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Abstract: Researchers have resorted to model quantization to compress and accelerate graph neural
networks (GNNs). Nevertheless, several challenges remain: (1) quantization functions overlook
outliers in the distribution, leading to increased quantization errors; (2) the reliance on full-precision
teacher models results in higher computational and memory overhead. To address these issues, this
study introduces a novel framework called quantized graph neural networks for image classifica-
tion (QGNN-IC), which incorporates a novel quantization function, Pauta quantization (PQ), and
two innovative self-distillation methods, attention quantization distillation (AQD) and stochastic
quantization distillation (SQD). Specifically, PQ utilizes the statistical characteristics of distribution to
effectively eliminate outliers, thereby promoting fine-grained quantization and reducing quantization
errors. AQD enhances the semantic information extraction capability by learning from beneficial
channels via attention. SQD enhances the quantization robustness through stochastic quantization.
AQD and SQD significantly improve the performance of the quantized model with minimal overhead.
Extensive experiments show that QGNN-IC not only surpasses existing state-of-the-art quantization
methods but also demonstrates robust generalizability.

Keywords: graph neural network;model quantization; knowledge distillation; image classification

MSC: 68T07

1. Introduction

Graph neural networks (GNNs) are considered the intersection of deep learning and
graph theory [1,2]. Originally designed to handle data with graph structures, they capture
relationships between nodes and propagate information through the graph structure [2].
In recent years, the application of graph neural networks (GNNs) in computer vision tasks
has been extensively explored. The fusion of visual networks with GNNs has led to signifi-
cant improvements in model comprehension and breakthroughs in various visual tasks,
including image classification [3–5], object detection [6,7], and semantic segmentation [8,9].
However, the integration of these networks results in larger model sizes and higher com-
putational costs, limiting their practical application on resource-constrained devices [10].
To address these challenges, several compression and acceleration methods have been
proposed, including pruning [11–13], quantization [14–17], kernel decomposition [18], and
efficient inference backends [19–21].

Among these methods, quantization has emerged as one of the most effective ap-
proaches. It uses quantization functions to reduce the bit width of network weights and
activations, leading to faster inference and reduced memory usage [14,22]. For instance,
LSQ [23] sets a learnable scale factor in the quantization function, achieving adaptive fine-
grained quantization through backpropagation. N2UQ [24] realizes a better adaptation to
distribution by learning non-uniform input thresholds to quantize inputs into equidistant
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output levels. AdaQP [25] applies stochastic quantization to message vectors transmitted
across devices, thereby reducing communication traffic. WGCN [26] proposes the integra-
tion of Haar wavelet transforms and quantization functions to compress graph channels,
achieving computational savings through channel shrinkage. CoGNN [27] introduces the
concept of reuse-aware sampling, performing node-level parallel-aware quantization to
reduce the overhead of feature aggregation.

Despite advancements in designing better quantization methods, quantized GNNs
for visual tasks still face significant challenges. The GNNs for visual tasks can be divided
into two parts: visual networks for extracting semantic features from images and graph
networks for identifying image relationships through message-passing mechanisms. In
visual networks, weights often approximate a Gaussian distribution with a mean close to
zero [28,29]. However, in graph networks, weights tend to deviate from zero and introduce
outliers (see Figure 1b). These outliers expand the quantization range, leading to coarse-
grained quantization and higher quantization errors. Consequently, the performance
of quantized models significantly deteriorates. Although researchers have employed
knowledge distillation (KD) [30–32], this approach has not fundamentally solved the
problem of outliers. Moreover, KD introduces an additional teacher model, resulting
in higher computational and memory costs for training, contradicting the intention of
quantization to improve model efficiency.

(a) (b)

Figure 1. Weight distribution of pre-trained visual networks and graph networks. The x-axis
represents the weights, and the y-axis represents the frequency. (a) Weight distribution of the
3rd layer of the visual network; (b) distribution of the weights of the 4th layer of the graph network.

