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Abstract: The robust and sparse portfolio selection problem is one of the most-popular and -frequently
studied problems in the optimization and financial literature. By considering the uncertainty of the
parameters, the goal is to construct a sparse portfolio with low volatility and decent returns, subject
to other investment constraints. In this paper, we propose a new portfolio selection model, which
considers the perturbation in the asset return matrix and the parameter uncertainty in the expected
asset return. We define three types of stationary points of the penalty problem: the Karush–Kuhn–
Tucker point, the strong Karush–Kuhn–Tucker point, and the partial minimizer. We analyze the
relationship between these stationary points and the local/global minimizer of the penalty model
under mild conditions. We design a penalty alternating-direction method to obtain the solutions.
Compared with several existing portfolio models on seven real-world datasets, extensive numerical
experiments demonstrate the robustness and effectiveness of our model in generating lower volatility.

Keywords: portfolio optimization; robustness; sparsity; uncertainty set; penalty-alternating-direction
method

MSC: 91G10; 90C90; 90C30

1. Introduction

In 1952, Harry M. Markowitz [1] published the classic “Portfolio Selection” in The Jour-
nal of Finance, which ushered in a new era of financial mathematical analysis. Markowitz
pointed out that investors who care about return and risk should hold portfolios located
at the efficient boundary of mean-variance, which is the famous mean-variance portfolio
(MVP) selection model. Since then, many portfolio selection strategies have been proposed
by referring to the MVP and its variants. However, MVPs exhibit instability due to estima-
tion errors in the input parameters [2], especially in large-scale conditions. The instability
means that the solution obtained under sample fluctuation may be optimal for a given
sample, but it is not optimal from the perspective of risk. For more comments on this model,
we refer to [3–6] and the references therein.

This paper focuses attention on sample fluctuations and parameter uncertainty in the
portfolio selection problem. We now review some relevant methods for the parameter
uncertainty. Among various approaches, the attractive one is the robust portfolio (RP),
which corresponds to a robust optimization, since it does not use any information about the
probability distribution of the uncertain parameters. RP we considered is a conservative
approach that minimizes the loss function within an uncertainty set and then solves the
problem under the worst-case scenario. In the last two decades, robust portfolio selection
problems have gained the increasing interest of researches. These researches constructed
well-known optimal portfolios from the perspective of robust optimization [7–10]. In this
way, Goldfarb and Iyengar [11] formulated and solved RP problems. They introduced the
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uncertainty structures for the input parameters, then they showed that the RP problems
corresponding to the second-order cone programs and these uncertainty structures cor-
respond to confidence regions employed to estimate the market parameters. Given the
uncertainty in the mean and covariance matrix of the asset return, Lobo and Boyd [12]
computed the maximum risk of a portfolio in a numerically efficient way. They proved
that this is a semi-definite programming problem and is readily solved by interior-point
methods for convex optimization. Min et al. [13] proposed the hybrid RP models under
ellipsoidal uncertainty sets, and they considered both the best-case and the worst-case
counterparts. Won and Kim [14] considered RP problems involving a trade-off between the
worst-case utility and the worst-case regret, or the largest difference between the best utility
achievable under the model and that achieved by a given portfolio. They showed that the
entire optimal trade-off curve can be found via solving a series of semi-definite programs
under the ellipsoidal uncertainty model. Some research works [15,16] concentrated on the
application of robust optimization on basic mean-variance, mean value-at-risk (mean-VaR),
and mean conditional-value-at-risk (mean-CVaR) problems, but did not consider variants
of the problem like robust index tracking, robust and sparse portfolio selection problems,
and so on. More relevant works can be found in [17–20] and the references therein.

RPs have a wide range of applications, among these, one essential step is the con-
struction of uncertainty sets. Two types of uncertainty sets are widely used, namely
the box uncertainty set and the ellipsoidal uncertainty set. Tütüncü and Koenig [21]
used symmetric box uncertainty sets defined as Uµ = {µ ∈ Rn|µL ≤ µ ≤ µU} and
UΣ = {Σ ∈ Rn×n|ΣL ≤ Σ ≤ ΣU , Σ � 0}, where µL ∈ Rn and µU ∈ Rn are the lower
and upper bounds of mean vector µ, ΣL ∈ Rn×n and ΣU ∈ Rn×n are the lower and the
upper bounds of the covariance matrix Σ, respectively, and Σ is positive semi-definite.
Khodamoradi et al. [22] used box uncertainty sets for a cardinal-constrained mean-variance
portfolio problem which allows short selling. Swain and Ojha [10] analyzed the robust
version of the mean-variance portfolio problem and mean-semi-variance portfolio problem
with box uncertainty sets. Alternatively, Fabozzi et al. [23] defined an ellipsoidal uncertainty
set for the expected asset return as Uµ = {µ|(µ− µ)Σ−1(µ− µ)> ≤ ε2}, where µ is the
nominal asset return and ε2 is a small scalar, which controls the size of the uncertainty set.
However, they did not consider the uncertainty of the covariance matrix, thus the solution
was robust only against perturbations in the asset return vector. Pıinar [24] developed a
multi-period robust mean-variance portfolio problem with an ellipsoidal uncertainty set
while allowing short selling. As we all know, the estimation error is more sensitive to the
mean vector than the covariance matrix. On the other hand, dealing with the uncertainty
in the covariance matrix is more complicated than dealing with the uncertainty set of
the mean vector. Thus, in this paper, we consider two types of uncertainty sets for the
mean vector.

Financial data have some remarkable features, such as multicollinearity and a heavy
tail. Therefore, the perturbations of these data should not be underestimated. By referring
to Brodie et al. [2], who transferred the MVP into a Lasso-type portfolio, we consider
the perturbations in the asset return matrix and design its uncertainty set. In addition,
from the perspective of transaction costs and administrative expenses, more assets are
not always better. Therefore, it is also necessary to consider sparsity when constructing
a portfolio [25–27]. After these discussions, a natural question follows: How do we find
better RPs that not only reduce the undesired impact of parameter uncertainty, but also
improve sparsity and reduce cost?

