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Abstract: The mutual influence between information and infectious diseases during the spreading
process is becoming increasingly prominent. To elucidate the impact of factors such as higher-
order interactions, interpersonal distances, and asymptomatic carriers on the coupled propagation
of information and infectious diseases, a novel coupled spreading model is constructed based on
a two-layer complex network, where one layer is a higher-order network and another layer is a
weighted network. The higher-order interactions in information propagation are characterized using
a 2-simplex, and a sUARU (simplicial unaware-aware-removed-unaware) model is employed to
articulate information propagation. The inter-individual social distances in disease propagation
are represented by the weights of a weighted network, and an SEIS (susceptible-exposed-infected-
susceptible) model is utilized to describe disease propagation. The dynamic equations of coupled
spreading are formulated utilizing the microscopic Markov chain approach. An analytical expression
for the epidemic threshold is obtained by deriving it from the steady-state form of the dynamic
equations. Comprehensive simulations are conducted to scrutinize the dynamic characteristics
of the coupled spreading model. The findings indicate that enhancing the effects of higher-order
interactions in information propagation and increasing inter-individual social distances both lead to
higher outbreak thresholds and greater spreading of diseases. Additionally, a stronger infectivity
among asymptomatic carriers and an extended incubation period are favorable for the outbreak and
spread of an epidemic. These findings can provide meaningful guidance for the prevention and
control of real-world epidemics.

Keywords: multilayer networks; simplicial complexes; coupled propagation; weighted network

MSC: 91D30

1. Introduction

Infectious diseases have profound repercussions on human society. The outbreak of
epidemics not only directly jeopardizes human health and lives, but also leads to societal
and economic instability [1,2]. For example, the COVID-19 pandemic, leading to infections
numbering in the hundreds of millions, has inflicted substantial damage on both human
health and the global economy [3–5]. Addressing an epidemic requires collective efforts
from government agencies, healthcare institutions, research organizations, and the general
public. Effective epidemic prevention and medical assistance strategies are essential tools
for mitigating the widespread transmission of epidemics. However, the development of
these effective measures requires a comprehensive understanding of the epidemiological
dynamics of the disease. Therefore, the propagation dynamics of infectious diseases has
garnered widespread attention among researchers. Many researchers have generated a
wealth of valuable research findings through the use of mathematical models and computer
simulations [6–9].
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The emergence of complex networks has provided methodological support for the
structured representation of group interactions based on contact relationships, offering
a new perspective for the study of epidemiological dynamics. The integration of com-
plex network theory with traditional infectious disease models has propelled further
advancements in the study of propagation dynamics of infectious diseases [10]. A repre-
sentative research study yielded results distinct from the previous research, indicating
the absence of an outbreak threshold in propagation models based on scale-free net-
works when the network size approaches infinity [11]. This astonishing research finding
has spurred numerous researchers to further investigate the dynamics of propagation
based on complex networks. As research advances, many social factors have been taken
into account in network propagation models. For instance, there has been significant
research into how social elements like information dissemination, vaccination behavior,
and resource allocation influence the patterns of infectious disease spread in recent
years. Taking into consideration that there may be variations in the transmission path-
ways between social and biological transmission, researchers have gone on to construct
multi-layered complex network models to explore the coupled dynamics of social and bi-
ological transmission [12–18]. For example, Granell et al. [19] were pioneers in coupling
unaware-aware-unaware (UAU) information dissemination with susceptible-infected-
susceptible (SIS) epidemic spread within a two-layer complex network. Mathematical
analysis of their work revealed that the propagation of awareness could indeed inhibit
outbreak occurrences. Li et al. [20] studied the phenomenon of epidemic thresholds in a
time-varying multiplex network with individual layer preferences. They indicated that
as the effective information dissemination rate increases and hierarchical preferences
decrease, it helps to increase the epidemic threshold. Wang et al. [21] studied the impact
of competitive dissemination of positive and negative information on the epidemic
threshold, and pointed out that positive information is beneficial for suppressing dis-
ease outbreaks. Gao et al. [22] conducted in-depth research on the interplay between
population flow patterns across subpopulations and the dissemination of individual
awareness. Their findings show that densely populated public places are more likely
to cause large-scale outbreaks of infectious diseases. Chen et al. [23] considered the
influence of inter-layer mutual confirmation mechanism when studying the coupled
transmission of information and infectious diseases. Their research shows that actively
disclosing one’s infection and state of consciousness to those around them can effectively
suppress the spread of the epidemic.

