGM-ED, WNCEX in
W[N,K] based on EFGM copula, and WNCEX in W[N,K] based on EFGM-ED. Responding to
the reviewers’ comments about the excessive number of tables, we removed these extra
tables, knowing that the same asymmetry properties, as extracted for EX in W[N,K] from
EFGM-ED, also hold for these removed tables.

Table 1. EX in W[N,K] from the EFGM copula.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

2 1 −0.500296 −0.500296 −0.501042 −0.500116 −0.503464 −0.503464 −0.503407 −0.503407
2 3 −0.500280 −0.500280 −0.501775 −0.500197 −0.504957 −0.504957 −0.504749 −0.504749
2 5 −0.509920 −0.509920 −0.501079 −0.500120 −0.523053 −0.523053 −0.526828 −0.526828
2 7 −0.523524 −0.523524 −0.500329 −0.500037 −0.537641 −0.537641 −0.546456 −0.546456
6 1 −0.500340 −0.500340 −0.510762 −0.501196 −0.511352 −0.511352 −0.508801 −0.508801
6 3 −0.502672 −0.502672 −0.500001 −0.500000 −0.503523 −0.503523 −0.504500 −0.504500
6 5 −0.502570 −0.502570 −0.501708 −0.500190 −0.500037 −0.500037 −0.500315 −0.500315
6 7 −0.500417 −0.500417 −0.502927 −0.500325 −0.501888 −0.501888 −0.501237 −0.501237

40 1 −0.507091 −0.507091 −0.530776 −0.503420 −0.514590 −0.514590 −0.508321 −0.508321
40 3 −0.502546 −0.502546 −0.520221 −0.502247 −0.513887 −0.513887 −0.509327 −0.509327
40 5 −0.500485 −0.500485 −0.512740 −0.501416 −0.512936 −0.512936 −0.509918 −0.509918
40 7 −0.500003 −0.500003 −0.507577 −0.500842 −0.511804 −0.511804 −0.510114 −0.510114
100 1 −0.509078 −0.509078 −0.534630 −0.503848 −0.514752 −0.514752 −0.507955 −0.507955
100 3 −0.506407 −0.506407 −0.529423 −0.503269 −0.514562 −0.514562 −0.508484 −0.508484
100 5 −0.504327 −0.504327 −0.524863 −0.502763 −0.514319 −0.514319 −0.508947 −0.508947
100 7 −0.502751 −0.502751 −0.520883 −0.502320 −0.514028 −0.514028 −0.509341 −0.509341
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Table 2. EX in W[N,K] from EFGM-ED at λ2 = 0.5.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

2 1 −0.123657 −0.126435 −0.120182 −0.123307 −0.113982 −0.137343 −0.114444 −0.136667
2 3 −0.126394 −0.123693 −0.132466 −0.127341 −0.139923 −0.111974 −0.138892 −0.112657
2 5 −0.134587 −0.118514 −0.130705 −0.126812 −0.159545 −0.099277 −0.160551 −0.098197
2 7 −0.141051 −0.116300 −0.128049 −0.125989 −0.170707 −0.093696 −0.173601 −0.091548
6 1 −0.126541 −0.123565 −0.112295 −0.119868 −0.106026 −0.148318 −0.108578 −0.144292
6 3 −0.121247 −0.129588 −0.124808 −0.124936 −0.113894 −0.137455 −0.112965 −0.138502
6 5 −0.121311 −0.129492 −0.132310 −0.127294 −0.123794 −0.126220 −0.121671 −0.128432
6 7 −0.123417 −0.126714 −0.134828 −0.128032 −0.133986 −0.116737 −0.131897 −0.118506