Following the above considerations, this paper proposes a sparsity constrained robust
portfolio optimization model with parameter uncertainty and data perturbation. Specifi-
cally, we consider the perturbation in the asset return matrix and the parameter uncertainty
in the expected asset return. By using the equivalence of robustness and regularization,
the Lasso-type objective function can be converted into the sum of a square root and the
`1 norm. We consider two kinds of uncertainty sets: the box uncertainty set and the ellip-
soidal uncertainty set. For its penalty model, we define three types of stationary points:
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the Karush–Kuhn–Tucker (KKT) point, the strong KKT point, and the partial minimizer.
Under mild constraint qualification (CQ), we prove that any local minimizer of the penalty
model is a KKT point. Moreover, the global minimizer of the penalty model is proven
to be a partial minimizer and, then, a stronger KKT point under Slater’s CQ. Finally, a
penalty alternating direction method is proposed to obtain a portfolio, and its convergence
is established. We confirm the effectiveness of our approach by comparing with nine widely
studied portfolio models on seven real-world data sets. The numerical results show that
the portfolios we proposed have less volatility, that is less risk. Moreover, our portfolio
strategies can yield higher Sharpe ratios when the appropriate parameters are selected.

This paper is organized as follows. Some notations and preliminaries used in this
paper are given in the next section. The model of robust and sparse portfolios and the
analysis of their optimization theory are stated in Section 3. Two types of uncertainty sets
of mean vectors are presented in Section 4. The optimization algorithm named the penalty
alternating direction method is established in Section 5. Extensive numerical experiments
are conducted in Section 6. Conclusions are drawn in Section 7.

2. Notations and Preliminary

We use R and Rn and Rm×n to denote the set of real numbers and the n-dimensional
and m× n-dimensional Euclidean space. We use boldfaced small letters to denote vectors,
e.g., w ∈ Rn is a column vector with n elements wi, i = 1, . . . , n. The transpose of w is
denoted as wT , which is a row vector. In particular, 1n is the vector of all ones of size n.
For a vector a ∈ Rn, we define its absolute value vector by |a| := (|a1|, · · · , |an|). We use
capital letters to denote matrices, e.g., A ∈ Rm×n and aij denote the (i, j)-th entry of A.
Given an index Γ ⊂ {1, . . . , n}, aΓ denotes the sub-vector of a. We write the Euclidean
norm of w by ‖w‖2, the `1 norm by ‖w‖1, and the infinity norm by ‖w‖∞. For two vectors
a ∈ Rn and b ∈ Rn, 〈a, b〉 denotes the standard inner product.

We now provide some existing results of optimization that are crucial for the theory of
this paper. For the convenience of expression, we define the following convex programming:

min
x∈Rn

f (x),

s.t. gi(x) ≥ 0, i = 1, . . . , m, x ∈ Ω,
(1)

where Ω is a nonempty convex set, f is a convex function, and the gi(x)s are concave
functions. For problem (1), Slater’s CQ builds a bridge between its solution and the KKT
point (the point satisfying the conditions in Theorem 1).

Definition 1 ([28], Definition 4.17). Slater’s CQ holds in problem (1) if there exists u ∈ Ω such
that gi(u) > 0 for all i = 1, . . . , m.

Theorem 1 ([28], Theorem 4.18). Suppose that Slater’s CQ holds in problem (1). Then, x∗ is
an optimal solution to problem (1) if and only if there exist non-negative Lagrange multipliers
(λ1, . . . , λm) ∈ Rm such that

0 ∈ ∂ f (x∗)−
m

∑
i=1

λi∂gi(x∗) + N(x∗; Ω)

and λi∂gi(x∗) = 0 for all i = 1, . . . , m, where ∂ f (x∗) denotes the classical sub-differential set ([28],
Definition 2.30) of f at x∗ and N(x∗; #) denotes the classical normal cone ([28], Definition 2.9) of #
at x∗.
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We also introduce some crucial terminologies and results for sparsity nonlinear pro-
gramming:

min
x∈Rn

f (x)

s.t. gi(x) ≥ 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , l,

‖x‖0 ≤ s,

(2)

where f is a convex function and g and h are continuously differentiable. A restricted linear
independence constraint qualification (R-LICQ) used for sparsity nonlinear programming
(2) was defined by [29] as follows.

Definition 2 ([29], Definition 2.4). We say that the R-LICQ holds at x∗, where x∗ is feasible for
the problem (2):

• When ‖x∗‖0 = s, ∇gi(x∗), i ∈ I(x∗), ∇hj(x∗), j = 1, . . . , l, are linearly independent.
• When ‖x∗‖0 < s, ∇Γ∗gi(x∗), i ∈ I(x∗), ∇Γ∗hj(x∗), j = 1, . . . , l, are linearly independent.

Based on the R-LICQ, the following decomposition result holds.

Theorem 2 ([29], Proposition 2.5). Let x∗ be a feasible point of problem (2) and the R-LICQ hold
at x∗. Then,

N̂(x∗; S ∩Q) = N̂(x∗; S) + N̂(x∗; Q),

where S := {x : ‖x‖0 ≤ s}, Q := {x : gi(x) ≥ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , l}, and
N̂(x∗; #) denotes the Frechét normal cone ([30], Definition 6.3) of # at x∗, which degenerates into
the classical norm cone described in Theorem 1 if # is a convex set.

For the partial problem (10) of the portfolio model (6) in Section 3.1, the R-LICQ
holds automatically at x∗, where m = 0, l = 1, and h(x) := 1Tx− 1. Next, we establish
the relationship between the local minimizer of problem (2) and its KKT point (the point
satisfying the KKT system in Theorem 3).

Theorem 3. Suppose that x∗ is a local minimizer of problem (2) and the R-LICQ holds at x∗.
Then, there exist non-negative Lagrange multipliers (λ∗1 , . . . , λ∗m) ∈ Rm

+ and (µ∗1 , . . . , µ∗m) ∈ Rl

such that 
0 ∈ ∂ f (x∗)−∑m

i=1 λi∂gi(x∗) + ∑l
j=1 λi∂hj(x∗) + N̂(x∗; S),

gi(x) ≥ 0, λigi(x) = 0, i = 1, . . . , m,
hj(x) = 0, j = 1, . . . , l,
‖x‖0 ≤ s.

(3)

Proof. It follows from Theorem 6.12 of [30] that

0 ∈ ∂ f (x∗) + N̂(x∗; S ∩Q).