Most of the prior research in coupled spreading dynamics on complex networks has
conventionally operated under the assumption that information or diseases can exclu-
sively disseminate through direct contact relationships between two individuals [24–29].
However, beyond these individual direct contact relationships, the high-order interac-
tions collectively generated by multiple individuals also exert a noteworthy influence on
the transmission patterns and rates of information or infectious diseases. For example,
the collective influence generated by multiple rumor spreaders can lead individuals
to believe in the rumor. As a consequence, researchers have initiated investigations
into the utilization of high-order structures within complex networks, such as simpli-
cial complexes, to delineate high-order interactions in propagation models. Iacopini
et al. [30] constructed a stochastic simplicial-shaped complex network to model epidemic
spreading and employed a mean-field approach to determine the network’s outbreak
threshold. Their findings suggested that the simplicial structure induces discontinuous
phase transitions, allowing both endemic and healthy states to coexist. Nie et al. [31]
used a microscopic Markov Chain approach (MMCA) to analyze the higher-order inter-
actions of competitive transmission between diseases, and pointed out that individuals
with higher degree values are more capable of spreading diseases. Xue et al. [32] con-
ducted research on the cooperative spread of two diseases within higher-order network
structures, and analyzed the stability of the fixed points using the MMCA and mean-
field methods. Moreover, recent research on the coupled dynamics of information and
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infectious diseases within multilayer complex networks has incorporated high-order
interactions into consideration. Fan et al. [33] leveraged simplicial complexes to estab-
lish a UAU-SIS model, characterizing the coupled dynamics of epidemic spread and
awareness propagation. Chang et al. [34] integrated heterogeneous mean-field theory
with effective degree theory to investigate the threshold characteristics of higher-order
multilayer networks. Their work emphasized the profound influence of self-awareness
on bistable occurrences. Li et al. [35] applied the MMCA and mean-field method to
analyze higher-order co-evolutionary networks of information diseases on both syn-
thetic and real networks. These studies have deepened our understanding of real-world
transmission phenomena.

The research on coupled dynamics of information and infectious diseases, while
considering high-order interactions, is still in its early stages, providing substantial oppor-
tunities for further exploration and investigation. In existing coupled spreading models
that incorporate high-order interactions, many crucial factors have not received thorough
consideration, such as the latency of infections and the interpersonal social distance. There-
fore, building upon existing research, we have devised a novel coupled spreading model
for information and infectious diseases, incorporating high-order interactions. The coupled
spreading model is developed within a multilayer complex networks framework. The up-
per layer embodies a high-order complex network utilizing simplicial complexes, while the
lower layer consists of a weighted complex network. Information and infectious diseases
spread within the upper and lower layers, respectively. The coupled propagation model
we proposed has two main features that are not present in existing research works [19,33].
Firstly, in information spreading that considers high-order interactions, we include individ-
uals who possess information but do not transmit it. Secondly, in the context of disease
propagation, we consider the impact of both asymptomatic carriers and the interpersonal
social distance. These two features enable our proposed model to not only provide a more
accurate characterization of the information dissemination process but also to analyze
additional factors influencing the spread of infectious diseases. Furthermore, the model
we constructed is more versatile, as setting some parameters to specific values allows it
to be simplified into the models presented in references [19,33]. Considering the coupled
dynamics of information and infectious disease dissemination, along with the structural
features of the two-layer network, we have defined the transition probabilities between
states in the proposed model. In particular, we have presented a mathematical description
of high-order interactions using simplicial complexes in the context of information spread.
Through further derivations of the coupled spreading dynamic equations constructed using
the MMCA, we obtain the expression for the outbreak threshold of infectious diseases
influenced by information spread. This threshold equation highlights that the state of infor-
mation propagation in the upper layer plays a pivotal role in determining the occurrence of
an infectious disease outbreak. High-order interactions alter the outbreak threshold of the
epidemics by influencing the propagation state of information. This study also carried out
comprehensive simulation experiments to further investigate the propagation dynamics
of the proposed model. The simulation results suggest that high-order interactions in
information spreading, as well as the interpersonal social distance between individuals,
both exert a certain level of influence on outbreak of disease and scale of epidemics with
latent periods.

The structure of this paper is arranged as follows. Section 2 offers a comprehensive
introduction to the constructed-coupled disseminating model. In Section 3, the model
is formally presented in mathematical terms with accompanying theoretical derivations.
Section 4 conducts an in-depth analysis and discussion of the obtained simulation results.
Finally, Section 5 presents a comprehensive summary of the research findings.
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2. Model Description

Building upon prior research, we have devised a coupled propagation model that
incorporates high-order interactions within a two-layer complex network, illustrated in
Figure 1.
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Figure 1. (Color online) Outline of the two-layer complex networks utilized in the proposed model,
including the information propagation layer (upper layer) and the epidemic transmission layer (lower
layer). The blue triangles in the upper layer represent 2-simplex constructed from three nodes. The
varying thickness of the edges in the lower layer network indicates different edge weights.