40 1 −0.132902 −0.119314 −0.108231 −0.116846 −0.103818 −0.151764 −0.108993 −0.143720
40 3 −0.129469 −0.121327 −0.109635 −0.118193 −0.104269 −0.151045 −0.108138 −0.144903
40 5 −0.126852 −0.123299 −0.111563 −0.119459 −0.104902 −0.150048 −0.107661 −0.145573
40 7 −0.124863 −0.125138 −0.113794 −0.120633 −0.105696 −0.148821 −0.107506 −0.145792
100 1 −0.134106 −0.118731 −0.107956 −0.116433 −0.103716 −0.151929 −0.109320 −0.143274
100 3 −0.132459 −0.119543 −0.108353 −0.116999 −0.103836 −0.151736 −0.108851 −0.143916
100 5 −0.130984 −0.120368 −0.108878 −0.117554 −0.103990 −0.151489 −0.108454 −0.144463
100 7 −0.129662 −0.121198 −0.109511 −0.118097 −0.104177 −0.151191 −0.108126 −0.144920

Table 3. NCREX in W[N,K] based on EFGM copula.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

2 1 0.167233 0.166122 0.172991 0.168758 0.177954 0.156043 0.176974 0.156974
2 3 0.166137 0.167217 0.158634 0.163961 0.154035 0.180249 0.155289 0.178900
2 5 0.163806 0.170236 0.160383 0.164555 0.140612 0.197140 0.141023 0.197142
2 7 0.162557 0.172457 0.163179 0.165499 0.134158 0.206390 0.133927 0.207775
6 1 0.166084 0.167274 0.187525 0.173449 0.187588 0.147921 0.183531 0.151388
6 3 0.168430 0.165094 0.166897 0.166744 0.178054 0.155955 0.178564 0.155580
6 5 0.168395 0.165122 0.158786 0.164013 0.167808 0.165532 0.169737 0.163653
6 7 0.167341 0.166022 0.156399 0.163198 0.158759 0.174937 0.160752 0.172804

40 1 0.164202 0.169638 0.202837 0.178235 0.190550 0.145580 0.183043 0.151789
40 3 0.165129 0.168386 0.195648 0.176006 0.189934 0.146061 0.184051 0.150962
40 5 0.165973 0.167395 0.189434 0.174054 0.189079 0.146734 0.184621 0.150499
40 7 0.166722 0.166612 0.184065 0.172346 0.188022 0.147574 0.184806 0.150349
100 1 0.163916 0.170066 0.205177 0.178954 0.190690 0.145471 0.182663 0.152104
100 3 0.164312 0.169479 0.201985 0.177973 0.190526 0.145599 0.183210 0.151651
100 5 0.164698 0.168944 0.198977 0.177042 0.190314 0.145764 0.183677 0.151268
100 7 0.165072 0.168458 0.196142 0.176160 0.190059 0.145963 0.184065 0.150951

Table 4. NCREX in W[N,K] based on EFGM-ED at λ2 = 0.5.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

2 1 0.505648 0.494537 0.521094 0.506973 0.548594 0.455150 0.546296 0.457407
2 3 0.494686 0.505489 0.473245 0.490983 0.446783 0.558576 0.450112 0.555050
2 5 0.470954 0.535246 0.479067 0.492962 0.391923 0.632996 0.389872 0.639289
2 7 0.457850 0.556852 0.488380 0.496108 0.366321 0.674366 0.361141 0.689354
6 1 0.494154 0.506059 0.569655 0.522620 0.590719 0.421552 0.576212 0.433355
6 3 0.517518 0.484152 0.500769 0.500256 0.549026 0.454782 0.553521 0.451371
6 5 0.517167 0.484440 0.473750 0.491155 0.504873 0.495168 0.513692 0.486650
6 7 0.506724 0.493537 0.465809 0.488440 0.466523 0.535518 0.473890 0.527455

40 1 0.475038 0.529394 0.620934 0.538602 0.603777 0.411993 0.573977 0.435068
40 3 0.484511 0.517080 0.596844 0.531158 0.601059 0.413952 0.578600 0.431538
40 5 0.493045 0.507258 0.576044 0.524640 0.597284 0.416699 0.581216 0.429564
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Table 4. Cont.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

40 7 0.500552 0.499450 0.558084 0.518940 0.592630 0.420129 0.582068 0.428926
100 1 0.472086 0.533588 0.628780 0.541003 0.604398 0.411549 0.572233 0.436414
100 3 0.476169 0.527835 0.618079 0.537725 0.603670 0.412070 0.574742 0.434480
100 5 0.480122 0.522583 0.607998 0.534618 0.602737 0.412741 0.576881 0.432844
100 7 0.483931 0.517788 0.598501 0.531674 0.601610 0.413553 0.578665 0.431489