To address these challenges, this paper explores the mechanisms of quantized GNNs
used for image classification. We propose the quantized graph neural networks for image
classification (QGNN-IC), which incorporates a novel quantization function called Pauta
Quantization (PQ) and two plug-and-play self-distillation methods: attention quantization
distillation (AQD) and stochastic quantization distillation (SQD). Specifically, PQ utilizes
the mean and standard deviation of the input distribution to remove outliers, enabling fine-
grained quantization and consequently reducing quantization errors, thereby enhancing
the accuracy of the quantized model. AQD utilizes attention mechanisms to transfer more
beneficial information to the quantized network, enhancing the visual network’s ability to
extract semantic information. SQD enhances the robustness of the model to quantization by
minimizing the information discrepancy between the randomly quantized branch and the
fully quantized branch. AQD and SQD significantly improve the performance of quantized
models without external teacher models, resulting in minimal additional computational and
memory overhead during the training phase. Experimental results indicate that the 2-bit
quantized model exhibits enhancements in accuracy of 1.92% and 0.95% on CIFAR-FS and
CUB-200-2011, respectively. Moreover, the experiments also validate the generalizability
of QGNN-IC.

The remainder of this paper is organized as follows: Section 2 describes some related
works to facilitate comprehension. Section 3 clarifies the details of QGNN-IC, including
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quantization functions, self-distillation methods, loss functions, etc. Section 4 reports the
experimental results of the quantized models across different datasets and provides an
analysis of the results. Finally, Section 5 discusses the results and summarizes the article.

2. Related Work
2.1. Model Quantization

Model quantization aims to reduce the bit width of network weights and activations,
leading to faster computation and reduced memory usage. It can be divided into post-
training quantization (PTQ) and quantization-aware training (QAT). PTQ compresses a pre-
trained full-precision model into a low-bit model without retraining or fine-tuning [33–35].
However, PTQ often suffers from significant accuracy degradation due to the lack of weight-
aware training. Conversely, QAT quantizes the network and retrains it simultaneously to
better adapt to the information loss caused by quantization [23,29,36–38]. QAT methods
such as N2UQ [24] and LSQ [23] have been proposed to optimize the quantization process.
N2UQ [24] quantizes the input into equidistant output levels by learning non-uniform
input thresholds to better adapt to the distribution. LSQ [23] sets the scaling factor as a
learnable parameter to provide finer optimization. However, these methods do not consider
outliers in the data distribution, leading to coarser quantization and higher quantization
errors, ultimately impacting the performance of the quantized model.

2.2. Graph Neural Networks for Computer Vision

GNNs have demonstrated strong capabilities in relational analysis [3,39], and re-
searchers have attempted to transfer this idea to visual tasks. Firstly, the visual network is
employed to extract semantic features from input images. Then, the extracted semantic
features are used to initialize the graph nodes. Subsequently, deep semantic relations are
extracted using graph networks. Finally, the results are outputted to modules related to
downstream tasks. For instance, in image classification, graph networks are often used to
compute the similarity between unlabeled query sets and labeled support sets for classi-
fication [5,40–42]. Moreover, GNNs have also been applied to object detection [6,7] and
semantic segmentation [8,9], achieving promising results. Despite their remarkable perfor-
mance, the fusion of visual networks and graph networks introduces high computational
complexity, complex parameters, and frequent memory access, making it challenging to
deploy the models to edge devices for practical applications. This paper is the first study
on quantized GNNs for visual tasks, and we believe it will contribute to the deployment of
state-of-the-art GNNs in a wider range of real-world computer vision applications.

2.3. Knowledge Distillation

Knowledge distillation (KD) aims to transfer knowledge from a teacher model to a
student network [43]. Some quantization methods utilize knowledge distillation to recover
the performance of quantized student models. For example, logit-level quantization
distillation [44] and feature-level quantization distillation [45] have been proposed to
leverage the predictions and intermediate features of the teacher model, respectively.
Progressive distillation [46] has also been explored, where a full-precision model guides
the training of a quantized model, which then becomes the new teacher for the next
quantized model. Collaborative distillation [31] has been proposed to leverage multiple
teacher models to improve the performance of the quantized student model. However,
these methods require at least one additional full-precision teacher model, introducing
additional computational and memory overheads, contradicting the goal of quantization.
To address this limitation, we propose two plug-and-play self-distillation modules that
extract knowledge from the quantized student model itself without a teacher model,
significantly reducing the training time.
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3. Methodology