In the upper layer, we incorporate 2-simplices into traditional unweighted and undi-
rected complex networks to represent high-order interactions in information diffusion. We
employ the simplicial unaware-aware-removed-unaware (sUARU) model to elucidate the
process of information dissemination. The upper layer comprises three states: U signifies
individuals who are unaware of the information, A denotes those who are aware and
actively spread it, and R represents individuals who are aware but choose not to spread it.
Individuals in the U state can receive information from their A state neighbors. In addition
to edge-based pairwise interactions, high-order interactions facilitated by 2-simplices can
further enhance information diffusion, as demonstrated in panel (a) of Figure 2.
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Figure 2. (Color online) Propagation modes and state transition relationships within the coupled
spreading model. Panels (a–c) illustrate the propagation of information using two different methods.
Panel (d) demonstrates that infectious diseases spread exclusively through individual-to-individual
edge interactions. Panel (e) represents the possible state transitions that individuals may undergo
during information propagation, while panel (f) illustrates the potential state transitions individuals may
experience in the coupled spreading process, where XS and ZS ∈ {US, AS, RS}, and YE ∈ {UE, AE, RE}.
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In a 2-simplex with three nodes, when two of them are in state A, information is not
only transmitted via edges with probability λ but also generates an additional information
transmission rate λ∆ due to high-order interactions. It is worth noting that the information
transmission rate λ∆ only occurs when two nodes within a 2-simplex are both in state A
simultaneously. In panels (b,c) of Figure 2, information can only be transmitted through
edges with a probability of λ under the conditions mentioned above. Panel (d) in Figure 2
illustrates potential state transitions that individuals may undergo during the information
propagation process. In contrast to the UAU information propagation model [36], indi-
viduals in the U state exhibit two possible state transitions upon receiving information,
while individuals propagating information enter the R state before ultimately forgetting
the information. The developed sUARU model provides a more accurate depiction of
real-world information propagation mechanisms. Further explanations of the parameters
involved in information propagation can be found in Table 1.

Table 1. Symbols and their explanations.

Symbol Explanation

β The infectivity of symptomatic infected individuals.
µ The recovery rate of individuals with symptomatic infections.
θ The decay coefficient of transmission rate for asymptomatic infected individuals relative to symptomatic

transmitters, where θ ∈ (0, 1).
ζ The probability of asymptomatic individuals transitioning to symptomatic infected individuals.
η The probability of individuals unaware of information becoming information spreaders upon gaining

knowledge of the information.
δ The likelihood of individuals with state R forgetting the information.
φ The probability of information spreaders discontinuing information propagation.
λ The likelihood of information spreaders transmitting information to their neighbors.

λ∆ Additional information transmission rates generated by high-order interactions based on 2-simplices.
γ The decay coefficient of infection rate for individuals who have received information.

In the lower layer, we employ the susceptible-exposed-infected-susceptible (SEIS)
model to illustrate the dynamics of disease transmission. In this layer, individuals exist
in one of three states: S, E, or I. State S represents individuals who are vulnerable to
the infection but currently uninfected, while state E signifies individuals who have been
exposed to the infection and are presently in the incubation period. Importantly, even
though individuals in the state E do not display symptoms, they have the capacity to
transmit the disease. As shown in Figure 2d, individuals in both the states E and I can
transmit the disease to individuals in the state S, but the transmission probabilities vary
slightly. Drawing from real-world transmission scenarios, we assume that individuals in
the state E have a lower transmission capability compared to those in the state I, denoted
as θ ∈ (0, 1). In Figure 2, panel (f) illustrates the potential state transition mechanisms
that individuals may undergo during the spread of infectious diseases. Unlike the SIS
model [37–40], individuals, after becoming infected, first enter an asymptomatic latent
period (i.e., the state E), and then progress to a symptomatic phase (i.e., the state I). All
infected individuals only recover after entering the state I. We utilize a weighted network
in the lower layer to model the physical contact relationships among individuals, with
weight values ranging from 0 to 1. These weights in the lower layer network signify the
level of interpersonal social distance between individuals, where larger values indicate
closer relationships. The probability of infectious disease transmission is influenced by
the degree of interpersonal closeness, with higher weight values being more conducive to
disease transmission.

The dashed lines linking the upper and lower network depict the coupled relationship
between information and infectious diseases. Information primarily exerts a suppressive
effect on disease transmission, while infectious diseases mainly facilitate information
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propagation. Specifically, on the one hand, individuals with prior knowledge of the
disease take preventive measures to reduce susceptibility. This means that the infection
probability of individuals in states A or R is lower than that of individuals in state U. On
the other hand, individuals unaware of disease information immediately become aware
of disease transmission upon developing symptoms. This means that individuals in state
U transition to states A or R as soon as they become symptomatic infected individuals.
The proposed model includes a total of 8 states, namely US (unaware-susceptible), UE
(unaware-exposed), AS (aware-susceptible), AE (aware-exposed), AI (aware-infected), RS
(removed-susceptible), RE (removed-exposed), and RI (removed-infected). The UI state is
not included in this coupled spreading model because symptomatic individual is already
conscious of the presence of the disease.

3. Theoretical Analysis

To gain deeper insights into the dynamic properties of the proposed coupled spreading
model, we employ the MMCA [41–43] to formulate the dynamic propagation equations. To
delineate the configuration of the upper and lower layers, we utilized adjacency matrices A
and C. Matrix A stores the structural information of the upper layer, where each element
aij can take on either a value of 1 or 0. A value of 1 indicates the existence of a connection
between vertices i and j, while a value of 0 signifies the absence of an edge between the
two nodes. In contrast, matrix C represents the lower layer, where cij = 0 denotes no
edge between nodes, and 0 < cij < 1 signifies the presence of an edge with a weight of cij.
Additionally, we introduced a three-dimensional matrix B to store the 2-simplices in the
upper-layer network. The elements of this matrix, denoted as blij, take on a value of 1 when
vertices l, i, and j are all interconnected and form a 2-simplex, while blij = 0 indicates that
nodes l, i, and j do not constitute a 2-simplex.

