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Abstract: This paper presents a closed-loop continuous-time subspace identification method using
prior information. Based on a rational inner function, a generalized orthonormal basis can be con-
structed, and the transformed noises have ergodicity features. The continuous-time stochastic system
is converted into a discrete-time stochastic system by using generalized orthogonal basis functions. As
is known to all, incorporating prior information into identification strategies can increase the precision
of the identified model. To enhance the precision of the identification method, prior information is
integrated through the use of constrained least squares, and principal component analysis is adopted
to achieve the reliable estimate of the system. Moreover, the identification of open-loop models is the
primary intent of the continuous-time system identification approaches. For closed-loop systems,
the open-loop subspace identification methods may produce biased results. Principal component
analysis, which reliably estimates closed-loop systems, provides a solution to this problem. The
restricted least-squares method with an equality constraint is used to incorporate prior information
into the impulse response following the principal component analysis. The input–output algebraic
equation yielded an optimal multi-step-ahead predictor, and the equality constraints describe the
prior information. The effectiveness of the proposed method is provided by numerical simulations.

Keywords: subspace identification; closed-loop identification; generalized orthonormal basis functions;
principal component analysis; prior information; constrained least squares
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1. Introduction

In recent decades, subspace identification methods have garnered significant attention
in the identification process [1–3]. The majority of identification approaches work with
discrete-time, open-loop systems. Actually, the majority of systems are continuous in
nature and run in closed-loop using a feedback controller. Moreover, many open-loop
identification approaches could produce biased results for closed-loop system identifica-
tion. Hence, investigating a novel identification approach for closed-loop continuous-time
systems is significant.

To acquire the continuous-time systems, estimating discrete-time models and con-
verting them into continuous-time systems are conventional methods. There are certain
drawbacks regarding the system conversion. These drawbacks specifically include the com-
plicated computation of the matrix logarithm and the difficult selection of the sampling time.
Numerous identification approaches have been presented to address the aforementioned
problems in order to acquire reliable models. Linear filtering, which includes Laguerre
filters, generalized PMFs (GPMFs), and Poisson Moment Functionals (PMFs), is the first
category [4–6]. In [7], a generalized singular-value decomposition (SVD) was used to
compensate for the noise coloration for estimating the continuous-time system. Using the
GPMF and nuclear norm minimization, Ref. [8] evaluated continuous-time models. In order
to address two types of identification problems, Ref. [9] presented continuous-time system
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identification methods that made use of Laguerre filters and Laguerre projection. Based
on fractional Laguerre generating functions, Ref. [10] provided the subspace identification
approach for fractional-commensurate-order systems. The second category consists of
modulating function methods, which were used in [11] to address the continuous-time
state-space model-identification problem using generalized orthogonal basis functions. A
transformation theory using generalized orthonormal basis functions for stochastic systems
was established by [12]. The integral approaches fall into the third category. Ref. [13] used
random distribution theory to illustrate time derivatives and to deduce the input–output
algebra relationship in the time-domain. The subspace identification approaches were im-
plemented in the aforementioned references with the open-loop assumption. For the future
inputs that are correlated with the noise, these approaches have the drawback of giving
biased estimates when the systems to be represented run in closed-loop. Ref. [14] presented
a closed-loop subspace identification method based on subsequent SVD and orthogonal
projection. Ref. [15] concentrated on the parity space rather than the observable subspace to
produce a consistent estimation of the closed-loop systems. Several closed-loop subspace
identification approaches during the past ten years were compiled by [16]. The closed-loop
continuous-time subspace identification approaches are still thought of as parameterized
black-box models, while the majority of the aforementioned closed-loop identification
approaches concentrate on discrete-time systems [17–19]. Therefore, it is still difficult to
incorporate prior information into closed-loop continuous-time identification algorithms.