This section provides a comprehensive overview of the proposed QGNN-IC (see
Figure 2). Initially, we introduce the symbols and typical formulas used in model quantiza-
tion (Section 3.1). Subsequently, we propose a novel quantization function, PQ, designed to
minimize the quantization error caused by outliers (Section 3.2). In Sections 3.3 and 3.4,
we present two distinct self-distillation methods: AQD and SQD. AQD aims to enhance
the semantic representation capability of quantized visual networks, while SQD seeks to
improve the quantization robustness of quantized graph networks. Lastly, in Section 3.5,
we apply all the proposed methods to a graph neural network for image classification.

Support

Query

Resnet Block Resnet Block Resnet Block QLinear

QConv

. . .

QConv

AQD

QConv

·
· ·

·
Generation 1

. . .
·

· ·
·

Graph Network
Pruned Generation 2

·
· ·

·
Visual Network Generation 6

Figure 2. Illustration of the quantized graph neural networks for image classification (QGNN-IC).
Support and query represent the features of labeled samples and unlabeled samples, respectively.
QConv and QLinear represent the quantized convolutional and linear layers, respectively.

3.1. Preliminary

Model quantization converts the full-precision (32-bit) weights and activations to
lower bit-width values, such as 8-bit fixed-point integers, using a quantization function.
The n-bit quantization function is defined as follows:

Q(X) = Clip(round
(

X
s
+ z

)
,−2n−1, 2n−1 − 1), (1)

where X represents the weights or activations, z is the zero-point, round(·) denotes the
rounding function, Clip(·,−2n−1, 2n−1 − 1) is a clipping function that limits the lower
bound of the values to −2n−1 and the upper bound to 2n−1 − 1, and s = Xmax−Xmin

2n−1 is the
scaling factor, with Xmax and Xmin being the maximum and minimum values of X. The
corresponding dequantized value X̂ can be calculated as:

X̂ = s ·Q(X). (2)

During backpropagation, the straight-through estimator (STE) [47] is used to mitigate
the gradient vanishing problem caused by the rounding function.

Finally, we define the quantization error with respect to X as:

EQ(X) = ||X− X̂||2. (3)

Generally, a smaller quantization error corresponds to a lesser decrease in model
performance.

3.2. Pauta Quantization

GNNs for computer vision comprise two components: visual networks that extract
semantic features from images and graph networks that identify image relationships using
message-passing mechanisms. As depicted in Figure 1, the weights in visual networks are
typically approximated by Gaussian distributions with a mean close to zero [28,29]. On
the other hand, in the graph network, the weights often have means far from zero and
may include some outliers. These outliers can expand the quantization range, leading
to a larger scaling factor s and coarser quantization. Coarse quantization induces a high
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quantization error near the means, which impairs the performance of the quantized model.
Therefore, the identification and management of outliers are crucial for enhancing the
quantized models.

The Pauta criterion, a method for identifying outliers in sample data, utilizes the mean
and standard deviation as thresholds to detect significant errors. If the error exceeds this
threshold, it is deemed a significant error rather than a random error. These outliers should
be removed as they are deemed unacceptable.

Inspired by the above analysis and the Pauta criterion, we propose Pauta quantization
(PQ). Specifically, we first calculate the mean and standard deviation of the distribution
and determine the quantization range [l, r]:

l = mean(X)− 3σ(X), (4)

r = mean(X) + 3σ(X), (5)

where mean(·) is the mean function, and σ(·) is the standard deviation function. Then, we
perform precise quantization by excluding outliers. The formula for n-bit PQ is as follows:

s =
r− l

2n − 1
, (6)

PQ(X) = round(
Clip(X− l, 0, r− l)

s
), (7)

where Clip(·, 0, r− l) is a clipping function that limits the lower bound of the values to 0
and the upper bound to r− l. l and r are set as learnable parameters.

