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Abstract: The complexity and isomerization of communication networks have put forth new require-
ments for cryptographic schemes to ensure the operation of network security protocols. Robust
cryptographic schemes have been gradually favored. The robust initialization vector (RIV) instead of
the synthetic initialization vector (SIV) was first introduced to support strong security and robust
authenticated encryption. This paper first introduces RIV to GCM-SIV1, proposes a robust variant,
GCM-RIV1, and proves that it ensures birthday-bound subtle AE (SAE) security and nonce-misuse
resistance. Then, to support beyond-birthday-bound (BBB) security with graceful degradation, we in-
troduce another, stronger security variant, GCM-RIV2, and prove that it allows gracefully degrading
BBB SAE security in the faulty nonce setting. Finally, the performance of GCM-RIV1 and GCM-RIV2
is discussed and compared.
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1. Introduction

With the development of cloud-end convergence networks, the industrial Internet,
and the Internet of Things, the security of critical infrastructure and protocols on the
network has become more and more important. As a high-speed lightweight authenticated
encryption (AE) scheme or protocol, Galois/Counter Mode (GCM) plays an important
role in network security communication. GCM is a commonly used AE mode based on
symmetric-key cryptography and included in the NIST and IETF standards, and it has been
widely used in cloud computing, the Internet of Things, network communication protocols,
and other fields [1–3]. For example, the well-known transport layer security protocol
TLS1.2 uses AES-GCM [3]. However, with the complexity, diversity, and heterogeneity of
communication networks, more robust and resilient cryptographic schemes have attracted
people’s attention.

Most AE schemes including GCM are nonce-based AE (nAE) schemes and they have
proven security in the nonce-respecting setting (the nonce used in the encryption algorithm
is distinct). In real life, however, the nonce is often reused. If the nonce is reused, the
security of nonce-respecting AE (NRAE) schemes represented by GCM will be broken. To
settle this problem, Rogaway and Shrimpton introduced the nonce-misuse-resistant AE
(MRAE) notion and proposed the first MRAE construction, called the synthetic initialization
vector (SIV) [4]. SIV is roughly as efficient as the general two-pass AE modes (such as
CCM), but more resilient to nonce misuse [4]. A large number of MRAE designs followed,
such as HBS [5], BTM [6], MR-OMD [7], GCM-SIV [8], AES-GCM-SIV [9], GCM-SIV1 [10],
GCM-SIV2 [10], CCM-SIV [11], SAEF [12], and GIFT-COFB [13]. Later, Dutta et al. refined
nonce misuse and introduced a faulty nonce notion to specify the degree of repeated nonce
tolerance [14]. The faulty nonce notion covers nonce respecting and nonce misuse. For
a µ-faulty nonce, if µ = 0, it is expected to degenerate to nonce-respecting; if µ ≥ 1,
it is nonce-misuse. At ASIACRYPT 2021, Choi et al. introduced the faulty nonce to AE,
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presented a parallelizable nonce-based AE mode SCM, and proved its security with graceful
degradation in the faulty nonce security model [15].

In addition to nonce misuse or a faulty nonce, Andreeva et al. proposed a new security
model, releasing unverified plaintext (RUP), on the traditional nAE security model, to adapt
to a new or side-channel environment in which plaintext information is released before ver-
ification [16]. There exist many RUP-secure AE schemes, such as COLM [17], OCB-IC [18],
ChaCha20-Poly1305 [19], LOCUS [20], LOTUS [20], GCM-RUP [21], and SAEB [22].

Besides this, Hoang et al. built a robust AE (RAE) notion to adapt to the ciphertext
expansion and then constructed a well-optimized AEZ mode [23]. Later, Badertscher et al.
investigated RAE and gave formal descriptions for two additional features of RAE [24].
Shrimpton et al. introduced a protected IV (PIV) framework and gave encode-then-encipher
over PIV AE with associated data schemes [25]. Barwell et al. introduced a subtle AE
(SAE) security notion using an extra “leakage” algorithm on the basis of the traditional AE
security model [26]. The SAE security covers RUP and RAE and is able to leak some infor-
mation about the invalid plaintext. At FSE 2016, Abed et al. extended the SIV framework by
adopting an additional pseudorandom function, introduced a robust initialization vector
(RIV) framework for robust authenticated encryption, and proved that RIV supports SAE
security [27]. RIV fully inherits the security guarantees of SIV, but, unlike SIV and other
MRAE schemes, RIV is also provably secure under RUP and RAE. The robustness men-
tioned here is a gradient concept. RAE is the most robust version and the traditional AE is
the most basic version. Aiming at various possible attacks or complex environments, robust
AE schemes are designed to meet the corresponding needs to maintain the confidentiality
and integrity of data.