Combing Theorem 2 with the proof of Theorem 3.2 of [29], this result holds.

This result is different from Theorem [29]. We allow the objective function of problem
(2) to be non-differentiable. The analysis process of this result is completely consistent with
that of Theorem [29].

3. Model and Optimization Theory

In this section, we first propose a robust and sparse portfolio model (4) with an
uncertainty set constraint and a sparsity constraint. For the convenience of the numerical
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calculation, we consider its `1 norm penalization variant (6). We define three types of
stationary points of the penalization variant: the KKT point, the strong KKT point, and
the partial minimizer. The relationships of these stationary points and the local/global
minimizer of the penalization problem (6) are established in Section 3.2.

3.1. Robust and Sparse Portfolio Model

Consider n risky assets, denoting the asset return at period t by rt = (r1, ..., rn)> ∈ Rn.
The expected return vector of different assets is denoted by E(rt) = µ, and the covariance
matrix is denoted by E[(rt − µ)(rt − µ)>] = V. In the traditional Markowitz portfolio
selection problem, the portfolio construction is based on the trade-off between risk and
return. For a given level of acceptable portfolio return ρ = w>µ, the mean-variance
optimization can be formulated as

min
w∈Rn

1
2

w>Vw, s.t. w>µ = ρ, w>1n = 1,

and its aim is to find a portfolio that has minimal risk for a given expected return. A
significant model that has been developed from the Markowitz model is the Lasso-type
portfolio proposed by Brodie et al. [2], which is given as:

min
w∈Rn

1
T
‖ρ1T − Rw‖2

2 + α‖w‖1, s.t. w>µ = ρ, w>1n = 1,

where µ = 1
T ∑T

t=1 rt, α is the penalty parameter, and R ∈ RT×n is the asset return matrix.
Brodie et al. [2] confirmed that the `1 norm can produce a sparse portfolio, and this method
can stabilize the problem. In this paper, we start with the square root Lasso-type portfolio,
while adding more consideration about the perturbation in asset return matrix R and
the parameter uncertainty in µ. We propose the following robust and sparse portfolio
selection model:

min
w∈Rn

max
∆∈U0

‖ρ1T − (R + ∆)w‖2

s.t. min
µ∈U

wTµ ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s,

(4)

where ∆ is the data perturbation matrix and U0 = {∆ ∈ RT×n : ‖∆i‖2 ≤ α, ∀i ∈ {1, ..., n}}.
The uncertainty set of the asset return is denoted by U, and we will discuss two selections
of U in the last section.

In [31] (Chapter 2), they showed the equivalence of robustness and regularization.
Specifically, they precisely characterized the conditions on the model of uncertainty and
loss function under which robustness is equivalent to regularization for linear regression.

Definition 3. Let g : RT → R and h : Rn → R be the norm, then the induced norm ‖ · ‖(h,g) is
defined as

‖∆‖(h,g) = max
w∈Rn

g(∆w)

h(w)
.

Theorem 4 ([31], Chapter 2). If r, q ∈ [1, ∞], then

min
w

max
∆∈U(`q ,`r)

‖y− (R + ∆)w‖r = min
w
‖y− Rw‖r + α‖w‖q,

where U(`q ,`r) = {∆ : ‖∆‖(`q ,`r) ≤ α}. Moreover, if U0 = {∆ : ‖∆i‖2 ≤ α, ∀i ∈ {1, ..., n}}, then
U(`1,`2)

= U0, and this implies
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min
w

max
‖∆i‖2≤α

‖y− (R + ∆)w‖2 = min
w
‖y− Rw‖2 + α‖w‖1.

From the relationship of the robustness and the regularization, problem (4) can be
rewritten as

min
w∈Rn

‖ρ1T − Rw‖2 + α‖w‖1

s.t. min
µ∈U

wTµ ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s.

(5)

Under this transformation, the problem (5) actually enjoys robustness. We plan to use
an alternating penalty method to solve problem (5). To ensure the implementation of the
alternating penalty method, we add a copy constraint w = v to the problem (5) and, then,
move it to the objective function by means of the `1 norm penalty, then the penalization
formulation is

min
w,v∈Rn

f (w, v) := ‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v‖1

s.t. w ∈ Ω1 := {w|min
µ∈U

wTµ ≥ ρ, w ≥ 0}

v ∈ Ω2 := {v|vT1n = 1, ‖v‖0 ≤ s}.

(6)

We conduct its optimality analysis in the next subsection.

3.2. Optimization Theory

We now analyze the optimality of the penalization problem (6). Obviously, the objec-
tive function of the problem (6) is a lower semi-continuous and coercive function. Theorem 5
in the next subsection provides the existence of optimal solutions. The selection of the
uncertainty set U is discussed in Section 4.

This subsection provides a few theoretical results of the problem (6) including the
existence of the solution and three classes of the first-order necessary optimal condition.

Theorem 5. For any given α ∈ R+ and β ∈ R+, the optimal solutions of the problem (6) can
be attained.

Proof. It is clear that f is a proper, closed, and coercive function and Ω1×Ω2 is a nonempty
closed set satisfying Ω1 ×Ω2 ∩ dom( f ) 6= ∅. It follows from Theorem 2.14 of [32] that this
theorem holds.

We now define a class of KKT points of the problem (6). For the convenience of
expression and the generality of optimality, we write minµ∈U wTµ ≥ ρ as g(w) ≥ 0 and
suppose that g is a concave function and is not necessarily differentiable. Indeed, the
quadratic uncertainty set and the absolute uncertainty set introduced in Section 4 satisfy
these terminologies.

Definition 4. The point (w∗, v∗) ∈ Ω1 ×Ω2 is called a KKT point of the problem (6), if there
exist Lagrange multipliers λ∗1 ∈ R+ and λ∗2 ∈ R such that the following system holds:

0 ∈ ∂w f (w∗, v∗)− λ∗1∂wg(w∗) + N(w∗;R+),
0 ∈ ∂v f (w∗, v∗)− λ∗21 + N̂(v∗; S),
g(w∗) ≥ 0, λ∗g(w∗) = 0,
1Tv∗ = 1, ‖v∗‖0 ≤ s.