As shown in Figure 3, PQ analyzes the data distribution and estimates the quanti-
zation range appropriately, resulting in fine-grained quantization. This allows a large
number of values distributed around the mean to be quantized to more suitable integers.
Compared to the original quantization function, PQ reduces the quantization error by
approximately 1.7%.

(a) (b)

Figure 3. Illustration of the impact of different quantization functions on distributions with out-
liers. The x-axis represents the weights, and the y-axis represents the frequency. EQ represents the
quantization error. (a) Illustration of the original quantization function. (b) Illustration of Pauta
quantization (PQ).

3.3. Attention Quantization Distillation

In visual tasks, GNNs leverage visual networks to extract rich semantic information
from images and then use graph networks to perform message passing based on feature
similarity. However, quantization compresses the data into low bit widths, leading to a loss
of semantic information in visual networks. Knowledge distillation is a common method
to assist in training quantized models, using a full-precision teacher model to enhance
the semantic information extraction capability of the quantized model. However, the
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additional teacher model introduces greater computational and memory burdens during
the training phase.

To mitigate this, we propose AQD specifically for visual networks. AQD aims to
enhance the semantic feature extraction capability of the quantized visual network by iden-
tifying beneficial high-level feature information from the latent full-precision activations.
As shown in Figure 4, we allow the quantized convolutional layer (Qconv) to output both
full-precision and quantized activations:

A f = W ⊗ A, (8)

Aq = PQ(W)⊗ PQ(A), (9)

where A represents the activations, subscripts f and q indicate whether it is full-precision
or quantized; W represents the weights; ⊗ denotes the convolution operation; PQ(·) is the
quantization function proposed in Section 3.2. Considering the distribution shift caused by
the precision difference, it is necessary to normalize these two types of activations:

H(A) = Flatten(BN(A)), (10)

where Flatten(·): RC×H×W → RC×HW flattens the activations after normalization; H, W,
and C are the height, width, and the number of channels, respectively; BN denotes the
batch normalization layer.

Figure 4. Illustration of proposed attention quantization distillation (AQD).

Since different channels have different importance, it is crucial to further evaluate the
importance of channels using a multi-layer perceptron (MLP) so that AQD can adaptively
focus on channels with more discriminative features. We define the importance α of
different channels as:

α = so f tmax(MLP(H(A f ))), (11)

where α ∈ RC, so f tmax(MLP(·)) : RC×HW → RC. With α, AQD emphasizes channels
with more discriminative capabilities by minimizing the loss function LAQD, which can be
expressed as:

LAQD =
C

∑
i=1

αi||
Hi(A f )

||Hi(A f )||2
−

Hi(Aq)

||Hi(Aq)||2
||22, (12)

where C represents the number of channels in the activations.
As shown in Figure 2, AQD is deployed in the shallow layers of the entire model,

which not only improves the ability to extract semantic information but also alleviates the
problem of gradient vanishing. Moreover, AQD does not require any additional teacher
models and only introduces relatively low computational and memory overhead during
the training phase.

3.4. Stochastic Quantization Distillation

Quantization for neural networks, especially below 4-bit, results in a significant degra-
dation of model performance [23,48]. As shown in Table 1, this problem is more severe in



Mathematics 2023, 11, 4927 7 of 16

GNNs used for computer vision. The quantization of weights and activations introduces
quantization errors and gradient errors, resulting in degraded model performance. Fur-
thermore, as the model becomes deeper, these negative effects further accumulate in graph
networks. Therefore, improving the robustness of graph networks to quantization is crucial
for enhancing model performance.

Table 1. Quantitative comparison of 5-way 1-shot classification accuracy (%) on CIFAR-FS. N-bit
represents bit widths of weights and activations. The accuracy of the full-precision model is 77.68%.
Bold text represents the best performance for that column under the n-bit setting.