Contributions. In order to adapt to the more complex network environment, the goal
of this paper is to put forward robust variants on the basis of GCM and incorporate as many
characteristics of robustness into our design scheme as possible. To enhance the robustness
of GCM-SIV1, we propose its robust variant, called GCM-RIV1, by introducing RIV instead
of SIV, and prove that GCM-RIV1 guarantees birthday-bound SAE security of n/2-bit
and nonce-misuse resistance if the underlying block cipher uses secure pseudorandom
permutation (PRP) and the hash function is XOR-universal, where n is the block size.
Then, to support beyond-birthday-bound (BBB) security with graceful degradation and a
nonce fault, we introduce another variant, GCM-RIV2, and prove that it not only enjoys
approximately 3n/4-bit BBB SAE security but also supports graceful security degradation.
Besides this, GCM-RIV1 and GCM-RIV2 are inverse-free, which reduces the cost of block
cipher decryption. Moreover, both of them are parallel and robust against the leakage of
invalid plaintext. Finally, we present a comparison between our schemes and previous
related schemes, which is shown in Table 1.

Table 1. Comparison between our schemes and previous related schemes, where # represents the
count, m represents the largest number of plaintext blocks, n is the block size, and NR (resp. NM,
resp. NF) stands for the nonce-respecting setting (resp. the nonce-misuse setting, resp. the nonce-
faulty setting).

Scheme # Key # Block
Cipher # Hash Inverse Free Reference

GCM 2 m 1 Yes [1]
GCM-SIV1 2 m + 1 1 Yes [10]
GCM-SIV2 6 2m + 4 2 Yes [10]
GCM-RUP 4 m + 3 2 No [21]
GCM-RIV1 2 m + 2 2 Yes Section 4
GCM-RIV2 4 2m + 2 2 Yes Section 5



Mathematics 2023, 11, 4888 3 of 25

Table 1. Cont.

Scheme NR Security NM Security NF Security Security
Model

Robust
Level

GCM n/2-bit - - nAE Low
GCM-SIV1 n/2-bit n/2-bit - nAE Medium
GCM-SIV2 2n/3-bit 2n/3-bit - nAE Medium
GCM-RUP n/2-bit n/2-bit - RUP High
GCM-RIV1 n/2-bit n/2-bit n/2-bit SAE Higher
GCM-RIV2 3n/4-bit 3n/4-bit 3n/4-bit 1 SAE Higher

1 3n/4-bit gracefully degradable as parameter µ increases.

The rest of the article is arranged as follows. Section 2 presents some basic preliminar-
ies and related security models. Section 3 shows the extended mirror theory. Sections 4
and 5 show our designs, GCM-RIV1 and GCM-RIV2, and derive their security proof,
respectively. Finally, we conclude this paper in Section 6.

2. Preliminaries

Some symbols used in the paper are described in Table 2.

Table 2. Descriptions of symbols.

Symbol Description Symbol Description

K the key space N the nonce space
H the associated data space M the plaintext space
C the ciphertext space T the authentication tag space
⊕ the bitwise XOR + the addition modulo 2n

· the multiplication modulo 2n || the concatenation of strings
{0, 1}∗ a set of all strings {0, 1}n a set of n-bit strings
Perm(n) an n-bit permutation set � uniform random sampling

Func(m, n) a set of all functions from m-bit
inputs to n-bit outputs AO = 1 an adversary A outputs 1 after

interacting with the oracle O
Pr[E] the probability of an event E [r] a set {1, 2, . . . , r}
> a valid (success) symbol ⊥ a reject (failure) symbol
msb the most significant bit lsb the least significant bit
|X| the number of elements in set X (2n)q 2n · (2n − 1) . . . (2n − q + 1)

Block Cipher. A block cipher is an important part of symmetric-key cryptography
and has been widely used in real life, such as standardized block ciphers SM4 and AES.
Its mathematical model can be expressed as E : K × {0, 1}n → {0, 1}n. We describe its
pseudorandom permutation (PRP) security model as follows.

Definition 1 (PRP Advantage [27]). Let A be an adversary that has access to an encryption
oracle E. Then, the PRP advantage of A against E is defined as

AdvPRP
E (A) =| Pr[K � K : AEK = 1]− Pr[π � Perm(n) : Aπ = 1] | .

Keyed Function. Let F : K× {0, 1}m → {0, 1}n be a keyed function. We describe its
pseudorandom function (PRF) security model as follows.

Definition 2 (PRF Advantage [27]). Let A be an adversary that has access to the function oracle
F. Then, the PRF advantage of A against F is defined as

AdvPRF
F (A) =| Pr[K � K : AFK = 1]− Pr[$ � Func(m, n) : A$ = 1] | .