(7)
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Although the functions corresponding to the quadratic uncertainty set and the absolute
uncertainty set introduced in Section 4 are all concave and may both be non-differentiable
and Slater’s CQ automatically holds for both functions, we still considered Slater’s CQ as a
condition of Theorem 6 for the sake of generality. Moreover, it is stated in Section 2 that the
R-LICQ of Ω2 holds at every point. Then, only under the condition that Slater’s CQ holds,
the relationship between the local minimizer of the problem (6) and the KKT point of the
problem (6) can be established.

Theorem 6. Let (w∗, v∗) ∈ Ω1 ×Ω2 be a local minimizer of the problem (6). If Slater’s CQ holds
on Ω1, then it is a KKT point of the problem (6).

Proof. On the one hand, since (w∗, v∗) ∈ Ω1 ×Ω2 is a local minimizer of the problem (6),
w∗ is a local minimizer of the following optimization:

min
w∈Rn

f (w, v∗) = ‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v∗‖1

s.t. w ∈ Ω1.
(8)

Notice that f (w, v∗) is a convex function about w and Ω1 is a convex set. Then, problem (8)
is a convex optimization. Since Slater’s CQ holds on Ω1, it follows from Theorem 1 that
there exists a Lagrange multiplier λ∗1 ∈ R+ such that{

0 ∈ ∂w f (w∗, v∗) + λ∗1∂wg(w∗) + N(w∗;R+),
g(w∗) ≥ 0, λ∗1 g(w∗) = 0.

(9)

On the other hand, v∗ is a local minimizer of the following optimization:

min
v∈Rn

f (w∗, v) = ‖ρ1T − Rw∗‖2 + α‖w∗‖1 + β‖w∗ − v‖1

s.t. v ∈ Ω2.
(10)

Since the R-LICQ of Ω2 holds at every point, it follows from Theorem 3 that there exists a
Lagrange multiplier λ∗2 ∈ R such that{

0 ∈ ∂v f (w∗, v∗) + λ∗21 + N̂(v∗; S),
1Tv∗ = 1, ‖v∗‖0 ≤ s.

(11)

Combing the system (9) and (11), this theorem holds.

Again, problem (10) can be simply written as

min
v∈Rn

‖w∗ − v‖1

s.t. v ∈ Ω2,

and it has a closed-form solution; see [33], i.e.,

v∗i =

{ w∗i
(w∗s )T1s

, if i ∈ I∗s
0, otherwise,

(12)

where I∗s := {i | w∗〈1〉 ≥ . . . ≥ w∗〈s〉} and w∗〈i〉 denotes the i-th largest absolute value among
the n elements of w∗. Thus, we can define a class of strong KKT points of the problem (6)
as follows.

Definition 5. The point (w∗, v∗) ∈ Ω1 ×Ω2 is called a strong KKT point of the problem (6), if
there exists a Lagrange multiplier λ∗ ∈ R+ such that the following system holds:
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0 ∈ ∂w f (w∗, v∗) + ∂wg(w∗) + N(w∗;R+),
g(w∗) ≥ 0, λ∗g(w∗) = 0,

v∗i =

{ w∗i
(w∗s )T1s

, if i ∈ I∗s
0, otherwise.

(13)

It is easy to prove that, if (w∗, v∗) is a strong KKT point of the problem (6), then it is a
KKT point of the problem (6). The following result provides the relationship between the
global minimizer of the problem (6) and the strong KKT point of the problem (6).

Theorem 7. Let (w∗, v∗) ∈ Ω1 ×Ω2 be a global minimizer of the problem (6). If Slater’s CQ
holds on Ω1 at w∗, then it is a strong KKT point of the problem (6).

Proof. The part of w∗ in (13) follows from (7). We only need to discuss the part of v∗ in
(13). Since v∗ is the global minimizer of (10), it follows from (12) that the part of v∗ in
(13) holds.

Note that the local minimizer of the problem (6) cannot be guaranteed to be a strong
KKT point.

Finally, we introduce the third stationary point of the problem (6), which is called the
partial minimizer.

Definition 6. The point (w∗, v∗) ∈ Ω1 ×Ω2 is called a partial minimizer of the problem (6), if
it satisfies

f (w∗, v∗) ≤ f (w, v∗), ∀ w ∈ Ω1, f (w∗, v∗) ≤ f (w∗, v), ∀ v ∈ Ω2.

Clearly, any global minimizer of the problem (6) is a partial minimizer. Moreover, on
the one hand, the partial problem (8) is a convex optimization, and Slater’s CQ ensures that
its KKT point and global minimizer are consistent. On the other hand, the partial problem
(10) has a closed-form solution. Thus, the equivalence relationship between the KKT point
of the problem (6) and the partial minimizer of the problem (6) can be established under
Slater’s CQ.

Theorem 8. Let (w∗, v∗) ∈ Ω1 ×Ω2 be a feasible point of the problem (6). Suppose that Slater’s
CQ holds on Ω1. Then, (w∗, v∗) is a partial minimizer of the problem (6) if and only if (w∗, v∗) is
a strong KKT point of the problem (6).

Proof. Suppose that (w∗, v∗) is a strong KKT point of the problem (6), then

0 ∈ ∂w f (w∗, v∗) + ∂wg(w∗) + N(w∗;R+), g(w∗) ≥ 0, and λ∗1 g(w∗) = 0.

Since Slater’s CQ holds at w∗, w∗ is a global minimizer of the problem (8). Then, we have
that f (w∗, v∗) ≤ f (w, v∗) ∀ w ∈ Ω1. Moreover, it follows from the definition of the strong
KKT point of the problem (6) that v∗ is a global minimizer of the problem (10). Then,
we have that f (w∗, v∗) ≤ f (w∗, v), ∀v ∈ Ω2. Thus, (w∗, v∗) is a partial minimum of the
problem (6). The opposite conclusion clearly holds.

4. The Uncertainty Set U

In Subsection 3.2, we rewrite the uncertainty set constraint as g(w) ≥ 0, where
g is a generalized concave function and is not necessarily differentiable. This section
introduces two mainstream formulations for the uncertainty set in asset mean return vector
µ (see [34]), which corresponds to the quadratic uncertainty set and the absolute uncertainty
set, respectively.
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4.1. The Quadratic Uncertainty Set

The first one is the quadratic formulation, U = {µ|(µ− µ)TΩ(µ− µ) ≤ κ2}, where µ
is the nominal expected return and κ is the error. Assume that asset returns are independent
and identically distributed and µ− µ follows a normal distribution with mean value 0
and covariance matrix Ω, where Ω is the covariance matrix of errors in the expected asset
return. In Yin et al. [35], they discussed the choice of uncertainty matrix Ω in the quadratic
uncertainty set and proposed the selection criteria. In the quadratic uncertainty case,
minµ∈U wTµ in problem (5) is equivalent to the following problem:

max
µ∈U

wTµ−wTµ.