The probabilities of an arbitrary individual i in the proposed coupled spreading model
being in any of eight states at any time step t are represented as pUS

i (t), pUE
i (t), pAS

i (t),
pAE

i (t), pAI
i (t), pRS

i (t), pRE
i (t) and pRI

i (t), respectively. Individuals in states US and UE
who have not acquired information through their neighbors at time step t are defined as
rU

i (t). Since information can spread through two different methods, rU
i (t) can be further

expressed as rU
i (t) = redg

i (t)rtri
i (t), where redg

i (t) and rtri
i (t) represent the probabilities

that individuals have not acquired information through direct interactions and high-order
interactions, respectively. The specific expressions for redg

i (t) and rtri
i (t) are as follows,

redg
i (t) =

N

∏
j
[1− aji pA

j (t)λ]

rtri
i (t) =

N

∏
j,l
[1− bl ji pA

j (t)pA
l (t)λ∆]

(1)

where pA
j (t) = pAS

j (t) + pAE
j (t) + pAI

j (t), pA
l (t) = pAS

l (t) + pAE
l (t) + pAI

l (t). Similarly, the
probabilities that individuals in the US, AS, and RS states have not been infected by their
neighbors at step t are represented as qU

i (t), qA
i (t), and qR

i (t), respectively. We assume that
individuals in the AS and RS states adopt the same effective preventive measures, so we
have qA

i (t)=qR
i (t). Based on the earlier definitions, these three probabilities are explicitly

formulated as follows,
qU

i (t) =
N

∏
j
[1− cji(pI

j (t) + θpE
j (t))βU ]

qA
i (t) =qR

i (t) =
N

∏
j
[1− cji(pI

j (t) + θpE
j (t))βA]

(2)
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where pE
i (t) = pUE

i (t) + pAE
i (t) + pRE

i (t) and pI
i (t)=pRI

i (t) + pAI
i (t). Additionally, βU

and βA represent the probabilities of infected individuals transmitting the infection to
individuals who have not acquired and have acquired information, respectively, and it
holds that βA = γβU = γβ.

Based on the previously described mechanisms of state transitions and the definitions
of corresponding parameters, we have constructed eight state transition probability trees to
visually depict all possible state transition relationships and their respective probabilities
within the system, as illustrated in Figure 3. More specifically, in each probability transition
tree within Figure 3, the leaf nodes representing states signify all the states to which the
state represented in the root node might transition in the subsequent step. We further
mathematically describe these eight state transition probability trees using MMCA to
derive the dynamic equations for the coupled spreading, as presented below.

Figure 3. The state transition probability trees describing the state transition relationships and
probabilities in the coupled spreading model.



pUS
i (t + 1) =pRS

i (t)δqU
i (t) + pUS

i (t)rU
i (t)q

U
i (t) + pRI

i (t)δµ

pUE
i (t + 1) =pRE

i (t)δ(1− ζ) + pRS
i (t)δ(1− qU

i (t)) + pUE
i (t)rU

i (t)(1− ζ)

+pUS
i (t)rU

i (t)(1− qU
i (t))

pAS
i (t + 1) =pUS

i (t)(1− rU
i (t))ηqA

i (t) + pAI
i (t)(1− φ)µ + pAS

i (t)(1− φ)qA
i (t)

pAE
i (t + 1) =pUE

i (t)(1− rU
i (t))η(1− ζ) + pAE

i (t)(1− φ)(1− ζ)

+pAS
i (t)(1− φ)(1− qA

i (t)) + pUS
i (t)(1− rU

i (t))η(1− qA
i (t))

pAI
i (t + 1) =pUE

i (t)rU
i (t)ζ + pUE

i (t)(1− rU
i (t))ηζ + pAE

i (t)(1− φ)ζ

+pAI
i (t)(1− φ)(1− µ)

pRS
i (t + 1) =pAS

i (t)φqA
i (t) + pAI

i (t)φµ + pRI
i (t)(1− δ)µ + pRS

i (t)(1− δ)qA
i (t)

+pUS
i (t)(1− η)(1− rU

i (t))q
A
i (t)

pRE
i (t + 1) =pAE

i (t)φ(1− ζ) + pAS
i (t)φ(1− qA

i (t)) + pRE
i (t)(1− δ)(1− ζ)

+pRS
i (t)(1− δ)(1− qA

i (t)) + pUS
i (t)(1− η)(1− rU

i (t))(1− qA
i (t))

+pUE
i (t)(1− η)(1− rU

i (t))(1− ζ)

pRI
i (t + 1) =pAI

i (t)φ(1− µ) + pAE
i (t)φζ

+pRE
i (t)ζ + pRI

i (t)(1− µ) + pUE
i (t)(1− rU

i (t))(1− η)ζ

(3)



Mathematics 2023, 11, 4904 8 of 17

where t denotes the time step. Equation (3) primarily calculates the probability of an
individual i being in each state in the next time step based on their probabilities of being in
each state at step t.