Nonce-Based Authenticated Encryption (nAE). An nAE with associated data scheme
Π = (E ,D) consists of an encryption algorithm E : K × N × H ×M → C × T and a
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decryption algorithm D : K ×N ×H× C × T → M∪ {⊥}. The correctness means that
(C, T) = EK(N, A, M) if and only if (iff) M = DK(N, A, C, T). For nAE schemes, the conven-
tional security model includes IND-CPA and INT-CTXT, which are described as follows.

Definition 3 (IND-CPA Advantage [27]). LetA be an adversary that has access to an encryption
oracle E . Then, the IND-CPA advantage of A against Π is defined as

AdvIND−CPA
Π (A) =| Pr[K � K : AEK = 1]− Pr[A$ = 1] |

where $ is the ideal version of EK.

Definition 4 (INT-CTXT Advantage [27]). LetA be an adversary that has access to an encryption
oracle E and a decryption oracle D but does not make repeated queries. Then, the INT-CTXT
advantage of A against Π is defined as

AdvINT−CTXT
Π (A) = Pr[K � K : AEK ,DK f orges]

where forge means that DK returns anything other than ⊥ for any query of A.

Later, Rogaway and Shrimpton introduced the all-in-one AE security notion [4], which
is described as follows.

Definition 5 (nAE Advantage [4,27]). Let A be an adversary that has access to an encryption
oracle E and a decryption oracle D but does not make repeated queries. Then, the nAE advantage of
A against Π is defined as

AdvnAE
Π (A) =| Pr[K � K : AEK ,DK = 1]− Pr[A$,⊥ = 1] |

where $ is the ideal version of EK and ⊥ is a reject function that always returns a reject symbol.

The all-in-one AE security covered IND-CPA and INT-CTXT; the decomposition of
nAE security is described as follows.

Lemma 1 (Decomposition of nAE Security [26,27]). Let A be an adversary that runs in time
at most t and asks at most q queries of at most σ blocks to its respective oracles. Then, there exist
computationally bounded IND-CPA and INT-CTXT adversaries B and C, respectively, on Π such that

AdvnAE
Π (A) ≤ AdvIND−CPA

Π (B) + AdvINT−CTXT
Π (C),

where B and C each make at most q queries of at most σ blocks and run in time O(t) each.

Subtle Authenticated Encryption (SAE). An SAE scheme Π = (E ,D, Λ) introduced
by Barwell et al. [26] includes a new deterministic leakage algorithm Λ : K×N ×H× C ×
T → {>} ∪ L in addition to the encryption and decryption algorithms E and D as above,
where L is a non-empty leakage space.

Definition 6 (ERR-CCA Advantage [26,27]). Let A be an adversary that has access to an
encryption oracle E , a decryption oracle D, and a leakage oracle Λ but does not make repeated
queries. Then, the ERR-CCA advantage of A against Π is defined as

AdvERR−CCA
Π (A) =| Pr[K � K : AEK ,DK ,ΛK = 1]− Pr[K, K′ � K : AEK ,DK ,ΛK′ = 1] | .
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Definition 7 (SAE Advantage [26,27]). Let A be an adversary that has access to an encryption
oracle E , a decryption oracle D, and a leakage oracle Λ but does not make repeated queries. Then,
the SAE advantage of A against Π is defined as

AdvSAE
Π (A) =| Pr[K � K : AEK ,DK ,ΛK = 1]− Pr[K′ � K : A$,⊥,ΛK′ = 1] |

where $ is the ideal version of EK and ⊥ is a reject function that always returns a reject symbol.

Lemma 2 (Decomposition of SAE Security [26,27]). LetA run in time at most t and ask at most
q queries of at most σ blocks to its respective oracles. Then, there exist computationally bounded
IND-CPA, INT-CTXT, and ERR-CCA adversaries B, C, and D, respectively, on Π such that

AdvSAE
Π (A) ≤ AdvIND−CPA

Π (B) + AdvINT−CTXT
Π (C) + AdvERR−CCA

Π (D),

where B, C, and D each make at most q queries of at most σ blocks and run in time O(t) each.

AXU Hash Functions [27]. Let H : KH × {0, 1}∗ → {0, 1}n be a hash function, where
KH is a non-empty hash key space. Let L be a hash key randomly drawn from KH . If, for
any distinct x, x′ ∈ {0, 1}∗ and y ∈ {0, 1}n, it holds that

Pr[L � KH : HL(x)⊕ HL(x′) = y] ≤ ε,

then H is considered to be ε almost XOR universal (ε-AXU). If ε = 2−n, H is called an XOR
universal (XU) hash function.