Method
Bit Width

2-bit 3-bit 4-bit

LSQ 35.81 62.60 71.67

DoReFa 23.96 34.07 67.88

PACT 27.29 63.17 70.48

EWGS 31.18 71.19 75.25

N2UQ 53.53 71.95 76.41

CMT-KD 54.52 71.84 75.51

QGNN-IC (ours) 56.44 72.48 76.74

Dropout [49] is a widely used strategy that randomly drops some neurons during the
model training process to enhance the model’s robustness. If we randomly quantize, i.e.,
randomly discard the quantization functions during the training process, can we obtain a
more robust quantized model? Wei et al. [34] have shown that quantizing part of modules
during PTQ can flatten the loss landscape. Therefore, it is feasible to enhance the robustness
of quantized models through stochastic quantization.

Based on the above challenges and analysis, we propose SQD, which extracts more
robust information from randomly quantized activations to guide the training of fully
quantized activations. The formula for stochastic quantization is defined as:

SQ(X) =

{
PQ(X), 0 < ξ < p,

X, p < ξ < 1,
(13)

where ξ is a random sampling variable following a uniform distribution within the range
(0,1); p is a hyperparameter; PQ(·) is the proposed quantization function in Section 3.2; X
is a 32-bit full-precision tensor.

The matrix operation results of weights and activations are randomly quantized by
SQ(·) to obtain Prand. Simultaneously, Pf ull is obtained by using the function PQ(·). The
equations are as follows:

Prand = SQ(WA), (14)

Pf ull = PQ(W)PQ(A). (15)

Compared with Pf ull , Prand contains more accurate and robust visual semantic in-
formation. Therefore, two special similarity pattern matrices can be constructed to help
improve the visual characteristics of Pf ull :

P̂rand =
Prand × P>rand∥∥Prand × P>rand

∥∥ , (16)

P̂f ull =
Pf ull × P>f ull∥∥∥Pf ull × P>f ull

∥∥∥ . (17)
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We distill the semantic matrix P̂rand to enhance the performance of quantized graph
networks:

LSQD =
∥∥∥P̂rand − P̂f ull

∥∥∥. (18)

As shown in Figure 2, SQD is deployed on the nodes of the graph network to alleviate
the cumulative effects of quantization errors. Furthermore, SQD serves as a self-distillation
module, which does not require an additional teacher model and only incurs a small
amount of computational and memory overhead during the training phase.

3.5. Quantized Graph Neural Networks for Image Classification

Without loss of generality, we apply the proposed methods to the distribution propa-
gation graph network (DPGN) [5], which is a GNN used for image classification tasks, and
obtain the QGNN-IC. As shown in Figure 2, QGNN-IC extracts image features through a
visual network, initializes the nodes of the graph network with these features, and then
utilizes message-passing mechanisms to compute the similarity between unlabeled and
labeled samples for classification. Since the first layer in the visual network is directly
related to the input and the last convolutional layer in each generation of the graph network
is directly related to the prediction, we maintain these in full precision and quantize all
other layers. AQD is inserted into the quantized convolutional layers (QConv) of the visual
network, while SQD is deployed on the graph nodes of the graph network.

To further compress the model and improve training and inference speed, we need to
strike a balance between accuracy and efficiency. Focusing on the graph network, we find
that this part incurs significant computational overhead, so we perform generation-level
pruning on the graph network. While this approach slightly reduces the performance of
the quantized model, it greatly reduces the computational and parameter overhead. We
believe this will facilitate the deployment of state-of-the-art graph neural networks in more
real-world computer vision applications.

The overall training loss of LQGNN−IC can be defined as:

LQGNN−IC = LDPGN + λ1LAQD + λ2LSQD, (19)

where LDPGN is the classification loss of DPGN; λ1 and λ2 are hyperparameters used to
balance the loss function.

4. Experiments and Results

To validate the effectiveness of the proposed methods, we conducted experiments
on image classification tasks. Specifically, we employed QGNN-IC to quantize DPGN,
which uses ResNet [50] as a visual network and includes six generations of graph networks,
and subsequently tested its performance on various datasets. Furthermore, to verify the
universality of QGNN-IC, we also conducted experiments on different models.