In general, the model’s quality is determined by the quality of the input–output
data. To guarantee the precision and consistency of the estimated models, the subspace
identification approaches also require the confirmation of a specific excitation. However,
in many circumstances, the input–output data might not provide enough information for
the inadequate excitation or noise component. Obviously, these factors may influence
the precision of the estimated models. To improve the quality of the identified model,
the prior information can be incorporated into the models throughout the identification
process. The prior information was integrated into the state space model realization
algorithm by [20], which estimated the model parameters using Kung’s singular-value
decomposition realization [21]. Ref. [22] investigated the subspace identification approach
using constrained least squares while taking into account prior information. The subspace
identification method was enhanced as a multi-step forward predictor by resolving an opti-
mization problem with equality constraints. Ref. [23] developed a new recursive-subspace-
identification method that takes into account prior information, based on constrained
recursive least squares. The prior information was taken into consideration by [24] as a
linear equality and inequality constraints on the impulse response, which was resolved
using active-set-optimization approaches. When comparing the precision of the identified
model, subspace identification with prior information proved to be more accurate than
classical subspace algorithms. Ref. [25] introduced the closed-loop subspace identification
method, which took advantage of prior knowledge by eliminating the correlation between
the future input and past innovation. By utilizing prior information, Ref. [26] developed
a new closed-loop subspace-identification method based on principal component analy-
sis (PCA). For batch operations exposed to repetitive disturbances, Ref. [27] developed a
prior-knowledge-based subspace identification approach that offered unbiased parameter
estimation and enhanced robustness to white measurement noises. Very few studies have
focused on closed-loop continuous-time subspace system identification, despite the fact
that including prior information in the subspace identification algorithm can improve the
quality of the identified model.

In this paper, we propose to use generalized orthonormal basis functions to achieve
closed-loop continuous-time subspace identification with prior information. The main
contributions can be summarized as follows:

(1) The continuous-time stochastic system is converted into a discrete-time stochastic
system by using generalized orthogonal basis functions.
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(2) For closed-loop systems, the open-loop subspace identification methods may
produce biased results. The principal component analysis, which reliably estimates closed-
loop systems, provides a solution to this problem.

(3) The proposed approach converts the prior information into an equality constraint,
and a weighting mechanism is used to solve the constrained least-squares issues. With
increased computational performance, the proposed method can provide unbiased pro-
cess models.

The remainder of this paper is organized as follows: The preliminaries are presented
in Section 2. In Section 3, the system transformation is provided. Section 4 presents the
main closed-loop subspace identification algorithm. The numerical simulations used to
assess the proposed approach are shown in Section 5. Section 6 offers conclusions.

2. Preliminaries

Let L2(−∞, ∞) denote the space of square integrable functions over (−∞, ∞), and the
inner product is obtained.

〈u, v〉 =
∫ ∞

−∞
v(t)∗u(t)dt, (1)

where superscript ∗ denotes the conjugate transpose.
Let L2(jR) denote the space of square integrable functions of frequency jω ∈ jR,

and the inner product is given.

〈 f , g〉 = 1
2π

∫ ∞

−∞
g(ω)∗ f (ω)dω. (2)

A continuous-time multiplication operator Λh: L2(jR)→ L2(jR) is defined as

(Λh f )(jω) = h(jω) f (jω), (3)

where h ∈ L2(jR). Inner function φ(s) denotes a continuous-time, single-input, single-
output rational transfer function.

The Hardy space H∞ is the space of matrix-valued bounded analytic functions in the
right half plane. For a continuous-time inner function φ(s) in H∞, the multiplication
operator Λφ : L2(jR) → L2(jR) is unitary. Let φ(s) ∈ H∞ be a non-constant inner
function. Consider the orthogonal complement of the invariant subspace Λφ H2 in H2,
that is S = H2 	ΛφH2; the Hardy space H2 is the space of analytical functions on the right
half plane.

H2 =
∞⊕

m=0
Λm

φ S, L2(jR) =
∞⊕

m=−∞
Λm

φ S, (4)

where
⊕

denotes the direct sum.
A function f ∈ H2 can be represented as follows.