H-Coefficient Technique [28,29]. The H-coefficient technique introduced by Patarin
is a very useful tool in the security proof of symmetric-key cryptography. Assume that
A is a deterministic adversary whose goal is to distinguish the real scheme X from the
ideal scheme Y. A interacts with X and Y and records a series of query–response pairs
as a transcript τ. Let Γ be the set of all possible transcripts. Let Xre be the random
variable interacting with X and Yid be the random variable interacting with Y. Then, the
H-coefficient lemma is presented as follows.

Lemma 3 (H-Coefficient Lemma [29]). Let Γ = Γgood ∪ Γbad and ε, δ ∈ [0, 1]. If Pr[Yid ∈
Γbad] ≤ ε and for all τ ∈ Γgood, Pr[Xre = τ]/Pr[Yid = τ] ≥ 1− δ, then

|Pr[AX = 1]− Pr[AY = 1]| ≤ ε + δ.

O extends τ. Given a transcript τ = {(x1, y1), . . . , (xq, yq)} and an oracle O, if O(xi) =
yi for all i ∈ [q], we consider that O extends τ, which is symbolized as O ` τ.

3. Extended Mirror Theory

Let E = E= ∪ E 6= be the following affine system of bi-variate equations and non-
equations [30,31]:

E=


X1 ⊕Y1 = λ1

X2 ⊕Y2 = λ2

. . . . . . . . . . . . . . .

Xq ⊕Yq = λq

E 6=


X′1 ⊕Y′1 6= λ′1
X′2 ⊕Y′2 6= λ′2
. . . . . . . . . . . . . . .

X′qv ⊕Y′qv 6= λ′qv
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The affine system E can be described as an undirected weighted graph G =< V, E, W >
or bipartite graph G =< V1, V2, E, W >, where the vertex set V = V1 ∪V2, the edge set E,
and the weighted function W are, respectively,

V1 = {X1, . . . , Xq, X′1, . . . , X′qv}, V2 = {Y1, . . . , Yq, Y′1, . . . , Y′qv},
E = {e = (X, Y)} ∪ {e′ = (X′, Y′)},
W : E→ {0, 1}n.

Let G= =< V=, E=, W > be the subgraph of G induced by E=. We assume that G= is
divided into α components with more than two vertexes and β components with only two
vertexes, i.e., G= = C1 ∪ . . . ∪ Cα ∪ D1 ∪ . . . ∪ Dβ.

We say that graph G is good if it satisfies the following three conditions:

• G= must be acylic, i.e., G= has no graph cycles.
• W(P) 6= 0 for all paths P in the graph G=, where W(P) = ∑e∈P W(e).
• W(C) 6= 0 for all cycles C with exactly one non-equation edge e′ (the remaining edges

are the equation edges) in the graph G, where W(C) = ∑e∈C W(e).

For a bipartite graph G, we say that G is good if it satisfies the following three
conditions:

• G= must be acylic, i.e., G= has no graph cycles.
• W(P) 6= 0 for all paths P with an even length in the graph G=, where W(P) =

∑e∈P W(e).
• W(C) 6= 0 for all cycles C with an even length containing exactly one non-equation

edge e′ (the remaining edges are the equation edges) in the graph G, where W(C) =
∑e∈C W(e).

Lemma 4 (Graph Description of Extended Mirror Theory [30]). Let G =< V, E, W > be a
good undirected weighted graph induced by E , and |V| = r, |E| = q + qv. Let qc be the total edges
of components with more than two vertexes. Then, the number of solutions to E that are chosen from
{0, 1}n is at least

(2n)r

2nq (1− 9q2
c

4 · 2n −
9q2

c q + 24qcq2 + 6qcq + 40q2

22n − 16q4

23n −
7qv

2n ).

Lemma 5 (Bipartite Graph Description of Extended Mirror Theory [30]). Let G =< V1, V2, E,
W > be a good undirect weighted bipartite graph induced by E , and |V1| = q′, |V2| = q′′, q′+ q′′ =
r, |E| = q + qv. Let qc be the total edges of components with more than two vertexes. Then, the
number of solutions to E that are chosen from {0, 1}n is at least

(2n)q′(2n)q′′

2nq (1− 9q2
c

4 · 2n −
9q2

c q + 6qcq2 + 4q2

4 · 22n − 8q4

3 · 23n −
5qv

2n ).

4. GCM-RIV1

We introduce RIV to GCM-SIV1, propose GCM-RIV1, and prove its sAE security.
GCM-RIV1 inherits the full security guarantee from GCM-SIV1 and provides stronger
security and robustness against the leakage of invalid plaintext.