Table 5. WNCREX in W[N,K] based on EFGM copula.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

2 1 0.042230 0.041118 0.043778 0.042364 0.046519 0.037175 0.046286 0.037397
2 3 0.041133 0.042214 0.038994 0.040765 0.036335 0.047515 0.036663 0.047157
2 5 0.038696 0.045125 0.039575 0.040963 0.030814 0.054922 0.030571 0.055512
2 7 0.037294 0.047194 0.040505 0.041278 0.028226 0.059030 0.027637 0.060458
6 1 0.041080 0.042270 0.048651 0.043931 0.050717 0.033800 0.049261 0.034975
6 3 0.043401 0.040064 0.041744 0.041692 0.046563 0.037138 0.047005 0.036790
6 5 0.043366 0.040093 0.039045 0.040783 0.042154 0.041183 0.043035 0.040331
6 7 0.042336 0.041018 0.038253 0.040511 0.038315 0.045215 0.039052 0.044408

40 1 0.039123 0.044559 0.053815 0.045533 0.052016 0.032838 0.049039 0.035148
40 3 0.040101 0.043358 0.051387 0.044787 0.051746 0.033035 0.049498 0.034792
40 5 0.040968 0.042389 0.049294 0.044133 0.051370 0.033312 0.049758 0.034592
40 7 0.041722 0.041612 0.047489 0.043562 0.050907 0.033657 0.049842 0.034528
100 1 0.038814 0.044965 0.054607 0.045774 0.052078 0.032793 0.048865 0.035283
100 3 0.039241 0.044407 0.053527 0.045445 0.052006 0.032846 0.049115 0.035088
100 5 0.039650 0.043896 0.052511 0.045133 0.051913 0.032913 0.049327 0.034923
100 7 0.040041 0.043427 0.051554 0.044838 0.051801 0.032995 0.049504 0.034787

Table 6. WNCREX in W[N,K] based on EFGM-ED at λ2 = 0.5.

d = −3 d = −1 d = 0.9 d = 2

K N c = −0.2 c = 0.2 c = −0.75 c = −0.25 c = −0.2 c = 0.2 c = −0.1 c = 0.1

2 1 0.517904 0.482719 0.524627 0.508138 0.589698 0.419457 0.589988 0.419617
2 3 0.483191 0.517399 0.468815 0.489483 0.404717 0.608386 0.406127 0.607259
2 5 0.408642 0.612232 0.475596 0.491791 0.310868 0.750063 0.298787 0.776836
2 7 0.367995 0.681503 0.486449 0.495460 0.269140 0.830349 0.250938 0.880013
6 1 0.481509 0.519207 0.581443 0.526410 0.669099 0.360905 0.649309 0.375500
6 3 0.555642 0.449981 0.500897 0.500299 0.590505 0.418808 0.604236 0.408448
6 5 0.554522 0.450887 0.469404 0.489684 0.508890 0.491209 0.526360 0.474529
6 7 0.521319 0.479559 0.460159 0.486519 0.439646 0.565345 0.450411 0.553077

40 1 0.421397 0.593523 0.641603 0.545092 0.693981 0.344582 0.644848 0.378608
40 3 0.451110 0.554247 0.613322 0.536389 0.688792 0.347913 0.654080 0.372211
40 5 0.478006 0.523014 0.588930 0.528770 0.681594 0.352597 0.659311 0.368646
40 7 0.501747 0.498259 0.567890 0.522111 0.672733 0.358465 0.661016 0.367494
100 1 0.412172 0.606930 0.650820 0.547901 0.695166 0.343826 0.641371 0.381053
100 3 0.424935 0.588546 0.638249 0.544067 0.693777 0.344712 0.646376 0.377540
100 5 0.437322 0.571783 0.626413 0.540434 0.691994 0.345853 0.650645 0.374575
100 7 0.449287 0.556502 0.615266 0.536991 0.689844 0.347235 0.654209 0.372122
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4. Non-Parametric Estimation of NCREX, WNCREX, NCEX, and WNCEX