f =
∞

∑
m=0

Λm
φ fm, f =

∞

∑
m=−∞

Λm
φ fm, fm ∈ S. (5)

where m-power denotes the product of m elements.
Let {v1, · · · , vnφ} be an orthonormal basis for S and{

v1, · · · , vnφ , Λφv1, · · · , Λφvnφ , · · · , Λm
φ v1, · · · , Λm

φ vnφ , · · ·
}

(6)

be an orthonormal basis for H2. Based on the the inverse Fourier transform, the set is
identified with an orthonormal basis for L2(0, ∞). This set is called a generalized orthonor-
mal basis. A generalized orthonormal basis can be constructed by any finite-dimensional
Blashke product.
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Proposition 1 ([28]). Consider an inner function φ and the subspace S = H2 	 ΛφH2. If
φ(s) = Dφ + Cφ(sI − Aφ)−1Bφ is the balanced realization of an inner function for a continuous-
time system such that Dφ = I, Aφ + AT

φ + BT
φ Bφ = 0, then

v(s) = [v1(s), · · · , vnunφ(s)],
= (In ⊗ Cφ)(sI − (In ⊗ Aφ))−1

is an orthonormal basis for Snu , where ⊗ means the Kronecker product.

3. System Transformation

The generalized orthonormal basis can be constructed by the rational inner function. In
addition, the continuous-time stochastic system is converted into a discrete-time stochastic
system by using generalized orthogonal basis functions.

Consider a continuous-time system with process and observation noises:

dx = Axdt + B1dw + B2udt, x(0) = x0
dη = Cxdt + D1dw + D2udt,

(7)

where A ∈ Rn×n, B1 ∈ Rn×nw , B2 ∈ Rn×nu , C ∈ Rny×n, D1 ∈ Rny×nw , D2 ∈ Rny×nu , w is a
Wiener process, and u is a deterministic signal.

Define
ũk =

∫ ∞

0
Λk

φv(t)Tu(t)dt,

w̃k =
∫ ∞

0
Λk

φv(t)Tdw(t),

ỹk =
∫ ∞

0
Λk

φv(t)Tdη(t).

(8)

Notice that w̃k and ỹk are stochastic processes.

Theorem 1. Consider a stochastic system (7), and define the deterministic sequence ũk and
the stochastic processes w̃k, ỹk by Equation (8). Then, they satisfy the following discrete-time
stochastic system:

ξ(k + 1) = Ãξ(k) + B̃1w̃k + B̃2ũk, ξ(0) = x0,
yk = C̃ξ(k) + D̃1w̃k + D̃2ũk,

(9)

where
Ã = φ∼(A), B̃1 = X1, B̃2 = X2, C̃ = Y ,

D̃1 =


h∼111(AT

φ) · · · h∼11nu
(AT

φ)
...

...
...

h∼1ny1(AT
φ) · · · h∼1nynu

(AT
φ)

,

D̃2 =


h∼211(AT

φ) · · · h∼21nu
(AT

φ)
...

...
...

h∼2ny1(AT
φ) · · · h∼2nynu

(AT
φ)

,

(10)

h1ij(s) is the (i, j)-th element of the transfer function h1(s) = D1 + C(sI − A)−1B1; h2ij(s) is
the (i, j)-th element of the transfer function h2(s) = D2 + C(sI − A)−1B2; X1, X2, and Y are the
unique solutions to the following Sylvester equations:

AX1 + X1(Inu ⊗ Aφ)T + B1(Inu ⊗ Bφ)T = 0,
AX2 + X2((Inu ⊗ Aφ)T + B2(Inu ⊗ Bφ)T = 0,
(Inu ⊗ Aφ)TY + YA + (Inu ⊗ Cφ)TC = 0.

(11)
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Proof. Assume that nu = ny = 1. If u ∈ S, from Proposition 1, u = Cφ(sI − A)−1η for
some η. In terms of CT

φ Cφ = (sI − Aφ)− (sI + AT
φ), we have

Λ∼φ u = [DT
φ − BT

φ (sI + AT
φ)
−1CT

φ ] · Cφ(sI − Aφ)−1η

= DT
φ Cφ(sI − Aφ)−1η− BT

φ (sI + AT
φ)
−1η+ BT

φ (sI − Aφ)−1η

= −BT
φ (sI + AT

φ)
−1η.

In view of Equation (10), it can be found that

Bu =
∫ 0

−∞
e−Aτ B(F−1Λ∼φ u)(τ)dτ,

=
∫ 0

−∞
e−Aτ BBT

φ e−AT
φ τdτη = Xη.