4.1. Specific Description of GCM-RIV1

Let H : KH ×N ×H× {0, 1}∗ → {0, 1}n be an ε AXU hash function, and E : KE ×
{0, 1}n → {0, 1}n be a block cipher, where KH is a hash key space, N is a nonce space,H is
an associated data space, KE is an encryption key space, and n is the block size.

According to the idea of RIV, firstly, a nonce N ∈ N , an associated datum A ∈ H, and
a plaintext M ∈ {0, 1}∗ can be processed by a function constructed by a hash function H
with a hash key L ∈ KH and a block cipher E with an encryption key K ∈ KE to generate a
robust initialization vector V ∈ {0, 1}n. Then, the initialization vector V and the plaintext
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M are taken as inputs of the CounTeR (CTR) encryption algorithm with a block cipher EK
and return the ciphertext C. Again, the nonce N, the associated datum A, and the ciphertext
C are processed by the function constructed by a hash function H with a hash key L and a
block cipher E with an encryption key K and then it returns S. Finally, S is added to V to
generate the authentication tag T ∈ {0, 1}n.

The overview of GCM-RIV1 is illustrated in Figure 1. The key generation, encryption,
decryption, leakage, GHASH, and CTR algorithms are shown in Algorithms 1, 2, 3, 4, 5
and 6, respectively.

N,A,M

HL

EK

V

V + 1

EK

M1

C1

V + 2

EK

M2

C2

· · ·

· · ·

V +m

EK

Mm

Cm

N,A,C

HL

EK

S

S

V

T

Figure 1. GCM-RIV1: GCM variant with robust initialization vector.

Algorithm 1 The key generation algorithm: KG
Input: a key parameter k
Output: two keys (L, K)

(L, K) $←− KH ×KE
return (L, K)

Algorithm 2 The encryption algorithm: E
Input: two keys (L, K), a nonce N, an associated datum A, and a plaintext M
Output: a ciphertext C and a tag T
I = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
V = EK(I)
C = CTRK(V, M)
J = HL(N, A, C) = GHASHL(A, C)⊕ N||[0] n

4
S = EK(J)
T = V ⊕ S
return (C, T)

Algorithm 3 The decryption algorithm: D
Input: two keys (L, K), a nonce N, an associated datum A, a ciphertext C, and a tag T
Output: a plaintext M or ⊥
J = HL(N, A, C) = GHASHL(A, C)⊕ N||[0] n

4
S = EK(J)
V = T ⊕ S
M = CTRK(V, C)
I = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
V′ = EK(I)
if V′ = V, return M
else return ⊥ (INVALID)
endif
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Algorithm 4 The leakage algorithm: Λ
Input: two keys (L, K), a nonce N, an associated datum A, a ciphertext C, and a tag T
Output: a leaking invalid plaintext M or >
J = HL(N, A, C) = GHASHL(A, C)⊕ N||[0] n

4
S = EK(J)
V = T ⊕ S
M = CTRK(V, C)
I = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
V′ = EK(I)
if V′ = V, return >
else return M
endif

Algorithm 5 GHASH algorithm: GHASHL(A, M)

Input: a key L, an associated datum A, and a plaintext M
Output: a hash value h
A+ ← A||0n−|A| mod n, M+ ← M||0n−|M| mod n

X ← A+||M+||[|A|]n/2||[|M|]n/2
X1‖ . . . ‖Xx ← X, |Xi| = n, 1 ≤ i ≤ x
h← 0
for i = 1 to x do

h← (h⊕ Xi) · L
endfor
return h

Algorithm 6 CTR algorithm: CTRK(V, M)

Input: a key K, an initial vector V, and a plaintext M
Output: a ciphertext C
Partition M into M1‖ . . . ‖Mm, |Mi| = n, 1 ≤ i ≤ m− 1, 0 < |Mm| ≤ n
for i = 1 to m− 1 do

Ci ← EK(V + i)⊕Mi
endfor
Cm ← msb|Mm |(EK(V + m))⊕Mm
return C = C1||C2|| . . . ||Cm

4.2. Security of GCM-RIV1

We present the information-theoretic security proof of GCM-RIV1 under the assump-
tion that the underlying block cipher is a secure pseudorandom permutation.

Theorem 1. Let H be an ε-AXU hash function. Let A be an adversary against GCM-RIV1 that
makes at most q queries with at most σ blocks in total. Then, there exists an adversary B against E
that makes at most 7(2q + σ) queries, and one has

AdvSAE
GCM−RIV1(A) ≤ AdvPRP

E (B) + 6(q + σ)2 + 3q
2n + 12q2ε.