Solving the above problem, we obtain

µ = µ−
√

κ2

wTΩw
Ωw.

Then, the problem (5) is rewritten as

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1

s.t. µTw− κ
√

wTΩw ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s.

(14)

Here, g(w) = µTw− κ
√

wTΩw− ρ. The penalization form of problem (14) can be rewrit-
ten as

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v‖1

s.t. w ∈ Ω1 = {w | κ‖
√

Ωw‖2 ≤ µTw− ρ, w ≥ 0}
v ∈ Ω2 = {v | vT1n = 1, ‖v‖0 ≤ s}.

According to the proposition of Yin et al. [35], we choose Ω ∝ diag(V). By using this
uncertainty matrix, it is expected to reduce the sensitivity to the inputs, as well as keep the
original volatility unchanged.

4.2. The Absolute Uncertainty Set

Fabozzi et al. [23] used the absolute uncertainty set in mean returns that ask that the
sum of absolute spreads between estimated and possible mean returns should not be too
large. The absolute formulation is U = {µ|∑i |µi − µi| ≤ κσ√

T
}. In this case,

µTw− µTw ≥ −∑
i
|µi − µi|max(|wi|) ≥ −

κσ√
T

max(|wi|);

thus,

µTw ≥ µTw− κσ√
T

max(|wi|).
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Then, the problem (5) is equivalent to

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1

s.t. µTw− κσ√
T

max(|wi|) ≥ ρ,

wT1n = 1, w ≥ 0,

‖w‖0 ≤ s.

(15)

Here, g(w) = µTw− κσ max(|wi|)/
√

T − ρ. Similarly, the penalization from of problem
(15) can be written as

min
w,v∈Rn

‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− v‖1

s.t. w ∈ Ω1 = {w | |wi| ≤
√

T
κσ

(wTµ− ρ), i = 1, ..., n, w ≥ 0}

v ∈ Ω2 = {v | vT1n = 1, ‖v‖0 ≤ s}.

5. Optimization

This section introduces a penalty alternating direction method (PADM) to solve prob-
lem (5).

5.1. Alternating Direction Methods

We first discuss the optimization of the problem (6). Due to the complexity of this
problem, alternating direction methods (ADMs) can be used to solve this problem. The
framework of ADMs is described as follows:

Next, we state the general convergence result of Algorithm 1, and one can refer to
Geissler et al. [36] for a proof (Theorem 8) and for further details about this method.

Algorithm 1 ADM: Alternating Direction Method.

1: Set the problem parameters: α, κ, ρ, T > 0, asset return matrix R ∈ RT×n, and nominal
expected return vector µ ∈ Rn. Initialize ε > 0, (w0, v0) and penalty parameter β > 0.
Set the iteration index k := 0, 1, ....

2: Compute
wk+1 ∈ arg min

w
{ f (w, vk) : w ∈ Ω1}, (16)

and
vk+1 ∈ arg min

v
{ f (wk+1, v) : v ∈ Ω2}. (17)

3: If ‖w
k+1−wk‖2+‖vk+1−vk‖2
‖wk‖2+‖vk‖2

≤ ε, then stop with (wk, vk) being an output point of (6).

Theorem 9. Let {(wk, vk)} be a sequence generated by Algorithm 1. Then, the following holds:

(a) {(wk, vk)} is bounded.
(b) Any limiting point {(w∗, v∗)} of {(wk, vk)} is a partial minimizer of the problem (6).
(c) If Slater’s CQ holds on Ω1, the limiting point of {(wk, vk)} is also a strong KKT of the

problem (6).

Proof. (a) It follows from Algorithm 1 that

f (wk+1, vk+1) ≤ f (wk+1, vk) ≤ f (wk, vk).

Since f is a coercive function, then the level set of f is bounded. Thus, {(wk, vk)} is
bounded.
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(b) Clearly, { f (wk, vk)} is a decreasing sequence and f (wk, vk) ≥ 0, then there exists a
value f ∗ such that limk→∞ f (wk, vk) = f ∗. Suppose that {(w∗, v∗)} is a limiting point of
{(wk, vk)}. Then, there exists a sequence {k j} such that limj→∞ k j = ∞, limj→∞(wkj , vkj) =

(w∗, v∗) and limj→∞ f (wkj , vkj) = f (w∗, v∗) = f ∗, where the last equality holds since
limk→∞ f (wk, vk) = f ∗. Without loss of generality, let limk→∞(wk, vk) = (w∗, v∗). It
follows from Algorithm 1 that

wk+1 ∈ arg min
w∈Ω1

f (w, vk).

Since f is continuous with respect to w, then taking k→ ∞, we have that

w∗ ∈ arg min
w∈Ω1

f (w, v∗).

Similarly,
v∗ ∈ arg min

v∈Ω2
f (w∗, v).

Thus, the limiting point {(w∗, v∗)} of {(wk, vk)} is a partial minimizer of the problem (6).
(c) Under Slater’s CQ, the partial minimizer of the problem (6) is a strong KKT point

of the problem (6) and the opposite also holds. Thus, this result holds.

5.2. The Optimization for the Partial Problem (8)

We now discuss the optimization of the partial problem (8) at the k-th iteration of the
ADM. Some non-exact penalty methods and smoothing methods can be used to solve this
problem. Here, we obtain wk+1 by solving the following optimization:

min
w∈Rn

f (w, vk) = ‖ρ1T − Rw‖2 + α‖w‖1 + β‖w− vk‖1 + γ|g(w)−|

s.t. w ≥ 0,
(18)

where γ > 0 is a penalty parameter. Let

ψµ(t) =

{
|t|, |t| ≥ µ,
t2

2µ + µ
2 , |t| < µ,

φµ(t) =
1
2
(t +

√
t2 + µ),

where µ > 0 is a smoothing parameter. Then, a class of the smoothing optimization of
problem (18) can be given as follows:

min
w∈Rn

fµ(w, vk) =
√
‖ρ1T − Rw‖2

2 + µ+

α
n

∑
i=1

ψµ(wi) + β
n

∑
i=1

ψµ(wi − vk
i ) + γφµ(−g(w))

s.t. w ≥ 0.