Cξ is the orthogonal projection of C(sI − A)−1 onto S. The orthonormal basis for S is
used for the following equation.

Cξ = Cφ(sI − Aφ)−1
∫ ∞

0
e−AT

φ τCT
φ Ce−Aτdτη,

= Cφ(sI − Aφ)−1Yξ.

Notice that Du is the orthogonal projection of Λhu onto S. Therefore,

1
2π

∫ ∞

−∞
(−jωI − AT

φ)
−1CT

φ h(jω) · Cφ(jωI − Aφ)
−1dωη

=
1

2π j

∮
h(s)(sI + AT

φ)
−1CT

φ Cφ(sI − Aφ)
−1dsη,

=
1

2π j

∮
h(s)[(sI + AT

φ)
−1 − (sI − Aφ)

−1]dsη,

= h(−AT
φ)η = h∼(AT

φ)η.

Note that the matrices B and D are defined, mutatis mutandis, as B̃1, B̃2, D̃1, and D̃2.

Similar to any other identification method, when the available data are not informative
enough due to a low signal-to-noise ratio or insufficient input excitations, the performance
of the proposed approach will deteriorate. However, the proposed approach incorporates
the prior information and can, thus, diminish the deterioration of model quality.

4. Closed-Loop Subspace Identification

In this section, the restricted-least-squares method with an equality constraint is used
to incorporate the prior information into the impulse response following the principal com-
ponent analysis. The method closed-loop subspace identification with prior information
using generalized orthonormal basis functions (CLSPI-GOBF) is proposed.

4.1. Derivation of Input–Output Algebraic Equation

In terms of the stochastic system (7), the following data can be constructed as

ũk,i =
∫ ∞

0
Λk

φv(t)Tu(t + ti)dt,

w̃k,i =
∫ ∞

0
Λk

φv(t)Tdw(t + ti),

ỹk,i =
∫ ∞

0
Λk

φv(t)Tdη(t + ti),

(12)

where 0 ≤ t0 < t1 < · · · < ti < · · · is a sequence of time instances such that ti+1− ti ≥ tmin
for some tmin > 0.
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Let xi = x(ti). For fixed integers p, q and N, define

XN = [x0 x1 · · · xN−1], Xq,N = [xq xq+1 · · · xq+N−1],

Up,q,N =


ũp,0 ũp,1 · · · ũp,N−1

ũp+1,0 ũp+1,1 · · · ũp+1,N−1
...

...
...

...
ũp+q−1,0 ũp+q−1,1 · · · ũp+q−1,N−1

,
(13)

Wp,q,N =


w̃p,0 w̃p,1 · · · w̃p,N−1

w̃p+1,0 w̃p+1,1 · · · w̃p+1,N−1
...

...
...

...
w̃p+q−1,0 w̃p+q−1,1 · · · w̃p+q−1,N−1

, (14)

Yp,q,N =


ỹp,0 ỹp,1 · · · ỹp,N−1

ỹp+1,0 ỹp+1,1 · · · ỹp+1,N−1
...

...
...

...
ỹp+q−1,0 ỹp+q−1,1 · · · ỹp+q−1,N−1

. (15)

Let

Γq =


C̃

C̃Ã
...

C̃Ãq−1

,

H1,q =


D̃1 0 · · · 0

C̃B̃1 D̃1
. . . 0

...
. . . . . .

...
C̃Ãq−2B̃1 C̃Ãq−3B̃1 · · · D̃1

,

H2,q =


D̃2 0 · · · 0

C̃B̃2 D̃2
. . . 0

...
. . . . . .

...
C̃Ãq−2B̃2 C̃Ãq−3B̃2 · · · D̃2

.