Proof. The idea of the proof depends on the decomposition of the SAE security model.
Thus, calculating the upper bound on AdvSAE

GCM−RIV1(A) is transformed into calculating the
upper bounds of AdvIND−CPA

GCM−RIV1(A1), AdvINT−CTXT
GCM−RIV1(A2), and AdvERR−CCA

GCM−RIV1(A3), where
A1,A2 and A3 are IND-CPA, INT-CTXT, and ERR-CCA adversaries against GCM-RIV1,
respectively, and each makes at most q queries of at most σ blocks.
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First, we upper-bound AdvIND−CPA
GCM−RIV1(A1). In the IND-CPA security model, the adver-

sary A1 makes q queries to the encryption oracle EK (real scheme GCM-RIV1) or $ (ideal
version of GCM-RIV1). According to Definition 3, one has

AdvIND−CPA
GCM−RIV1(A1) =| Pr[K � K : AEK = 1]− Pr[A$ = 1] |

We replace the block ciphers EK in GCM-RIV1 with a random permutation π, which
costs AdvPRP

E (B) for a PRP adversary B against E with at most q + σ queries.
We assume that the adversary A1 makes q queries (N1, A1, M1), . . . , (Nq, Aq, Mq) to

the encryption oracle and it reruns (C1, T1), . . . , (Cq, Tq). We record all query–response
pairs as a transcript τ = {(N1, A1, M1, C1, T1), . . . , (Nq, Aq, Mq, Cq, Tq)}.

According to the H-coefficient lemma (Lemma 3), here, we first define a bad transcript
and then state the probability of a bad transcript in the ideal world.

Definition 8. A transcript τ is called bad if one of the following events holds:

1. Collisions occur between the outputs of the ε-AXU hash function HL.

• Bad1: Ii = I j (Vi = V j) for any 1 ≤ i 6= j ≤ q.
• Bad2: Ji = J j (Si = Sj) for any 1 ≤ i 6= j ≤ q.
• Bad3: Ii = J j (Vi = Sj) for any 1 ≤ i, j ≤ q.

2. Collisions occur between the inputs or outputs of π.

• Bad4: Vi + k = V j + l for any 1 ≤ i, j ≤ q, 1 ≤ k ≤ mi, 1 ≤ l ≤ mj, and
(i, k) 6= (j, l).

• Bad5: Vi + k = I j for any 1 ≤ i, j ≤ q, 1 ≤ k ≤ mi.
• Bad6: Vi + k = J j for any 1 ≤ i, j ≤ q, 1 ≤ k ≤ mi.

3. Collisions occur between the authentication tags.

• Bad7: Ti = T j for any 1 ≤ i 6= j ≤ q.

Let Γbad be a set of all bad transcripts, Γ be a set of all transcripts, and Γ = Γbad ∪ Γgood.
Let Xre be the random variable interacting with the real scheme GCM-RIV1[π] and Yid be
the random variable interacting with the ideal version. We first upper-bound the probability
Pr[Yid ∈ Γbad].

For the event Bad1, given any two distinct tuples of the nonce, the associated data, and
the plaintext (Ni, Ai, Mi) 6= (N j, Aj, Mj), according to the properties of the ε-AXU hash
function H, the probability of Ii = I j is

Pr[Ii = I j] = Pr[HL(Ni, Ai, Mi) = HL(N j, Aj, Mj)] ≤ ε.

Therefore, for q queries, one has

Pr[Bad1] = ∑
1≤i 6=j≤q

Pr[Ii = I j] ≤ q2ε/2.

Similarly, for the event Bad2, one has Pr[Bad2] = ∑1≤i 6=j≤q Pr[Ji = J j] ≤ q2ε/2.
For the event Bad3, one has Pr[Bad3] = ∑1≤i,j≤q Pr[Ii = J j] ≤ q2ε.
For the event Bad4, according to σ = ∑1≤i≤q mi = ∑1≤j≤q mj, one has

Pr[Bad4] = ∑
1≤i 6=j≤q

∑
1≤k≤mi ,1≤l≤mj

Pr[Vi + k = V j + l] + ∑
1≤i≤q

∑
1≤k 6=l≤mi

Pr[Vi + k = V j + l]

≤ σ2/2n.
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For the event Bad5, according to the properties of the ε-AXU hash function H, the
probability of Vi + k = I j is

Pr[Vi + k = I j] = Pr[Vi + k = HL(N j, Aj, Mj)] ≤ 1/2n.

Therefore, for q queries, according to σ = ∑1≤i≤q mi, one has

Pr[Bad5] = ∑
1≤i,j≤q

∑
1≤k≤mi

Pr[Vi + k = I j] ≤ qσ/2n.