(19)

The projection gradient method (PGM) can be used to solve the problem (19), and its
iteration formula is

wj+1,k = PR+
(wj,k + η∇ fµ(wj,k, vk)),

where η > 0 denotes the step length at the j-th iteration of the PGM at the k-th iteration of
the ADM and P#(t) denotes the projection point of t onto #. The framework of the above
method is called the penalty projection gradient method (PPGM) and can be described in
Algorithm 2.



Mathematics 2023, 11, 4925 12 of 20

Algorithm 2 PPGM: Penalty Projection Gradient Method.

1: Set the problem parameters: α, κ, ρ, T, β, γmax > 0, asset return matrix R ∈ RT×n, and
nominal expected return vector µ ∈ Rn. Initialize penalty parameters γ0 > 0, τ > 1.
Set the iteration index j = 0, 1, · · · .

2: Computing wj+1,k = PR+
(wj−1,k + η∇ fµ(w, vk)).

3: If wj+1,k satisfies ‖w
j+1,k−wj,k‖2
‖wj,k‖2

≤ ε and g(wj,k) ≥ −ε, then stop and wk = wj,k.

4: If ‖w
j+1,k−wj,k‖2
‖wj,k‖2

≤ ε and g(wj,k) < −ε, then choose new penalty parameter γ =

min{τγ, γmax}. Otherwise, return to Step 2.

5.3. Penalty Alternating Direction Method

At the end of this section, we describe the PADM for the general problem (5). At
iteration l, set the value of penalty parameter βl and obtain (wl , vl) by the ADM with βl . If
the inequality ‖wl − vl‖1 ≤ tol holds, where tol is a small positive constant, we stop with a
feasible solution of problem (6). Otherwise, the penalty parameter βl is updated to βl+1. In
this way, the PADM generates a sequence of the partial minimizer of problem (6) with βl .
The framework of the PADM is formally stated in Algorithm 3.

Algorithm 3 PADM: Penalty Alternating Direction Method.

1: Set the problem parameters: α, κ, ρ, T, βmax > 0, asset return matrix R ∈ RT×n, and
nominal expected return vector µ ∈ Rn. Initialize penalty parameters β0 > 0, τ > 1.
Set the iteration index l = 0, 1, · · · .

2: Obtain (wl , vl) by the ADM with βl .
3: If (wl , vl) satisfies ‖wl − vl‖1 ≤ tol, then stop with (wl , vl). Otherwise, choose new

penalty parameter βl+1 = min{τβl , βmax}, and return to Step 2.

6. Numerical Results

This section shows extensive numerical experiments. In Section 6.1, we first present
six real data sets, explain some existing models to be compared with and describe the
performance measures to be used. In Section 6.2, we demonstrate that our methods lead to
robust and sparse portfolios. In Section 6.3, we compare nine popular portfolios in terms of
out-of-sample (OOS) performance measures. Finally, in Section 6.4, we show the cumulative
return of different portfolio strategies. All of our computations are conducted in the Matlab
R2019a environment, on a PC with an Intel(R) Core(TM) i5-7200U CPU (2.50 GHz, 4 CPUs)
and 4G RAM processors.

6.1. Models of Comparison, Data, and Performance Measures

(a) Eleven portfolio models compared. We compare the OOS performance of 11
portfolio models across six real data sets of weekly and monthly returns. Those models
are well studied, and we divide them into four groups, which are summarized in Table 1.
The first group is the robust and sparse portfolio strategies developed in this paper. The
second group includes some well-studied portfolio strategies. The third group includes
three benchmark portfolio strategies. The last group consists of two portfolios that use the
shrinkage technique to estimate the covariance matrix.
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Table 1. List of portfolio strategies considered.

Group Model Abbr. Re f er.

(1) Robust and sparse portfolios with
quadratic uncertainty set RSQ this paper
absolute uncertainty set RSA this paper

(2) Some well-studied portfolio strategies with
`1 regularization L1 Brodie et al. [2]
`1,2 regularization L12 Zhao et al. [37]
Elastic Net regularization EN Yen and Yen [38]
upper and lower bound Box Behr et al. [39]

(3) Benchmarks’ portfolio strategies with
short-sales constrained SC Jagannathan and Ma [5]
short-sales unconstrained SU Jagannathan and Ma [5]
equally weighted (1/N) portfolio EW DeMiguel et al. [40]

(4) Shrinkage of covariance
sample covariance and identity matrix SCID Olivier and Wolf [41]
sample covariance and 1-factor matrix SC1F Olivier and Wolf [3]

(b) Seven data sets tested. Table 2 lists some real-world data sets: DJIA [42], NAS-
DAQ [43], S&P [44,45], Russell2000 [46], Russell3000 [47], and FF100 [38]. All the data are
obtained from Yahoo finance (https://finance.yahoo.com/, accessed on 10 January 2023)
and Ken French’s website (https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html, accessed on 10 January 2023). In all cases, we remove those assets that
have missing values.

Table 2. Information of the seven real data sets.

# Data Sets Stocks Time Period Source Frequency

1 DJIA 29 01/10/2017–30/10/2022 Yahoo finance Weekly
2 NASDAQ 95 01/10/2017–30/10/2022 Yahoo finance Weekly
3 SP500 336 01/10/2017–30/10/2022 Yahoo finance Weekly
4 Russell2000 1340 01/10/2017–30/10/2022 Yahoo finance Weekly
5 Russell3000 2166 01/10/2017–30/10/2022 Yahoo finance Weekly
6 SP100 71 01/10/2017–30/10/2022 Yahoo finance Weekly
7 FF100 100 11/1999–06/2022 K.French Monthly

(c) Measuring the OOS performance and its setup. We largely follow the “rolling-
window” procedures in [2,37] to conduct our comparison. Let T be the length of a data
set and τ be the window length (e.g., τ = 120) used to construct the optimal portfolio by
a model. In each period (t + 1), t = τ, ..., T− 1, we compute different portfolios over the
previous τ periods. We then compute the OOS return in the (t + 1)-th period based on
the obtained portfolio. We repeat this procedure until we reach the end of the data set.
In this way, we will obtain a series of (T − τ) portfolio vectors for each model listed in
Table 1. To make it precise, let ws

t be the optimal portfolio obtained by the portfolio strategy
s over the date from t− τ + 1, . . . , t. The OOS return in the t + 1 period is computed as
rs

t+1 = ws
t
ᵀrt+1, where rt+1 is the return in the (t + 1)-th period. Thus, we obtain a time

series of (T− τ− 1) periods OOS returns for all strategies. Note that we use the traditional
“rolling-window” procedures for the numerical analysis, and some new methods could
provide new ideas for the analysis of portfolio selection problems, see [48].