(16)

From Theorem 1, the above matrices satisfy the input–output algebraic equation:

Yp,q,N = ΓqXq,N + H1,qWp,q,N + H2,qUp,q,N . (17)

4.2. Consistent Estimation via Principal Component Analysis

Multiplying both sides by (Γ⊥q )
T , Equation (17) can be converted to

(Γ⊥q )
T[ I −H2,q

][ Yp,q,N
Up,q,N

]
= (Γ⊥q )

T(H1,qWp,q,N). (18)

Define Zq =

[
Yp,q,N
Up,q,N

]
. Equation (18) becomes

(Γ⊥q )
T[ I −H2,q

]
Zq = (Γ⊥q )

T(H1,qWp,q,N), (19)

The instrumental variable Zh =

[
U0,p,N
Y0,p,N

]
is introduced to eliminate the estimate

bias [16]. It gives

lim
N→∞

1
N

H1,qWp,q,N ZT
h = 0, (20)



Mathematics 2023, 11, 4924 7 of 16

where Zh =

[
U0,p,N
Y0,p,N

]
consisting of the input–output data are the instrumental variables.

We have
lim

N→∞

1
N
(Γ⊥q )

T[ I −H2,q
]
ZqZT

h = 0; (21)

thus, Equation (21) implies that (Γ⊥q )T[ I −H2,q
]

is in the left null space of lim
N→∞

1
N ZqZT

h .

The PCA decomposition is performed on

1
N

ZqZT
h = PTT + P̃T̃T , (22)

where P, P̃ are the loading matrices and are mutually orthogonal. T, T̃ are the score
matrices, and the number of principal components is selected as lim

N→∞
T̃ = 0.

It can be found that
(Γ⊥q )

T[ I −H2,q
]
P = 0. (23)

Equation (23) can be reformulated as[
Γ⊥q

−HT
2,qΓ⊥q

]T

P = 0. (24)

Since Equation (24) indicates that

[
Γ⊥q

−HT
2,qΓ⊥q

]
shares the same column space as P̃,

we have [
Γ⊥q

−HT
2,qΓ⊥q

]
= P̃M. (25)

where M is an arbitrary non-singular matrix.
Matrix P̃ can be partitioned as[

Γ⊥q
−HT

2,qΓ⊥q

]
=

[
P̃y
P̃u

]
M. (26)

We have
Γ⊥q = P̃y M, (27)

−HT
2,qΓ⊥q = P̃u M (28)

According to Equation (27), we select a specific M.

Γq = P̃⊥y . (29)

Substituting Equation (27) into Equation (28) gives

−P̃T
y H2,q = P̃T

u (30)

Define
−P̃T

y = Ξ =
[

Ξ1 Ξ2 · · · Ξi
]
, (31)

and
P̃T

u = Υ =
[

Υ1 Υ2 · · · Υi
]
, (32)

where Ξi is the i-th block column of Ξ and Υi is the i-th block column of Υ.
Equation (30) can be described as

ΞH2,q = Υ, (33)
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that is

[
Ξ1 Ξ2 · · · Ξi

]


D̃2 0 · · · 0

C̃B̃2 D̃2
. . . 0

...
. . . . . .

...
C̃Ãq−2B̃2 C̃Ãq−3B̃2 · · · D̃2


=
[

Υ1 Υ2 · · · Υi
]
.

(34)

Let

H2,q1 =


D̃2

C̃B̃2
...

C̃Ãq−2B̃2

; (35)

we obtain 
Ξ1 Ξ2 · · · Ξi−1 Ξi
Ξ2 Ξ3 · · · Ξi 0
...

...
. . .

...
...

Ξi 0 · · · 0 0

H2,q1 =


Υ1
Υ2
· · ·
Υi

. (36)

4.3. Constrained-Least-Squares Approach

To enforce the structure of H2,q, the following relationship can be required.

vec(ABC) = (CT ⊗ A)vec(B), (37)

where vec stands for the operation of forming a long vector from a matrix by stacking its
columns one under the other.

Equation (34) can be described as

vec(Υ)︸ ︷︷ ︸
y

=
(

IT ⊗ Ξ
)

︸ ︷︷ ︸
Z

vec(H2,q1)︸ ︷︷ ︸
θ

. (38)

Equation (38) can be solved in the least-squares sense with added equality constraints
representing the prior knowledge. This leads to a new problem:

min
θ
‖y− Zθ‖2

2, (39)

which is subject to the following equality constraints:

Aeqθ = beq, (40)

where Aeq ∈ Rc×(qnynφ(pnynφ+pnunφ)+qnynφnunφ), beq ∈ Rc×1, and c is the number of constraints.