4.1. Experimental Datasets

We followed the evaluation process of previous studies [5,40,51] and evaluated our
methods on CIFAR-FS [52], CUB-200-2011 [53], and MiniImageNet [54]. CIFAR-FS is a
dataset for few-shot classification, randomly sampled from CIFAR-100 [55]. It consists
of 60,000 images of size 32 × 32, with 100 classes and 600 samples per class. CUB-200-
2011 contains 11,788 images of size 84 × 84, with 200 classes. MiniImageNet consists of
60,000 images, divided into 100 categories, each with a size of 84 × 84. We adopted the data
splits provided by DPGN [5].

4.2. Implementation Details

We adopted the N-way K-shot experimental setting used in DPGN [5]. In the N-way
K-shot task, there is a support set and a query set. The support set contains N classes, with
K labeled samples per class, while the query set contains several unlabeled samples from
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the same N classes. The quantized model should correctly classify the query set based on
the support set.

We first pre-trained a full-precision DPGN using the Adam optimizer, with an initial
learning rate of 1 × 10−3 and weight decay of 1 × 10−5. The learning rate is decayed by 0.1
every 15,000 iterations. Then, the pre-trained full-precision model was used to initialize the
quantized one. For the 3/4-bit quantization experiments, we used the Adam [56] optimizer
with an initial learning rate of 1 × 10−2. For 2-bit quantization, we used the SGD optimizer
with an initial learning rate of 3 × 10−3. The weight decay and learning rate decay are the
same as those used in training the full-precision DPGN. The hyperparameter p in SQD was
set to 0.5 to ensure maximum entropy.

4.3. Quantitative Results

In this section, we explore the effectiveness of the proposed QGNN-IC from a quanti-
tative perspective and compare it with state-of-the-art quantization methods on multiple
datasets. We re-implement LSQ [23], DoReFa [36], PACT [37], N2UQ [24], EWGS [29], and
CMT-KD [31] on DPGN. To ensure a fair comparison, DoReFa does not quantize gradients.

Tables 1 and 2 present the results of the 5-way 1-shot and 5-way 5-shot experiments
conducted on the CIFAR-FS dataset, respectively. Except for N2UQ and CMT-KD, previous
methods perform poorly. These methods solely focus on improving the distribution of a
single visual network without considering the negative impact of outliers. The proposed
methods significantly outperform others. Specifically, our approaches achieve an accuracy
of 56.44% in the 2-bit 5-way 1-shot experiment, which is 3.11% higher than N2UQ and
1.92% higher than CMT-KD with knowledge distillation.

Table 2. Quantitative comparison of 5-way 5-shot classification accuracy (%) on CIFAR-FS. The
accuracy of the full-precision model is 90.18%.

Method
Bit Width

2-bit 3-bit 4-bit

LSQ 36.57 68.26 79.03

DoReFa 31.85 67.25 77.74

PACT 34.61 64.67 78.21

EWGS 36.71 75.29 81.25

N2UQ 40.22 75.43 84.96

CMT-KD 40.92 76.88 85.14

QGNN-IC (ours) 41.86 77.95 85.23

Tables 3 and 4, respectively, display the results of the 5-way 1-shot experiments
conducted on the CUB-200-2011 and MiniImageNet datasets. QGNN-IC achieves the best
performance on the MiniImageNet dataset. Specifically, in the 2-bit experiment, QGNN-
IC attains an accuracy of 39.86%, which is 0.61% higher than CMT-KD. Our methods
significantly narrow the performance gap between quantized and full-precision models.
In the 4-bit experiment on the CUB-200-2011 dataset, QGNN-IC’s performance is slightly
below N2UQ but surpasses other methods. However, N2UQ introduces multiple learnable
parameters to aid quantization, resulting in higher computational complexity compared to
QGNN-IC. Additionally, the self-distillation method proposed in this paper can be applied
to N2UQ, further enhancing its performance.



Mathematics 2023, 11, 4927 10 of 16

Table 3. Quantitative comparison of 5-way 1-shot classification accuracy (%) on CUB-200-2011. The
accuracy of the full-precision model is 75.62%.