When step t is sufficiently large, all the equations in Equation (3) can reach an equilib-
rium state. In other words, the values of all the variables in Equation (3) no longer change
dynamically with time. Therefore, after Equation (3) reaches an equilibrium state, we have
pUS

i (t + 1) = pUS
i (t) = pUS

i , where pUS
i represents the stable value of that variable that no

longer varies with time. The same notation applies to other variables with time-dependent
parameters, and they can be denoted as pUE

i , pAS
i , pAE

i , pAI
i , pRS

i , pRE
i , pRI

i , rU
i , qA

i , and qR
i

at equilibrium. According to Equation (3), we can derive the following equation.

pI
i =pAI

i + pRI
i

=pAI
i (1− µ) + pAE

i ζ + pRE
i ζ + pRI

i (1− µ) + pUE
i ζ

pE
i =pUE

i + pAE
i + pRE

i

=pRE
i (1− ζ) + pRS

i δ(1− qU
i ) + pRS

i (1− δ)(1− qA
i )

+pUE
i (1− ζ) + pUS

i rU
i (1− qU

i ) + pUS
i (1− rU

i )(1− qA
i )

+pAE
i (1− ζ) + pAS

i (1− qA
i )

(4)

The epidemic threshold βC is a critical metric for assessing the ease or difficulty of an
epidemic outbreak. When the infection rate β is infinitely close to the epidemic threshold
βC, the infectious disease is in a state just before the outbreak. At this point, it can be
assumed that pI

i = εI
i and pE

i = εE
i , where both εI

i and εE
i are infinitesimal quantities.

Therefore, based on Equation (2), we can approximate qU
i and qA

i as
qU

i ≈ 1− βU ∑
j

cji(ε
I
j + θεE

j )

qA
i ≈ 1− βA ∑

j
cji(ε

I
j + θεE

j )
(5)

By further approximation based on Equations (3) and (5), we can obtain Equations (6)
and (7).

pUS
i = pUS

i rU
i + δpRS

i (6)

pAS
i + pRS

i = pUS
i (1− rU

i ) + pAS
i + (1− δ)pRS

i (7)

When β approaches βC infinitely and the system reaches an equilibrium state, the
summation of the two equations in Equation (4) can be expressed as

εI
i + εE

i =pAI
i + pRI

i + pUE
i + pAE

i + pRE
i

=εI
i (1− µ) + ζεE

i + (1− ζ)εE
i

+pAS
i (1− qA

i ) + pUS
i (1− qU

i )[r
U
i + γ(1− rU

i )]

+pRS
i (1− qU

i )[δ + γ(1− δ)]

=εI
i + εE

i − µεI
i + (1− qU

i )(pUS
i rU

i + pRS
i δ)

+(1− qA
i )[p

US
i (1− rU

i ) + pAS
i + pRS

i (1− δ)]

(8)

With the assistance of Equations (6) and (7), we can further represent Equation (8)
as follows,

ζεE
i = [pUS

i + γ(pRS
i + pAS

i )]βU
N

∑
j

cji(ε
I
j + θεE

j ) (9)
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Reforming Equation (9) once more yields Equation (10) as follows,

N

∑
j

{
[pUS

i + γ(pRS
i + pAS

i )](θ +
ζ

µ
)cji −

ζ

βU σji

}
εE

j = 0 (10)

where σji represents the elements of an N × N identity matrix. With matrix C as the
foundation, we can further construct an N × N matrix H with elements hji = [pUS

i +

γ(pRS
i + pAS

i )]cji and denote its maximum eigenvalue as Λmax(H). Consequently, the
epidemic threshold βC in the proposed coupled spreading model can be expressed as

βC =
ζµ

(ζ + θµ)Λmax(H)
(11)

From Equation (11), it is evident that the epidemic threshold βC in this model is
influenced not only by information propagation but also by factors such as the latent
period of the infectious disease and the interpersonal social distance. Additionally, setting
ζ = 1, θ = 0, η = 1, and δ = 1 in Equation (11) simplifies it into a form similar to
that in references [19,33]. This is primarily because, when ζ = 1 and θ = 0, the disease
transmission in the lower layer simplifies to an SIS model.

4. Numerical Simulation

To further validate the theoretical findings and analyze the dynamic properties of
coupled spreading, we conduct extensive computer simulations utilizing MMCA iterations
and Monte Carlo (MC) simulations. In all simulation experiments, the upper-layer network
is generated using the method described in reference [30], which is based on the ER model
and incorporates 2-simplices in a random network. This network consists of 2000 nodes
with an average degree of 6. Additionally, on average, each node in the network is
associated with 1.2 2-simplices. The lower-layer networks, denote as ER-weighted network
and BA-weighted network, are created based on the ER and BA models. The specific
generation process involves first generating an ER or BA network with an average degree
of 6. Subsequently, random numbers in the range of [w1, w2] are generated for each edge
as their respective edge weights, where 0 ≤ w1 < w2 ≤ 1. The number of vertices in each
network layer is 2000. Furthermore, we define ρA, ρR, ρE, and ρI as the densities of nodes
in the coupled spreading model with states A, R, E, and I, respectively, when the system
reaches an equilibrium state. For the initial time step of all simulation experiments, the
proportion of individuals in the UE and AI states is set to 2%, the proportion of individuals
in the AE, RS, RE, and RI states is set to 1%, and the proportions of individuals in the US
and AS states are set to 92% and 0%, respectively.