The OOS performance of each portfolio strategy is assessed by using four quantities:
(i) the OOS portfolio variance (σ̂2), (ii) the OOS portfolio Sharpe ratio (ŜR), (iii) portfolio
turnover (TURN), and (iv) the average short positions (ASP). The specific definitions can
be found in DeMiguel et al. [6], Yen and Yen [38], and Zhao et al. [37]. We evaluate the
cumulative return (CR). The CR of a portfolio scores the total payoffs that are yielded by

https://finance.yahoo.com/
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the investment strategy across the investment periods without considering any risk or
cost, see Shen et al. [49]. We also consider some quantities studied in [38] on the profiles
of the portfolio weights: PAP represents the proportion of active positions and PZP is

the proportion of zero positions, respectively, defined as PAPt =
|S1

t |
N , PZPt =

|S0
t |

N , where
S1

t = {i : wi,t 6= 0} and S0
t = {i : wi,t = 0}.

6.2. Robust and Sparse Portfolio

This section shows the weight of robust and sparse portfolios. We use the DJIA data
set and the sparse levels s1 = d30%ne and s2 = d50%ne. The parameter α = β = 10λ, and
the value of λ varies from 10−2 to 101.

Figure 1 shows the portfolio weights, PAP, and PZP. The two plots in the top panel
correspond to a robust portfolio under the quadratic uncertainty set, and the sparsity is
s1. The two plots in the bottom panel correspond to a robust portfolio under the absolute
uncertainty set, and the sparsity is s2. With the increase of penalty parameter λ, the portfolio
weights tended to be sparse. The PAP and PZP indicate that we can obtain sparse portfolios
that satisfy the specified sparsity.

Figure 1. Portfolio weights.

Figure 2 shows the sparse portfolio. We use four different data sets. The sparsity level
on DJIA is s1 = d30%ne, on NASDAQ and FF100 is s2 = d10%ne, and on Russell2000 is
s3 = d1%ne. We solve the robust portfolio under the quadratic uncertainty set to show the
results. We obtain the portfolio with the specified sparsity and the distribution of different
asset weight values.

6.3. Out-of-Sample Performance

The Sharpe ratio considers return and risk at the same time; it is a comprehensive
measurement for us to observe the performance of a portfolio. Thus, we first test the Sharpe
ratio of different portfolio strategies. We use the SP100 data set. The parameter α = 2β and
the value of β varies from 10 to 101.5. The sparsity level s1 = d15%ne and s2 = d5%ne.

By comparing with two benchmark portfolios, Figure 3 shows that the RSQ and RSA
can produce a higher Sharpe ratio when choosing a suitable penalty parameter.
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Figure 2. Sparse solutions.

Figure 3. The Sharpe ratio.

Table 3 reports the OOS performance by using four quantities defined in Section 6.1.
We set α = β = 10 and the sparsity level s1 == d30%ne (on the DJIA, NASDAQ, SP500,
and FF100 data sets) and s2 == d30%ne (on the Russell2000 and Russell3000 data sets).
We can observe that the RSA and RSQ portfolios achieve the smallest variances across
all portfolio strategies, i.e., on average with 10.84(%)2 and 11.09(%)2, respectively. This
means they are less volatile, i.e., less risky. SU, SC1F, and SCID have the highest variance
on average, 995.73(%)2, 442.81(%)2 and 404.20(%)2 in this setting. The variance of the
remaining portfolio strategies is 11.94(%)2 (L1), 11.98(%)2 (EN), 16(%)2 (L12), 27.78(%)2

(SC), 28.71(%)2 (EW), and 71.11(%)2 (Box), respectively. In addition, we observe that the
Sharpe ratios of the various portfolios on average are 12.34% (SC), 11.82% (EW), 11.77%
(RSA), 11.70% (RSQ), 11.61% (L12), 11.21% (EN), 11.18% (L1), 10.58% (SCID), 10.09% (SC1F),
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9.23% (Box), and 7.92% (SU). We see that the RSA and RSQ portfolios do not result in a
significantly different OOS Sharpe ratio when compared with SC and EW; however, they
are higher than the rest of the portfolio strategies.

Table 3. Portfolio out-of-sample variance (σ̂2) ((%)2), Sharpe ratio (ŜR), turnover (TURN), and the
average short positions (ASP).

DJIA NASDAQ SP500 Russell2000 Russell3000 FF100

n = 29 n = 95 n = 336 n = 1340 n = 2166 n = 100

var 5.3741 5.9065 11.5604 12.1813 12.7837 17.2215
RSA SR 0.0703 0.1807 0.1008 0.0063 0.0267 0.3215

TURN 0.1194 0.1721 0.1430 0.1033 0.1021 0.1698
ASP −1.11e-18 2.22e-18 0 −3.08e-18 −4.01e-18 −6.28e-18

var 5.3949 5.8633 12.5936 12.7041 12.7702 17.2097
RSQ SR 0.0737 0.1889 0.0863 0.0059 0.0258 0.3216

TURN 0.1063 0.1711 0.1334 0.1112 0.1003 0.1698
ASP −6.66e-18 −3.33e-18 −1.43e-17 −9.25e-18 −9.25e-18 0

var 9.5931 7.1442 32.1907 14.8927 13.7879 18.3918
L12 SR 0.0860 0.1768 0.1000 0.0072 0.0295 0.2971