In this section, we study the non-parametric estimators of NCREX, WNCREX, NCEX,
and WNCEX of the CKRV, W[N,K]. Furthermore, the mean and variance of the empirical
measures (EMs) of the CKRV, W[N,K], are deduced. Let Wi, i = 1, 2, . . . , n, be a random
sample from an absolutely continuous CDF HW and W1:n ≤W2:n ≤ . . . ≤Wn:n display the
OSs of W1, W2, . . . , Wn. Then the EM of HW(w) is given by

ĤW(w) =


0, w < W1:n,
i
n , Wi:n ≤ w ≤Wi+1:n,
1, w > Wn:n.

(33)

From (33) into (15), we have the EM of H[N,K](w) as

Ĥ[N,K](w) = (1 + η)ĤW(w) + (d− 1)ηĤ2
W(w)− dηĤ3

W(w)

= (1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
. (34)

4.1. EM of NCREX in CKRV Based on EFGM(c,d)

According to (33), the EM of ζR[N,K](W) is given by

ζ̂R[N,K](W) =
1
2

∫ ∞

0

[
1− Ĥ[N,K](w)

]2
dw

=
1
2

∫ ∞

0

[
1−

(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)]2

dw

=
1
2

n−1

∑
i=1

∫ Wi+1:n

Wi:n

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

dw

=
1
2

n−1

∑
i=1

Ui

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

,

where Ui = Wi+1:n −Wi:n, i = 1, 2, . . . , n− 1, are sample spacings. Thus, the expectation
and variance of the empirical NCREX are given by

E
[
ζ̂R[N,K](W)

]
=

1
2

n−1

∑
i=1

E[Ui]

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

(35)

and

Var
[
ζ̂R[N,K](W)

]
=

1
4

n−1

∑
i=1

Var[Ui]

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]4

. (36)

Example 8. Assume that (Ti, Wi), i = 1, 2, . . . , n, is a random sample from EFGM-UD with
parameters 0 and 1 for each Ti and Wi. By using (35) and (36), we have

E
[
ζ̂R[N,K](W)

]
=

1
2(n + 1)

n−1

∑
i=1

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

and

Var
[
ζ̂R[N,K](W)

]
=

n
4(n + 1)2(n + 2)

n−1

∑
i=1

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]4

.
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Example 9. Let (Ti, Wi), i = 1, 2, . . . , n, be a random sample from EFGM-ED with parameters
λ1 and λ2, respectively. Then, we have

E
[
ζ̂R[N,K](W)

]
=

1
2λ2

n−1

∑
i=1

1
n− i

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

and

Var
[
ζ̂R[N,K](W)

]
=

1
4λ2

2

n−1

∑
i=1

1
(n− i)2

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]4

.

Figure 3 shows the relation between NCREX and the empirical NCREX in W[N,K] from
EFGM-UD, at n = 100. It can be extracted that, at any value of N, the values of NCREX are
very close to the values of the empirical NCREX, as long as n is large.

(a) c = −0.2, d = 0.9

NCREX

empirical NCREX

0 5 10 15 20
N

0.05

0.10

0.15

(b) c = 0.2, d = 0.9

NCREX

empirical NCREX

0 5 10 15 20
N

0.15

0.20

0.25

0.30

(c) c = −0.75, d = −1

NCREX

empirical NCREX
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N
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0.4
(d)c = −0.2, 5, d = −1

NCREX

empirical NCREX

0 5 10 15 20
N
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Figure 3. Representation of NCREX and empirical NCREX based on W[N,K=1] from EFGM-UD.

Table 7 displays the values of E
[
ζ̂R[N,K](W)

]
and Var

[
ζ̂R[N,K](W)

]
for the EFGM-ED

model at K = 2, n = 10, and d = 0.5. The following features can be extracted:

1. With fixed N and λ2, E
[
ζ̂R[N,K](W)

]
and Var

[
ζ̂R[N,K](W)

]
increase as c increases.