Similarly, for the event Bad6, Pr[Bad6] = ∑1≤i,j≤q ∑1≤k≤mi Pr[Vi + k = J j] ≤ qσ/2n.
For the event Bad7, one has Pr[Bad7] = ∑1≤i 6=j≤q Pr[Ti = T j] ≤ q2/2n+1.
To sum up, one has

Pr[Yid ∈ Γbad] =
⋃

1≤i≤7

Pr[Badi] ≤ ∑
1≤i≤7

Pr[Badi] ≤ (q + σ)2

2n + 2q2ε.

In the good transcript τ, we bound the ratio between Pr[Xre = τ] and Pr[Yid = τ].
For the real scheme GCM-RIV1[π], one has

Pr[Xre = τ] = Pr[π ∈ Perm(n) : GCM− RIV1[π] ` τ]

=
|π ∈ Perm(n) : GCM− RIV1[π] ` τ|

|Perm(n)|

=
(2n − (q + σ))!

(2n)!
=

1
(2n)q+σ

≥ 1
2(q+σ)n

.

For the ideal version $, one has

Pr[Yid = τ] = Pr[$ ∈ Func(|N|+ |A|+ |M|, (q + σ)n) : $ ` τ] =
1

2(q+σ)n
.

Therefore, the ratio between Pr[Xre = τ] and Pr[Yid = τ] is Pr[Xre=τ]
Pr[Yid=τ]

≥ 1.
Therefore, according to the H-coefficient technique, for a PRP adversary B against E

with at most q + σ queries, one has

AdvIND−CPA
GCM−RIV1(A1) ≤ AdvPRP

E (B) + (q + σ)2

2n + 2q2ε.

Then, we upper-bound AdvINT−CTXT
GCM−RIV1(A2). In the INT-CTXT security model, the

adversary A2 has access to encryption and decryption oracles EK and DK, with at most q
queries of at most σ blocks each. According to Definition 4, one has

AdvINT−CTXT
GCM−RIV1(A) = Pr[K � K : AEK ,DK f orges].

The evaluation of AdvINT−CTXT
GCM−RIV1(A2) is similar to the above. Therefore, we briefly

describe it here. In the decryption oracle, for every fresh tuple of the nonce, the associated
data, and the plaintext, the ε-AXU hash function H generates an identical I or V with
ε probability. Similarly, for every fresh tuple of the nonce, the associated data, and the
ciphertext, the ε-AXU hash function H generates an identical J or S with ε probability.
Therefore, the adversary makes q queries to bring at most approximately q2ε collision
probabilities. In addition, I may collide with J, which brings about q2ε collision probabilities.
For each fresh V, CTR will generate a random key-stream. According to the result of
the CTR mode, it costs AdvPRP

E (B) + σ2

2n . Similarly, collisions may occur between the

authentication tags, which cost q2

2n+1 . Besides this, V + 1, V + 2, . . . may collide with I or J,

which costs 2qσ
2n . For each new tuple of the nonce, the associated data, the ciphertext, and
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the authentication tag, the probability that the decryption algorithm passes the verification
is at most q/2n. Therefore, for a PRP adversary B against E with at most 2(2q + σ) queries,
one has

AdvINT−CTXT
GCM−RIV1(A2) ≤ AdvPRP

E (B) + (q + σ)2 + q
2n + 2q2ε.

Finally, we upper-bound AdvERR−CCA
GCM−RIV1(A3). In the ERR-CCA security model, the

adversary A3 has access to encryption, decryption, and leakage oracles, with at most q
queries of at most σ blocks each. According to Definition 6, one has

AdvERR−CCA
GCM−RIV1(A) =| Pr[K � K : AEK ,DK ,ΛK = 1]− Pr[K, K′ � K : AEK ,DK ,ΛK′ = 1] | .

Similar to the cases above, the probability of bad events (collisions occur) in the

encryption or decryption oracles is upper-bounded by AdvPRP
E (B) + (q+σ)2

2n + 2q2ε. In the
leakage algorithm Λ, for two distinct dummy keys K, K′, the probability of bad events

(collisions occur) is also upper-bounded by AdvPRP
E (B) + (q+σ)2

2n + 2q2ε. Besides this, for
each new tuple of the nonce, the associated data, the ciphertext, and the authentication tag,
the probability that the leakage algorithm passes the verification is at most q/2n. Therefore,
for a PRP adversary B against E with at most 4(2q + σ) queries, one has

AdvERR−CCA
GCM−RIV1(A3) ≤ AdvPRP

E (B) + 4(q + σ)2 + 2q
2n + 8q2ε.

To summarize, according to Lemma 2, the SAE security of GCM-RIV1 is upper-
bounded by

AdvSAE
GCM−RIV1(A) ≤ AdvPRP

E (B) + 6(q + σ)2 + 3q
2n + 12q2ε.

The security proof of Theorem 1 is finished.