Method
Bit Width

2-bit 3-bit 4-bit

LSQ 35.72 55.61 68.13

DoReFa 25.30 53.94 64.42

PACT 23.02 58.93 67.44

EWGS 47.89 70.95 74.25

N2UQ 47.53 71.47 74.61

CMT-KD 48.57 71.20 73.42

QGNN-IC (ours) 49.53 71.76 74.33

Table 4. Quantitative comparison of 5-way 1-shot classification accuracy (%) on MiniImageNet. The
accuracy of the full-precision model is 66.58%.

Method
Bit Width

2-bit 3-bit 4-bit

LSQ 39.39 53.75 54.81

DoReFa 23.34 31.36 57.86

PACT 27.07 29.37 59.86

EWGS 37.51 60.01 63.23

N2UQ 38.25 60.96 63.40

CMT-KD 39.25 60.92 64.20

QGNN-IC (ours) 39.86 61.58 64.42

4.4. Ablation Experiments

In this section, we explore the ablation studies conducted on the hyperparameters
and different components of QGNN-IC. All experiments were performed on the CIFAR-FS
dataset.

Hyperparameters. We present the impact of different hyperparameters, including p
in Equation (13) and λ1 and λ2 in Equation (19). The optimal values for these parameters,
as observed in Figure 5, were found to be p = 0.5, λ1 = 0.7, and λ2 = 1.0. To avoid the
complexity of an exhaustive search, we adopted these configurations for all experiments.
Although these results may not be the absolute optimum, we have discovered that they
already surpass the performance of the majority of existing methods.
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Figure 5. Influence of the hyperparameters on the accuracy of 4-bit QGNN-IC on 5-way 1-shot
CIFAR-FS. (a) The impact of p on accuracy. (b) The impact of λ1 on accuracy. (c) The impact of λ2

on accuracy.
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Components. We further investigated the PQ proposed in Section 3.2, the AQD in
Section 3.3, and the SQD in Section 3.4. The experimental results are presented in Table 5.
We used EWGS as the baseline. It can be observed that when PQ is used alone, the accuracy
improvement over the baseline is 21.72% in the 2-bit 5-way 1-shot experiment. This
highlights the importance of removing outliers to reduce quantization errors. Furthermore,
when PQ is combined with AQD or SQD, the performance continues to improve. This
confirms the feasibility of utilizing the knowledge of the quantized model itself to enhance
performance. With all three strategies employed, there is a significant increase in accuracy.

Table 5. Ablation study for QGNN-IC on 5-way 1-shot and 5-way 5-shot CIFAR-FS.

N-Way K-Shot Method
Bit Width

2-bit 3-bit 4-bit

5-way 1-shot

baseline (EWGS) 31.18 71.19 75.25

+PQ 52.90 71.44 76.32

+PQ, AQD 56.02 72.21 76.49

+PQ, SQD 53.32 71.71 76.21

+PQ, AQD, SQD 56.44 72.48 76.74

5-way 5-shot

baseline (EWGS) 36.71 75.29 81.25

+PQ 38.85 76.16 84.16

+PQ, AQD 41.70 76.84 85.06

+PQ, SQD 39.92 76.05 84.30

+PQ, AQD, SQD 41.86 77.95 85.23

4.5. Computational Cost

In this section, we quantitatively evaluate the proposed methods in terms of parameter
count and computational cost. We used the bit-floating point operations (Bit-FLOPs) metric
as a measure of computational cost [57]. Table 6 demonstrates that during the training
phase, knowledge distillation introduces an additional full-precision teacher model to
assist in training, resulting in a significant increase in Bit-FLOPs. On the other hand,
AQD and SQD are both self-distillation submodules, thus requiring much lower costs
compared to knowledge distillation. During the inference phase, the teacher model and
additional modules are removed, resulting in the same parameter count and Bit-FLOPs for
all methods.

Table 6. Quantitative comparison of parameters and bit-floating point operations (Bit-FLOPs).
FP means the 32-bit full-precision models. The others are quantized to 4-bit. KD represents the
knowledge distillation.