2. With fixed N and c, E
[
ζ̂R[N,K](W)

]
and Var

[
ζ̂R[N,K](W)

]
increase as λ2 increases.

Table 7. E
[
ζ̂R[N,K](W)

]
and Var

[
ζ̂R[N,K](W)

]
for EFGM-ED at K = 2, n = 10, and d = 0.5.

E
[
ζ̂R[N,K](W)

]
Var

[
ζ̂R[N,K](W)

]
N λ2 c = −0.2 c = −0.1 c = 0.1 c = 0.2 c = −0.2 c = −0.1 c = 0.1 c = 0.2

3 0.5 0.102492 0.107408 0.117768 0.123213 0.001551 0.001662 0.001911 0.002051
3 1 0.204985 0.214816 0.235537 0.246426 0.006204 0.006646 0.007643 0.008204
3 2 0.409970 0.429632 0.471073 0.492852 0.024818 0.026585 0.030574 0.032817
5 0.5 0.092915 0.102344 0.123384 0.134995 0.001350 0.001548 0.002056 0.002377
5 1 0.185829 0.204687 0.246767 0.269990 0.005400 0.006191 0.008222 0.009507
5 2 0.371659 0.409375 0.493535 0.539980 0.021598 0.024766 0.032889 0.038028
8 0.5 0.087208 0.099217 0.127056 0.142886 0.001238 0.001480 0.002154 0.002612
8 1 0.174415 0.198434 0.254113 0.285773 0.004954 0.005921 0.008616 0.010449
8 2 0.348831 0.396868 0.508226 0.571545 0.019815 0.023684 0.034463 0.041796

10 0.5 0.085830 0.098448 0.127985 0.144904 0.001212 0.001464 0.002179 0.002675
10 1 0.171660 0.196897 0.255971 0.289808 0.004850 0.005856 0.008717 0.010699
10 2 0.343320 0.393793 0.511941 0.579617 0.019399 0.023423 0.034869 0.042796
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4.2. EM of WNCREX in CKRV Based on EFGM(c,d)

Using (9) and (34), the EM of ζRw
[N,K](W) is given by

ζ̂Rw
[N,K](W) =

1
2

∫ ∞

0
w
[
1− Ĥ[N,K](w)

]2
dw

=
1
2

n−1

∑
i=1

Zi

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

,

where Zi =
W2

i+1:n−W2
i:n

2 , i = 1, 2, . . . , n− 1.

Example 10. Let (Ti, Wi), i = 1, 2, . . . , n, be a random sample from the EFGM family. Further-
more, let Wi have a distribution with PDF hW(w) = 2w, 0 < w < 1. According to Chakraborty

et al. [31], W2
i has a standard UD. Furthermore, the RVs Zi =

W2
i+1:n−W2

i:n
2 , i = 1, 2, . . . , n− 1,

follow beta distribution with a mean 1
2(n+1) and variance n

4(n+1)2(n+2) . Thus,

E
[
ζ̂Rw

[N,K](W)
]
=

1
4(n + 1)

n−1

∑
i=1

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

and

Var
[
ζ̂Rw

[N,K](W)
]
=

n
16(n + 1)2(n + 2)

n−1

∑
i=1

[
1− (1 + η)

(
i
n

)
−(d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]4

.

Example 11. Suppose (Ti, Wi), i = 1, 2, . . . , n, is a random sample from the EFGM family.

If Wi has RD with PDF hW(w) = 2λwe−λw2
; w, λ > 0. Then, the RVs Zi =

W2
i+1:n−W2

i:n
2 ,

i = 1, 2, . . . , n− 1, follow the exponential distribution with a mean 1
2λ(n−i) and variance 1

4λ2(n−i)2 .

Moreover, the mean and variance of ζ̂Rw
[N,K](W) are, respectively, given by

E
[
ζ̂Rw

[N,K](W)
]
=

1
4λ

n−i

∑
i=1

1
n− i

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]2

and

Var
[
ζ̂Rw

[N,K](W)
]
=

1
16λ2

n−1

∑
i=1

1
(n− i)2

[
1− (1 + η)

(
i
n

)
− (d− 1)η

(
i
n

)2
+ dη

(
i
n

)3
]4

.