To assess the accuracy of the propagation dynamics equations constructed using
MMCA, we compared the experimental results obtained through MMCA iterations and
MC simulations, as illustrated in Figure 4. Visually, all eight sets of comparisons in Figure 4
exhibit relatively strong consistency. This suggests that the results obtained from both
methods are in good agreement. To further elucidate the level of concordance between
these two sets of experimental results, we computed the average relative errors for each
comparison. Moving from Figure 4a–d, the average relative errors for ρE comparisons
are 0.99%, 0.63%, 4.52%, and 7.55%, while for ρI comparisons, the average relative errors
are 1.02%, 0.77%, 4.56%, and 7.54%, respectively. These relatively low average relative
error values once again confirm the favorable alignment of results obtained from both
methods. Consequently, the constructed propagation dynamics equations exhibit a high
degree of precision. The subsequent analysis of coupled spreading dynamics properties will
only present results obtained through MMCA iterations. Beyond assessing the accuracy
of the propagation dynamics equations constructed using MMCA, we can also extract
some dynamic properties of coupled spreading from the results shown in Figure 4. In
each panel of Figure 4, the values of ρE are consistently greater than those of ρI under
the same conditions. This indicates that asymptomatic infected individuals outnumber
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symptomatic ones when the system reaches an equilibrium state. Moreover, a comparison
between panels (a,c) reveals that even after considering information and social distancing,
infectious diseases spread more readily in populations with scale-free contact structures.
The differences between panels (c,d) suggest that individuals implementing effective
protective measures after becoming aware of the disease can simultaneously reduce the
densities of both types of infections.
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Figure 4. (Color online) Variations in ρI and ρE with respect to the infection probability β. Simulation
results obtained through MMCA iterations and MC simulations. γ is set to 0.5 in panels (a,c) and 1 in
panels (b,d). In the lower layer, panels (a,b) adopt BA-weighted networks, while panels (c,d) adopt
ER-weighted networks. The values of the other parameters are defined as: λ = 0.2, µ = 0.4, ζ = 0.3,
θ = 0.3, δ = 0.6, η = 0.7, φ = 0.3, λ∆ = 0.6, w1 = 0 and w2 = 1. Results obtained from MC
simulations represent the average of 10 independent runs.

Figure 5 presents the variations in infection density at the equilibrium state of the
system under different high-order interaction effects in information propagation. It is
worth noting that when λ∆ = 0, it signifies the absence of high-order interactions in the
information propagation process. Overall, the results depicted in Figure 5 indicate that a
higher additional information transmission rate resulting from high-order interactions leads
to a more pronounced suppression of the outbreak of infectious diseases. This is primarily
attributed to the larger additional transmission rate, which facilitates the propagation of
information, and individuals who acquire this information can reduce the overall infection
density by taking certain protective measures. Comparing panel (a) with panel (b) and
panel (c) with panel (d) in Figure 5 reveals that the influence of high-order interactions in
information propagation becomes more pronounced when the information forgetting rate
δ is higher. The primary reason for this difference is that at lower information forgetting
rates, the edge-based transmission mechanism can already facilitate information spreading
to a sufficiently large scale, and the probability of the three nodes within the 2-simplex
being in state A or R is already quite high. Thus, the additional information transmission
rate generated by high-order interactions does not contribute significantly to information
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propagation. However, at higher information forgetting rates, the probability of nodes
within the 2-simplex being in state U is somewhat higher, making them more susceptible to
the influence of high-order interactions. Furthermore, Figure 6 demonstrates the impact of
different interpersonal social distances on the density of infected individuals. In Figure 6,
smaller values of w1 and w2 indicate larger social distances between individuals. When
both w1 and w2 are equal to 1, it represents the normal social distance without protective
measures among individuals. From Figure 6, it can be observed that when the social
distance between individuals is generally larger, the outbreak threshold for the disease is
the highest, and the number of infected individuals in a system at equilibrium is the lowest.
Therefore, increasing interpersonal social distance is not only a crucial measure to prevent
an epidemic outbreak but also a significant strategy to reduce the scale of an outbreak
once it occurs. Furthermore, the black lines in panels (a,b) of Figure 6 represent the results
obtained by simplifying the proposed model to the model presented in reference [33]. By
comparing the black line with the purple line in Figure 6, it is evident that under the same
conditions, the density of infected individuals in our proposed model is higher. This is
attributed, on the one hand, to individuals in state R impeding the spread of information in
the model, and, on the other hand, to individuals in state E being unable to self-perceive
the existence of the disease.
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Figure 5. (Color online) Variation in the sum of ρI and ρE concerning the infection rate β under
various high-order interaction effects. δ is set to 0.2 in panels (a,c) and 0.6 in panels (b,d). In the lower
layer, panels (a,b) adopt BA-weighted networks, while panels (c,d) adopt ER-weighted networks.
The values of the other parameters are defined as: λ = 0.2, µ = 0.4, γ = 0.5, ζ = 0.3, θ = 0.3, η = 0.7,
φ = 0.3, w1 = 0 and w2 = 1.
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 w1=0,w2=0.5
 w1=0.5,w2=1
 w1=0,w2=1
 w1=w2=1
 w1=w2=1(sUAU-SIS)