4.3.1. Known Steady-State Gain

Assume that it takes k sampling times for the system to settle and that q impulse
response parameters, g0, g1, . . . , gq−1, are estimated. The constraints can be described as

k−1

∑
i=0

gi = Kss, gk = gk+1 = · · · = gq−1 = 0nynφ×nunφ , (41)
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where Kss ∈ Rnynφ×nunφ is the DC gain matrix. It can be described as

Kss =

 K11 · · · K1nunφ

...
...

...
Knynφ1 · · · Knynφnunφ

, (42)

and Kij is the DC gain from the j-th input to the i-th output.
In view of Equation (37), applying this vec operation for both sides in each constraint

in (41), we have

Υ×



vecg0
vecg1

...
vecgk−1

vecgk
vecgk+1

...
vecgq−1


︸ ︷︷ ︸

θg

=


vecKss

0nynφnunφ×1
...

0nynφnunφ×1

 (43)

where

Υ =


Ilm×lm Ilm×lm · · · Ilm×lm 0lm×lm 0lm×lm · · · 0lm×lm
0lm×lm 0lm×lm · · · 0lm×lm Ilm×lm 0lm×lm · · · 0lm×lm
0lm×lm 0lm×lm · · · 0lm×lm 0lm×lm Ilm×lm · · · 0lm×lm

...
...

. . . . . . . . . . . . . . .
...

0lm×lm 0lm×lm · · · 0lm×lm 0lm×lm 0lm×lm · · · Ilm×lm

, (44)

Equation (43) can be expressed as[
11×k ⊗ Ilm×lm 0lm×(q−k)lm
0(q−k)lm×klm I(q−k)lm×(q−k)lm

]
θg =

[
vec(Kss)

0(q−k)lm×1

]
, (45)

where the symbol l = nynφ, m = nunφ, 1p×q is a matrix of ones of size p× q and 0p×q is a
matrix of zeros of size p× q. In view of θ, Equation (45) can be described as

Aeqθ = beq, (46)

where

Aeq =

[
0(q−k+1)lm×ql(pl+pm)

11×k ⊗ Ilm×lm 0lm×(q−k)lm
0(q−k)lm×klm I(q−k)lm×(q−k)lm

]
,

beq =

[
vec(Kss)

0(q−k)lm×1

]
.

(47)

4.3.2. Zero Transfer Functions

The outputs of some multiple-input multiple-output systems are unaffected by the in-
puts. Accordingly, some transfer functions are zero. However, by identifying such systems
based on noisy data, the zero transfer functions cannot be established. The transfer functions
might be pre-specified during the identification phase to address the aforementioned issue.

If the j-th input and the i-th output have a zero transfer function and all the impulse
response coefficients at this channel are zeros,

gij
0 = gij

1 = · · · = gij
q−1 = 0, (48)
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where the q constraints are formed. The zero transfer function can be written as

(01×ql(pl+pm) 01×klm+l(j−1)+i−1 1 0 . . . 0)θ = 0. (49)

Therefore, Aeq and beq can be described as

Aeq =

 0q×ql(pl+pm)

01×l(j−1)+i−1 1 0 · · · 0
01×lm+l(j−1)+i−1 1 0 · · · 0

...
...

...
...

...
01×(q−1)lm+l(j−1)+i−1 1 0 · · · 0


∈ Rq×(ql(pl+pm)+qlm),
beq = 0q×1.

(50)

Noted that each zero transfer function needs q constraints.
The impulse response parameters θ̂g can be estimated, and the following Hankel

matrix T is formed.

T =


ĝ1 ĝ2 · · · ĝq/2
ĝ2 ĝ3 · · · ĝq/2+1
...

...
...

...
ĝq/2 ĝq/2+1 · · · ĝq−1

. (51)

The matrix T can be factorized using Kung’s realization algorithm as

T = USV T . (52)

The observability matrix Γ and controllability matrix ∆ are obtained as

Γ = U(:, 1 : n)S1/2, ∆ = S1/2V(:, 1 : n)T . (53)

The system matrices are given using Γ and ∆ as

Â = Γ†Γ, Γ = Γ(1 : l(q− 1), :), Γ = Γ(l + 1; ql, :).
B̂ = ∆(:, 1 : m), Ĉ = Γ(1 : l, :), D̂ = ĝ0.