TURN 0.0220 0.0286 0.0369 0.0675 0.0605 0.0296
ASP −0.0216 −0.0209 −0.0240 −0.0057 −0.0050 −0.0276

var 8.0373 6.7078 13.1228 14.2679 13.0166 16.4937
L1 SR 0.0864 0.1831 0.0414 0.0042 0.0279 0.3279

TURN 0.1063 0.0677 0.0369 0.1250 0.1136 0.0629
ASP −0.0036 −0.0012 −0.0124 −0.0039 0.0020 −0.0195

var 8.5871 6.5362 12.9449 14.2074 13.0817 16.5823
EN SR 0.0911 0.1790 0.0418 0.0029 0.0402 0.3181

TURN 0.0256 0.0472 0.0408 0.1208 0.1181 0.0510
ASP −0.0257 −0.0198 −0.0272 0.0015 0.0011 −0.0257

var 9.9181 8.7749 3.59e+02 7.3636 7.0004 34.5878
BOX SR 0.0250 0.0768 −0.1204 −0.0495 −0.0023 0.6244

TURN 0.8322 1.7146 3.2709 0.2820 0.2973 5.1895
ASP 1.1172 2.7850 6.5137 0.5744 0.5886 8.4327

var 10.0132 8.0089 86.1291 24.3110 16.9741 21.2942
SC SR 0.0871 0.1891 0.1202 0.0233 0.0399 0.2812

TURN 0.0388 0.0313 0.0411 0.0512 0.0481 0.0247
ASP 1.38e-16 1.23e-16 −1.52e-16 3.12e-16 −4.19e-16 0

var 9.9181 15.0721 5.91e+03 12.1721 9.9999 17.2369
SU SR 0.0250 0.1800 −0.1270 −0.0482 −0.0167 0.4624

TURN 0.8322 2.7947 3.9150 0.3919 0.3722 5.2429
ASP 1.1172 2.5580 5.8870 0.5542 0.5494 6.3456

var 11.1339 8.1780 89.8252 21.3370 19.5742 22.2346
EW SR 0.0701 0.1790 0.1151 0.0194 0.0337 0.2922

TURN 0.0208 0.0253 0.0400 0.0429 0.0381 0.0252
ASP 1.13e-16 1.13e-16 −1.12e-16 4.52e-16 −3.39e-16 0

var 6.9600 6.9782 2.38e+03 7.3676 7.0304 16.8727
SCID SR 0.0294 0.1097 −0.1259 −0.0497 −0.0025 0.6740

TURN 0.4115 0.8589 0.9940 0.2803 0.2884 1.5393
ASP 0.6362 1.6735 2.8275 0.5727 0.5871 3.5605

var 6.2670 6.5347 2.6140e+03 7.3790 7.0367 15.6203
SC1F SR 0.0380 0.0902 −0.1253 −0.0510 −0.0034 0.6570

TURN 0.3032 1.1648 0.8972 0.2964 0.2962 1.5858
ASP 0.4690 1.3556 2.1771 0.5722 0.5863 2.8086
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As for the portfolio turnover, unsurprisingly, the EW portfolio strategy exhibit the
lowest turnover of all portfolio strategies, amounting to 3.20%. The RSA and RSQ portfolio
strategies have moderate levels of turnover on average, 13.49% and 13.20%. The highest
average turnover is generated by the SU portfolio and, then, by the Box portfolio, amounting
on average to 225.81% and 193.10%, meaning that they are very costly. The turnover of the
remaining portfolio strategies range between 11.85% (L12), 25.76% (L2), 16.66% (L1), and
13.98% (EN), respectively. The high turnover of SU and Box was reflect in the enormous
average short positions of over 283.52% and 333.52% on average across the six data sets. The
second two highest average short positions are by SCID and SC1F, respectively, amounting
to 164.29% and 132.81%. The average short positions of the SC and EW portfolios are
on average approximately 0% across the six data sets. The average short positions of the
RSQ and RSA portfolio strategies also tend to zero. Therefore, considering the moderate
turnover and the average short positions, the proposed RSQ and RSA strategies represent a
practically implementable method that outperform the portfolio strategies listed in Table 1.

6.4. Cumulative Return

In this subsection, we show the CR of several portfolio strategies. We use the FF100
data set. The sparsity level s = d10%ne. The parameter α = β = 10. According to the OOS
performance, we choose RSQ, RSA, L12, L1, EN, EW, and SC to compare the CR.

Figure 4 shows the curves of the CR over the corresponding investment periods for
the different portfolio strategies. Apparently, RSQ and RSA outperform the others with
visible margins. However, RSA and RSQ do not produce significant differences. This result
suggest that, compared with the other portfolios, the sparse portfolios RSA and RSQ grow
more steadily together with a reduced volatility across most of the investment periods.

Figure 4. The cumulative return.

7. Conclusions

Portfolio selection has been a fertile area for robust optimization techniques. We
proposed a robust and sparse portfolio selection optimization model by considering the
perturbation in the asset return matrix and the parameter uncertainty in the expected
asset return. We used the equivalence of robustness and regularization to deal with the
perturbation in the asset return matrix. To deal with the uncertainty in the expected asset
return, we considered two kinds of uncertainty sets and solved the worst-case scenario.
We defined three types of stationary points of the penalty problem and then analyzed
the relationship between these stationary points and local/global minimizers. Then, we
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designed the penalty alternating direction method to solve each problem. Although there
is no theoretical guarantee for the equivalence between problems (5) and (6), as well as
problems (8) and (18), we confirmed the effectiveness of our approach by comparing with
nine widely studied portfolio models on seven real-world data sets. Extensive numerical
experiments confirm that the portfolios we proposed have lower volatility, that is less risk.
Moreover, our portfolio strategies can yield higher Sharpe ratios when the appropriate
parameters are selected.

We note that the robust optimization (RO) mainly consider the uncertainty sets of
parameters and thus it do not consider any distribution information of the data. This char-
acteristic makes RO attractive, but at the same time, this method loses the comprehensive
characterization of the data. Recently, distributed robust optimization (DRO) has attracted
widespread attention and research. Although DRO takes into account the distribution
information of the data, the cost paid is that it is difficult to solve. We will consider how to
apply DRO to sparse portfolio problems, while considering the distribution information
of financial data and improving the sparsity. The most direct extension is the distributed
robust portfolio optimization with the `0 norm constraint, which is a worthwhile and
challenging issue.
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