Figure 6. (Color online) The impact of diverse weight distributions in the lower-layer network on the
density of scale of infection (ρE + ρI) with changes in the infection rate β. The values of the other
parameters (except the black line) are defined as λ = 0.2, µ = 0.4, γ = 0.5, ζ = 0.3, θ = 0.3, δ = 0.6,
η = 0.7, φ = 0.3 and λ∆ = 0.6. The parameters for the black line are defined as λ = 0.2, µ = 0.4,
γ = 0.5, φ = 0.3, λ∆ = 0.6, ζ = 1, θ = 0, η = 1 and δ = 1. In the lower layer, panel (a) adopts a
BA-weighted network, while panel (b) adopts an ER-weighted network.

To offer a more thorough examination of the phase transition characteristics of the
coupled spreading model, we illustrate the variations in ρA, ρR, ρE, and ρI with respect to λ
and β in Figures 7 and 8. From the lower left regions of Figure 7a,b, it can be observed that
information propagation leads to outbreaks not only due to an increase in the information
transmission rate but also because of the facilitation of disease transmission.
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Figure 7. (Color online) Heatmaps illustrating the variations in ρA, ρR, ρE, and ρI with respect to λ

and β. Panels (a–d) represent ρA, ρR, ρE, and ρI , respectively. The lower-layer network employs an
ER-weighted network. The values of the other parameters are defined as: µ = 0.4, γ = 0.5, ζ = 0.3,
θ = 0.3, δ = 0.6, η = 0.7, φ = 0.3, λ∆ = 0.6, w1 = 0, and w2 = 1.
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Figure 8. (Color online) Heatmaps illustrating the variations in ρA, ρR, ρE, and ρI with respect to λ

and β. Panels (a–d) represent ρA, ρR, ρE, and ρI , respectively. The lower-layer network employs an
ER-weighted network. The associated parameters are defined as: µ = 0.4, γ = 0.5, ζ = 0.3, θ = 0.3,
δ = 0.6, η = 0.7, φ = 0.3, λ∆ = 0.6, w1 = 0 and w2 = 1.

In Figure 7a, at high information transmission rates, for example, λ = 0.75, ρA

initially increases subsequently declines with the elevation of the infection rate β. The
initial increase in ρA can be attributed to the increase in infection density and the higher
information transmission rate, which promotes information propagation, leading to a
substantial increase in individuals in states A and R in the system. However, when there
are too many individuals in the state R, it hinders the transmission of information to
individuals in the state A. Therefore, primarily a result of a further increase in the density
of individuals in the state R, driven by the increased number of infected individuals.
Nevertheless, the overall count of individuals who acquire the information increases with
the increasing infection rate β. This indicates that a larger outbreak of the infectious
disease has a stronger promoting effect on information transmission. From Figure 7c,d, it is
evident that an increase in the information transmission rate λ not only raises the threshold
but also reduces the scale of both asymptomatic and symptomatic infected individuals.
When comparing panels (c,d) of Figure 7, it can be noticed that changes in the information
transmission rate λ have a more pronounced effect on the density of asymptomatic infected
individuals. This is primarily because susceptible individuals tend to become asymptomatic
infected individuals first after being infected. Overall, promoting information transmission
is beneficial for diminishing the scale of infection. Furthermore, the dynamic characteristics
of coupled spreading shown in Figure 8 are similar to those in Figure 7. However, the
outbreak of infectious disease and information is more likely to occur and on a larger scale
when the low layer is BA-weighted network in Figure 8.

To further analyze the impact of factors like higher-order interactions, asymptomatic
infections, and individual social distances on the outbreak threshold of infectious diseases,
we present in Figure 9 the variations in the outbreak threshold with respect to several
different parameters. The panel (a) of Figure 9 illustrates the variation in the outbreak
threshold βC with respect to the decay coefficient θ under different levels of individual
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willingness for information propagation. The outbreak threshold βC exhibits a decreasing
trend with the increase in θ, indicating that the enhanced infectiousness of asymptomatic
carriers is more favorable for disease outbreak. Furthermore, an increased willingness of
individuals to actively propagate information after being informed can act as a deterrent
to the epidemic outbreak. Panel (b) of Figure 9 presents the variation in the outbreak
threshold, under different recovery rates concerning the probability ζ of infected indi-
viduals exhibiting symptoms. The increased probability of asymptomatic individuals
developing symptoms reduces the likelihood of epidemic outbreaks, mainly because a
portion of individuals becomes information spreaders after showing symptoms. Similarly,
an elevation in the recovery rate can raise the outbreak threshold of the infectious disease.
It is worth mentioning that when ζ = 0, it indicates that individuals in the lower layer do
not recover after infection and remain in the state E indefinitely, resulting in an outbreak
threshold of 0 at ζ = 0. Furthermore, from both panels (a,b) of Figure 9, it is evident that the
outbreak threshold for infectious diseases is higher when the lower layer is an ER-weighted
network. Therefore, making appropriate adjustments to the structural characteristics of the
population’s contact network when an infectious disease emerges is an essential measure
for preventing disease outbreak.