(54)

Remark 1. The proposed approach’s performance will decrease, just like any other identification
method, if the input–output data are insufficiently informative because of a low signal-to-noise ratio
or inadequate input excitations. The generalized orthonormal basis functions are constructed and
effected by the rational inner function. To solve this problem, prior information is integrated through
the use of constrained least squares.

Remark 2. It should be noted that a large number of traditional subspace identification approaches
are inapplicable to closed-loop data. This issue stems from an identification procedure step that
projects onto the future horizon and necessitates that the input from the future horizon be uncor-
related with the noise from the past. The proposed approach avoids this projection. Consequently,
the cases of closed-loop data can be valuably applied to the proposed approach.

4.4. Summary of Subspace System Identification Algorithm

The proposed CLSPI-GOBF method is summarized in Table 1.
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Table 1. Summary of the CLSPI-GOBF method.

step 1:
(1) Construct the data matrices Yp,q,N , Up,q,N , Y0,p,N , U0,p,N . Form Z, y in Equation (38).
(2) Transform the prior information into Aeq and beq. Utilizing Equation (40) as a
constraint, the least-squares optimization problem is solved in Equation (39).
step 2:
(3) Estimate the impulse response parameters θ̂g by Equation (51).
(4) Factorize T using Kung’s realization algorithm in Equation (52).
step 3:
(5) Estimate the observability matrix Γ and controllability matrix ∆ using Equation (53).
(6) Extract the system matrices by Equation (54).

5. Numerical Simulation

The effectiveness of the proposed CLSPI-GOBF method was evaluated by the follow-
ing examples.

5.1. Example 1: Known Steady-State Gain

Consider a second-order system with a first-order controller [29]. For the transfer
functions of the process, the controller is

G(s) =
b1s + b2

s2 + a2s + a1
, C(s) =

10s + 15
s

, (55)

and the first-order inner function is used:

φ(s) =
s− p
s + p

. (56)

The reference signal r(t) was chosen as pseudo-random binary sequence signals; d(t)
was set to zero; v(t) is a white noise. The signal-to-noise ratio was equal to 10 dB. The
sampling period was chosen to be 0.01 s.

We set a2 = 0.5, a1 = 1, b1 = b2 = 1, and the number of each of the future and
past block rows p = q = 10. The experiments were conducted by 100 Monte Carlo
experiments. The output response for Example 1 is depicted in Figure 1. The closed-loop
subspace identification using generalized orthonormal basis functions (CLS-GOBF) and
bias-eliminated least-squares method (BELSM) in [30] are compared in Figure 1. It indicates
that the line of the step response from CLSPI-GOBF is closer to the step response of the
true system.

The Bode diagram of the CLSPI-GOBF, CLS-GOBF, and BELSM is shown in Figure 2.
The CLSPI-GOBF appeared to have a higher identification effectiveness than the other
approaches, as both identified curves were able to converge to the true ones. This suggests
a higher identification performance for the proposed CLSPI-GOBF approach.

For clarity, the estimated values for the CLSPI-GOBF, CLS-GOBF, and BELSM are
described in Table 2.

Table 2. The values of parameter estimation.

Parameters True
CLSPI-GOBF CLS-GOBF BELSM

Mean Variance Mean Variance Mean Variance

a1 1 0.9957 0.0004 0.9578 0.0052 0.9347 0.0082
a2 0.5 0.4914 0.0005 0.4905 0.0041 0.4571 0.0021
b1 1 0.9685 0.0007 0.9458 0.0009 0.9120 0.0062
b2 1 0.9741 0.0005 0.9647 0.0010 0.9249 0.0073
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Figure 1. Comparison of step responses for simulation Example 1.
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Figure 2. Comparison of Bode diagram for Example 1.