Method
Training Inference

Param (M) Bit-FLOPs (G) Param (M) Bit-FLOPs (G)

FP 5.1031 503.9534 5.1031 503.9534

PQ 5.1032 503.9677 5.1032 1.0005

PQ + KD 10.2063 984.3012 5.1032 1.0005

PQ + AQD + SQD 5.1212 651.7423 5.1032 1.0005

4.6. Visualization

To provide a more intuitive demonstration of the effectiveness of our methods, we ex-
tracted features from CIFAR-FS and utilized t-SNE [58] to visualize the feature embeddings,
as shown in Figure 6. The baseline can accurately identify categories, but the clustering
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at the feature embedding level is not compact. For example, the yellow, blue, and cyan
categories are mixed together. After applying our proposed methods, the quantized models
extract rich semantic information and robust visual features with smaller quantization
errors. As expected, it can successfully distinguish the yellow, blue, and cyan categories.

(a) (b) (c) (d)

Figure 6. Feature visualization. Different colors represent different categories, and the gradual
separation of the feature embedding within the red circle can verify the effectiveness of the proposed
methods. (a) Baseline (EWGS). (b) PQ. (c) PQ + AQD. (d) PQ + AQD + SQD.

4.7. Generality

In order to investigate the universality of QGNN-IC, we applied the proposed ap-
proaches to another GNN, an edge-labeling graph neural network (EGNN) [40]. We
quantized the model using the proposed quantization function, PQ, and incorporated AQD
into the visual network and SDQ into the graph network.

In Table 7, we present a comparison to evaluate the performance on the MiniImageNet.
Compared with the state-of-the-art method CMT-KD, QGNN-IC achieved a 0.61% improve-
ment in the 2-bit experiment. These results demonstrate the general applicability of our
methods.

Table 7. Quantitative comparison of quantized edge-labeling graph neural network (EGNN) on
5-way 1-shot classification accuracy (%) on MiniImageNet. The accuracy of the full-precision model
is 59.21%.

Method
Bit Width

2-bit 3-bit 4-bit

LSQ 30.21 48.26 50.72

DoReFa 31.22 45.23 49.88

PACT 33.74 46.49 51.05

EWGS 35.66 48.91 51.83

N2UQ 36.24 50.26 53.79

CMT-KD 35.85 51.47 54.20

QGNN-IC (ours) 36.46 51.74 54.42

5. Discussion and Conclusions

In this paper, we propose QGNN-IC, a method for quantizing GNNs for visual tasks.
It consists of a quantization function, PQ, along with two self-distillation methods, AQD
and SQD. PQ eliminates outliers based on data distribution, allowing for fine-grained quan-
tization. SQD and AQD guide the learning of low-bit activations by extracting information
from the quantized model itself.

The concept of PQ shares similarities with PAMS [59] and EWGS [29], both of which
establish a learnable truncation threshold, thus enabling the model to autonomously de-
termine its own quantization range. Nevertheless, PQ takes into account the distribu-
tion discrepancies between visual networks and graph neural networks, initializing the
quantization range using mean and standard deviation and reducing quantization errors
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by truncating outliers. Experimental outcomes and statistical data reveal that PQ effec-
tively reduces quantization errors by nearly 1.7%, significantly enhancing the accuracy of
quantized models.

The essence of AQD and SQD is to utilize modules that contain rich knowledge to assist
in training quantized models. This is similar to some previous methods that use knowledge
distillation to aid quantization, such as the approach proposed by Zhuang et al. [60], which
utilizes full-precision auxiliary modules to assist in training binary networks, and the
approach proposed by Xie et al. [45], which uses an attentive transfer module to train
quantized models under a knowledge distillation system. However, in comparison, AQD
and SQD are self-knowledge distillation modules that fully consider the quantization
mechanism and utilize their own implicitly stored full-precision activation values to assist
in training the quantized models themselves. They introduce only a small amount of
training overhead while significantly enhancing the performance of the quantized models.

This work conducts a focused investigation into quantized graph neural networks
applied to image classification tasks. The effectiveness of the proposed approaches has
been substantiated on both DPGN and EGNN. However, its suitability for other tasks,
such as point cloud classification, remains unexplored. In the future, we will study the
performance of our methods in more tasks.
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AQD attention quantization distillation
SQD stochastic quantization distillation
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