 w1=0, w2=0.5   w1=0.5, w2=1
 w1=0, w2=1      w1=w2=1
 w1=w2=1(sUAU-SIS)
 w1=w2=1(UAU-SIS)

Figure 9. (Color online) Variations in the epidemic threshold (βC) under different conditions. Panel
(a,b) show the effect of parameters θ, η, ζ, and µ on the outbreak threshold when γ = 0, φ = 0.3,
λ = 0.2, λ∆ = 0.6, w1 = 0, and w2 = 1. The values of µ are set to 0.8 in panels (a–c), and to 0.4 in
panel (d). Panels (c,d) show the impact of information propagation rate λ and the propagation rate
λ∆ of 2-simplex, along with different weighting methods, on the outbreak threshold when both lower
layers are ER-weighted networks and the parameters (excluding the black and green lines in panel
(d)) are defined as θ = ζ = φ = 0.3 and γ = 0. In panel (d), λ∆ for all lines except the black one is set
to 0.6, while λ∆ for the black line is set to 0. The other parameters for the black and green lines in
panel (d) are defined as γ = 0, φ = 0.3, ζ = 1, θ = 0, η = 1, and δ = 1.

The panel (c) of Figure 9 illustrates the variation in the outbreak threshold of infectious
diseases with variations in the information disseminating rate λ under different high-order
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interaction effects in the process of information dissemination. When λ is less than or
equal to 0.14, the threshold βC of infectious diseases is not influenced by the information
disseminating rate λ since the information in the upper layer has not erupted. When λ is
greater than 0.14, an outbreak of information occurs in the upper layer, and with an increase
in λ, the number of individuals with acquired information increases. Consequently, the
outbreak threshold βC increases with an increase in λ. The variation in λ∆ has no effect
on threshold when information has not erupted. However, after the information eruption,
an increase in λ∆ can raise the threshold. The panel (d) of Figure 9 displays the impact of
different individual social distances on the variation in βC with λ. Similar to panel (c), λ
only affects the outbreak threshold βC after the information outbreak. However, changes in
individual social distances have an impact both before and after the information outbreak,
with a greater impact after the outbreak. From panel (d), it can be observed that the
outbreak threshold is the smallest when individuals maintain normal social distances
(w1 = w2 = 1), and it is the largest when larger social distances are generally maintained
(w1 = 0, w2 = 0.5). These results indicate that it is essential to appropriately increase
individual social distances in the prevention and control of epidemics. Additionally,
the black and green lines in panel (d) represent the results obtained by simplifying the
proposed model to the models presented in references [19,33], respectively. By comparing
the red, black, and green lines, it is observed that under equivalent conditions, the outbreak
threshold of our proposed model before the information outbreak is relatively large. This
is mainly due to the lower infectiousness of individuals in state E compared to those in
state I. However, after the information outbreak, under the same conditions, the outbreak
threshold of our proposed model becomes relatively small. This is mainly due to the
fact that individuals in state R, being unfavorable for information spread, result in fewer
individuals with known information.

5. Conclusions

We construct a new multilayer complex network utilizing a higher-order network
containing 2-simplices and a weighted complex network. Based on this multilayer complex
network, we develop a novel coupled spreading model for information and infectious
diseases. The model incorporates higher-order interactions in information spreading
and considers the asymptomatic individuals and interpersonal social distances in dis-
ease spreading. Information spreading is characterized using an sUARU model, with
2-simplices representing higher-order interactions. Disease spreading is represented us-
ing an SEIS model, and a weighted network is employed to capture interpersonal social
distances. Utilizing state transition probability trees, we describe the transition relation-
ships between different states in the coupled spreading model. Subsequently, based on
these probability trees, we apply MMCA to further establish the dynamic equations of the
coupled spreading model. Further approximate derivations of the steady-state form of the
epidemic dynamics equation led to an analytical expression for the epidemic threshold.
The parameters in the analytical expression indicate that information spreading, disease
latent period, and individual social distance can directly influence the epidemic threshold.
Furthermore, we utilize two methods, MMCA iteration and MC simulation, to conduct
computer simulations for analyzing the spreading dynamics of the proposed model. The
impacts of higher-order interactions, social distance, and asymptomatic individuals on the
scale of disease spread and outbreak thresholds are emphasized. The findings indicate
that increasing the strength of high-order interactions in information spreading and en-
larging the social distance between individuals are advantageous for reducing the scale of
infectious disease outbreaks and increasing the epidemic threshold. This impact is more
pronounced when the lower layer is an ER-weighted network. Furthermore, a stronger
transmission capability of asymptomatic individuals is more likely to lead to an epidemic
outbreak, and a longer duration of individuals being asymptomatic also decreases the
epidemic threshold. The results of this study can enhance our comprehension of the impact
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of high-order interactions in information and social distance between individuals on the
spreading dynamics characteristics of infectious diseases with latent periods.
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