The mean values of the CLSPI-GOBF approach were more accurate than those obtained
using the other methods, as indicated by the results displayed in Table 2. The correspond-
ing values of the CLSPI-GOBF were smaller than the other methods’ values in terms
of variance estimations, indicating that the CLSPI-GOBF fluctuations were more mild.
The results showed that the CLSPI-GOBF, the proposed method, performed better in the
identification process.
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5.2. Example 2: Zero Transfer Functions

Consider the following continuous-time system [29]:

G(s) =
[

G11(s) G12(s)
G21(s) G(s)22

]
=


2

(s + 2)
0

0
2

(s + 2)

, (57)

with the following feedback controller:

u(t) =
[

1 0
0 1

]
y(t) + r(t). (58)

The first-order inner function is used:

φ(s) =
s− p
s + p

. (59)

which has two zero transfer functions G12 and G21, while G11 and G22 have unity gains.
The system was excited using the zero-mean white Gaussian process with unit variance.
One hundred Monte Carlo simulations were performed.

The Hankel matrices had N = 81 columns, and the horizons for the three methods
were all set to p = q = 10. We set the sampling time to 0.01 s. The CLSPI-GOBF was
compared with the CLS-GOBF and BELSM in order to verify the identification algorithm’s
superiority. The average step responses from each of the three methods with white noise
are displayed in Figure 3. The step response from the CLSPI-GOBF is shown in Figure 3 as
a line of small circles, which is more consistent with the step response of the true system.
Figure 4 describes the Bode diagram of the CLSPI-GOBF, CLS-GOBF, and BELSM. It can
clearly be seen that the identified curves of the CLSPI-GOBF were closer than the other
identified methods. Therefore, it had a better identification performance.
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Figure 3. Comparison of step responses for Example 2.



Mathematics 2023, 11, 4924 14 of 16

−30

−20

−10

0

10
From: In(1 )

T
o

: O
u

t(
1

)

−90

−45

0

T
o

: O
u

t(
1

)

−30

−20

−10

0

10

T
o

: O
u

t(
2

)

10
−1

10
0

10
1

10
2

−90

−45

0

T
o

: O
u

t(
2

)

From: In(2 )

10
−1

10
0

10
1

10
2

 

 

Bode Diagram

Frequency  (rad/s)

M
a

g
n

it
u

d
e

 (
d

B
) 

; P
h

a
se

 (
d

e
g

)

TRUE

CLS−GOBF

BELSM

CLSPI−GOBF

−6

−4

−2

T
o

: 
O

u
t(

1
)

−4

−2

0

2

4

From: In(1 )

10
−1

10
0

10
1

 

 

From: In(1 )

From: In(2）

From: In(2）

T
o

: 
O

u
t(

2
)

T
o

: 
O

u
t(

1
）

10
−1

10
0

10
1

10
−1

10
0

10
1

10
−1

10
0

10
1

 

−2

0

2

−25

−20

−15

−10

−5

T
o

: 
O

u
t(

2
)

Figure 4. Comparison of Bode diagram for Example 2.

For clarity, the mean and variance of the pole estimations are depicted in Table 3.

Table 3. The values of pole estimations for Example 2.

Approach Mean of p1 Variance of p1 Mean of p2 Variance of p2

CLSPI-GOBF −1.9759 0.0025 −1.9654 0.0086
CLS-GOBF −1.9524 0.0457 −1.9204 0.0527

BELSM −1.9140 0.1547 −1.8580 0.8426

Table 3 describes that the estimated values by the CLSPI-GOBF were superior to
those generated by the other methods. Comparing the CLSPI-GOBF to the other methods,
the former yielded more-accurate and -consistent results.

6. Conclusions

A closed-loop continuous-time subspace identification with prior information was
proposed. The transformation of the continuous-time stochastic system into a discrete-time
stochastic system was the foundation of the method. Then, the continuous-time system
model was obtained by inversely transforming the deterministic portion. Based on the
principal component analysis method, the consistent estimate of the closed-loop systems
can be obtained. Prior information was introduced in terms of equality constraints based
on the constrained least squares. Kung’s realization approach can be used to extract the
system matrices and increase the accuracy of the impulse response parameters with the
prior information. The simulation results showed that the proposed method increased
the accuracy of the identified model. It is important to extend the proposed method to
inaccurate or incomplete prior information, which will be the future work.
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