Table 8 presents E
[
ζ̂Rw

[N,K](W)
]

and Var
[
ζ̂Rw

[N,K](W)
]

for EFGM-ED at K = 2,
n = 10, and d = 0.5. Table 8 shows the following features:

1. Generally, with fixed N and λ2, E
[
ζ̂Rw

[N,K](W)
]

and Var
[
ζ̂Rw

[N,K](W)
]

increase with
increasing c.

2. Generally, with fixed N and c, E
[
ζ̂Rw

[N,K](W)
]

and Var
[
ζ̂Rw

[N,K](W)
]

increase with
increasing λ2.
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Table 8. E
[
ζ̂Rw

[N,K](W)
]

and Var
[
ζ̂Rw

[N,K](W)
]

for EFGM-ED at K = 2, n = 10, and d = 0.5.

E
[
ζ̂Rw

[N,K](W)
]

Var
[
ζ̂Rw

[N,K](W)
]

N λ2 c = −0.2 c = −0.1 c = 0.1 c = 0.2 c = −0.2 c = −0.1 c = 0.1 c = 0.2

3 0.5 0.051246 0.053704 0.058884 0.061607 0.000388 0.000415 0.000478 0.000513
3 1 0.102492 0.107408 0.117768 0.123213 0.001551 0.001662 0.001911 0.002051
3 2 0.204985 0.214816 0.235537 0.246426 0.006204 0.006646 0.007643 0.008204
5 0.5 0.046457 0.051172 0.061692 0.067497 0.000337 0.000387 0.000514 0.000594
5 1 0.092915 0.102344 0.123384 0.134995 0.001350 0.001548 0.002056 0.002377
5 2 0.185829 0.204687 0.246767 0.269990 0.005400 0.006191 0.008222 0.009507
8 0.5 0.043604 0.049609 0.063528 0.071443 0.000310 0.000370 0.000538 0.000653
8 1 0.087208 0.099217 0.127056 0.142886 0.001238 0.001480 0.002154 0.002612
8 2 0.174415 0.198434 0.254113 0.285773 0.004954 0.005921 0.008616 0.010449

10 0.5 0.042915 0.049224 0.063993 0.072452 0.000303 0.000366 0.000545 0.000669
10 1 0.085830 0.098448 0.127985 0.144904 0.001212 0.001464 0.002179 0.002675
10 2 0.171660 0.196897 0.255971 0.289808 0.004850 0.005856 0.008717 0.010699

4.3. EM of NCEX in CKRV Based on EFGM(c,d)

From (34) and (10), we obtain the EM of ζ[N,K] as

ζ̂[N,K](W) =
1
2

∫ ∞

0

[
1− Ĥ2

[N,K](w)
]
dw

=
1
2

n−1

∑
i=1

Ui

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
.

Example 12. Suppose that (Ti, Wi), i = 1, 2, . . . , n, is a random sample from EFGM-UD with
parameters 0 and 1. Thus,

E
[
ζ̂[N,K](W)

]
=

1
2(n + 1)

n−1

∑
i=1

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2


and

Var
[
ζ̂[N,K](W)

]
=

n
4(n + 1)2(n + 2)

n−1

∑
i=1

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
2

.

Example 13. Let (Ti, Wi), i = 1, 2, . . . , n, be a random sample from EFGM-ED. Then, we have

E
[
ζ̂[N,K](W)

]
=

1
2λ2

n−1

∑
i=1

1
n− i

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2


and

Var
[
ζ̂[N,K](W)

]
=

1
4λ2

2

n−1

∑
i=1

1
(n− i)2

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
2

.

Figure 4 shows the relation between NCREX and the empirical NCEX in W[N,K] from
EFGM-UD, at n = 100. It can be concluded that NCREX and empirical NCREX have very
similar values.
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Figure 4. Representation of NCEX and empirical NCEX based on W[N,K=1] from EFGM-UD.

Table 9 shows E
[
ζ̂[N,K](W)

]
and Var

[
ζ̂[N,K](W)

]
for EFGM-ED at K = 2, n = 10, and

d = 0.5. It is observed that:

1. At fixed N and λ2, E
[
ζ̂[N,K](W)

]
and Var

[
ζ̂[N,K](W)

]
increase as the value of c

increases.
2. At fixed N and c, E

[
ζ̂[N,K](W)

]
and Var

[
ζ̂[N,K](W)

]
increase as the value of λ2

increases.

Table 9. E
[
ζ̂[N,K](W)

]
and Var

[
ζ̂[N,K](W)

]
for EFGM-ED at K = 2, n = 10, and d = 0.5.

E
[
ζ̂[N,K](W)

]
Var

[
ζ̂[N,K](W)

]
N λ2 c = −0.2 c = −0.1 c = 0.1 c = 0.2 c = −0.2 c = −0.1 c = 0.1 c = 0.2

3 0.5 0.317745 0.327711 0.347113 0.356549 0.011409 0.012208 0.013878 0.014747
3 1 0.635491 0.655422 0.694226 0.713098 0.045635 0.048830 0.055513 0.058989
3 2 1.270980 1.310840 1.388450 1.426200 0.182540 0.195321 0.222053 0.235954
5 0.5 0.296643 0.317435 0.356837 0.375448 0.009847 0.011385 0.014774 0.016601
5 1 0.593286 0.634870 0.713675 0.750895 0.039389 0.045538 0.059097 0.066403
5 2 1.186570 1.269740 1.427350 1.501790 0.157557 0.182153 0.236388 0.265614
8 0.5 0.282818 0.310796 0.362931 0.387088 0.008918 0.010875 0.015356 0.017820
8 1 0.565635 0.621591 0.725862 0.774177 0.035674 0.043501 0.061424 0.071280
8 2 1.131270 1.243180 1.451720 1.548350 0.142696 0.174003 0.245696 0.285121

10 0.5 0.279318 0.309126 0.364441 0.389948 0.008695 0.010750 0.015503 0.018129
10 1 0.558636 0.618252 0.728881 0.779895 0.034780 0.042999 0.062010 0.072515
10 2 1.117270 1.236500 1.457760 1.559790 0.139120 0.171997 0.248041 0.290061

4.4. EM of WNCEX in CKRV Based on EFGM(c,d)

Based on (11), the EM of ζw
[N,K](W) is given by

ζ̂w
[N,K](W) =

1
2

∫ ∞

0
w
[
1− Ĥ2

[N,K](w)
]
dw. (37)

Using the CDF representation of CKRV that is established in (15) and substituting into (37),
the empirical measure of ζw

[N,K](W) can be calculated as



Mathematics 2023, 11, 4934 22 of 25

ζ̂w
[N,K](W) =

1
2

∫ ∞

0
w

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
dw

=
1
2

n−1

∑
i=1

Zi

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
.

Example 14. Assume (Ti, Wi), i = 1, 2, . . . , n, is a random sample from the EFGM family and
the RV Wi follows a distribution with the PDF hW(w) = 2w, 0 < w < 1. Therefore, we obtain

E
[
ζ̂w

[N,K](W)
]
=

1
4(n + 1)

n−1

∑
i=1

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2


and

Var
[
ζ̂w

[N,K](W)
]
=

n
16(n + 1)2(n + 2)

n−1

∑
i=1

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
2

.

Example 15. Suppose (Ti, Wi), i = 1, 2, . . . , n, is a random sample from the EFGM family. If
the RV Wi follows the Rayleigh distribution with the PDF hW(w) = 2λwe−λw2

; w, λ > 0, then,
we have

E
[
ζ̂w

[N,K](W)
]
=

1
4λ

n−i

∑
i=1

1
n− i

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2


and

Var
[
ζ̂w

[N,K](W)
]
=

1
16λ2

n−1

∑
i=1

1
(n− i)2

1−
(
(1 + η)

(
i
n

)
+ (d− 1)η

(
i
n

)2
− dη

(
i
n

)3
)2
2

.

Table 10 clarifies a numerical application of Example 15 at K = 2, n = 10, and d = 0.5
and some distinct values of the parameters c, λ2, and N. It is apparent that

1. For fixed N and λ2, E
[
ζ̂w

[N,K](W)
]

and Var
[
ζ̂w

[N,K](W)
]

increase as c increases.

2. For fixed N and c, E
[
ζ̂w

[N,K](W)
]

and Var
[
ζ̂w

[N,K](W)
]

increase as λ2 increases.

Table 10. E
[
ζ̂w

[N,K](W)
]

and Var
[
ζ̂w

[N,K](W)
]

for EFGM-ED at K = 2, n = 10, and d = 0.5.

E
[
ζ̂w

[N,K](W)
]

Var
[
ζ̂w

[N,K](W)
]

N λ2 c = −0.2 c = −0.1 c = 0.1 c = 0.2 c = −0.2 c = −0.1 c = 0.1 c = 0.2

3 0.5 0.158873 0.163855 0.173556 0.178275 0.002852 0.003052 0.003470 0.003687
3 1 0.317745 0.327711 0.347113 0.356549 0.011409 0.012208 0.013878 0.014747
3 2 0.635491 0.655422 0.694226 0.713098 0.045635 0.048830 0.055513 0.058989
5 0.5 0.148321 0.158718 0.178419 0.187724 0.002462 0.002846 0.003694 0.004150
5 1 0.296643 0.317435 0.356837 0.375448 0.009847 0.011385 0.014774 0.016601
5 2 0.593286 0.634870 0.713675 0.750895 0.039389 0.045538 0.059097 0.066403
8 0.5 0.141409 0.155398 0.181465 0.193544 0.002230 0.002719 0.003839 0.004455
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Table 10. Cont.

E
[
ζ̂w

[N,K](W)
]

Var
[
ζ̂w

[N,K](W)
]

N λ2 c = −0.2 c = −0.1 c = 0.1 c = 0.2 c = −0.2 c = −0.1 c = 0.1 c = 0.2

8 1 0.282818 0.310796 0.362931 0.387088 0.008918 0.010875 0.015356 0.017820
8 2 0.565635 0.621591 0.725862 0.774177 0.035674 0.043501 0.061424 0.071280

10 0.5 0.139659 0.154563 0.182220 0.194974 0.002174 0.002687 0.003876 0.004532
10 1 0.279318 0.309126 0.364441 0.389948 0.008695 0.010750 0.015503 0.018129
10 2 0.558636 0.618252 0.728881 0.779895 0.034780 0.042999 0.062010 0.072515

5. Conclusions

Despite the fact that the EFGM family is as efficient as many other generalizations of
the FGM family in terms of correlation level, its flexibility, and usability render it superior to
many of these generalizations. Owing to this advantage, most PDFs in this paper are linear
functions of other simpler distributions. This study has yielded useful representations of the
PDF, CDF, and survival function of CKRV, along with some elegant symmetry relationships
between them.

EX and its more recent related measures for CKRV were derived from the EFGM
family, where a numerical study was carried out to reveal some features of these measures.
Also, the QF based on these measures was derived. In addition, we derived non-parametric
estimators of NCREX, WNCREX, NCEX, and WNCEX. An empirical analysis of the NCREX
and NCEX has produced distinct results.
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Abbreviations

RVs random variables
CDF cumulative distribution function
PDF probability density function
QF quantile function
FGM Farlie–Gumbel–Morgenstern
EFGM extended Farlie–Gumbel–Morgenstern
OSs order statistics
KRVs K-record upper values
EX extropy
CREX cumulative residual extropy
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CKRV K-record upper values
NCREX negative cumulative residual extropy
WNCREX weighted negative cumulative residual extropy
NCEX negative cumulative extropy
WNCEX weighted negative cumulative extropy
EFGM-UD EFGM family with uniform marginals
EFGM-ED EFGM family with exponential marginals
EFGM-PFD EFGM family with power function distribution marginals
EFGM-PID EFGM family with Pareto type-I distribution marginals
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