Theorem 1 shows that GCM-RIV1 enjoys birthday-bound SAE security with n/2-bit
and nonce-misuse resistance if the underlying block cipher is a secure PRP and ε = 2−n.

5. GCM-RIV2

To support beyond-birthday-bound (BBB) security, we introduce the sum of permutation
(SoP) construction to GCM-RIV1, propose GCM-RIV2, and prove its sAE security. GCM-RIV2
provides stronger BBB security and robustness against the leakage of invalid plaintext.

5.1. Specific Description of GCM-RIV2

Before describing the specific scheme, let us explain our design idea. In the beginning,
we wished to construct it based on GCM-SIV2. GCM-SIV2 is a BBB-secure nonce-based
AE scheme and it follows SIV. Similar to GCM-RIV1, we introduce RIV instead of SIV to
GCM-SIV2 and invoke two extra hash functions to generate two initialization vectors. In the
encryption algorithm of GCM-SIV2, two initialization vectors are taken as the inputs of the
SoP-based CTR-like mode to generate the key-stream and then the result is XORed to the
plaintext to generate the ciphertext. Meanwhile, two initialization vectors are taken as the
inputs of an SoP construction to generate the authentication tag. However, we found that
the design obtained in this way is very inefficient. To improve the efficiency while ensuring
BBB security, we utilize an initialization vector and a nonce instead of two initialization
vectors so that we can perform pre-calculations during the encryption and decryption. Let
us name this new scheme GCM-RIV2. The encryption part of GCM-RIV2 is an SoP-based
CTR-like mode that ensures BBB security. The authentication part of GCM-RIV2 is an XOR
construction of two pseudorandom values, which ensures BBB security.
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We specifically describe GCM-RIV2 as follows. Let H : KH ×N ×H × {0, 1}∗ →
{0, 1}n be an ε-AXU-hash function and E : KE × {0, 1}n → {0, 1}n be a block cipher,
where KH is a hash key space, N is a nonce space,H is an associated data space, KE is an
encryption key space, and n is the block size.

According to the idea of RIV, firstly, a nonce N ∈ N , an associated datum A ∈ H, and
a plaintext M ∈ {0, 1}∗ can be processed by a function constructed by a hash function H
with a hash key L ∈ KH and a block cipher E with an encryption key K ∈ KE to generate a
robust initialization vector V ∈ {0, 1}n. Then, the initialization vector V, the nonce N, and
the plaintext M are taken as inputs of the SoP-based CTR encryption algorithm with two
block ciphers EK1 and EK2 and return the ciphertext C. Again, the nonce N, the associated
datum A, and the ciphertext C are processed by the function constructed by a hash function
H with a hash key L and a block cipher E with an encryption key K and then it returns S.
Finally, S is added to V to generate the authentication tag T ∈ {0, 1}n.

The overview of GCM-RIV2 is illustrated in Figure 2.

N,A,M

HL

EK

V

N ||[1]n
4

EK2

V + 1

EK1

M1

C1

N ||[2]n
4

EK2

V + 2

EK1

M2

C2

· · ·

· · ·

N ||[m]n
4

EK2

V +m

EK1

Mm

Cm

N,A,C

HL

EK

S

S

V

T

Figure 2. GCM-RIV2: beyond-birthday-bound secure GCM variant with robust initialization vector.

The key generation, encryption, decryption, leakage, and SoP-based CTR algorithms
are shown in Algorithms 7, 8, 9, 10 and 11, respectively.

Algorithm 7 The key generation algorithm: KG
Input: a key parameter k
Output: four keys (K, K1, K2, L)

(K, K1, K2, L) $← K = (KE,KE,KE,KH)
return (K, K1, K2, L)

Algorithm 8 The encryption algorithm: E
Input: four keys (K, K1, K2, L), a nonce N, an associated datum A, and a plaintext M
Output: a ciphertext C and a tag T
I = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
V = EK(I)
C = SCTRK1,K2(V, N, M)
J = HL(N, A, C) = GHASHL(A, C)⊕ N||[0] n

4
S = EK(J)
T = S⊕V
return (C, T)
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Algorithm 9 The decryption algorithm: D
Input: four keys (K, K1, K2, L), a nonce N, an associated datum A, a ciphertext C, and a tag
T
Output: a plaintext M or ⊥
J = HL(N, A, C) = GHASHL(A, C)⊕ N||[0] n

4
S = EK(J)
V = S⊕ T
M = SCTRK1,K2(V, N, C)
I = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
V′ = EK(I)
if V′ = V, return M
else return ⊥ (INVALID)
endif

Algorithm 10 The leaking algorithm: Λ
Input: four keys (K, K1, K2, L), a nonce N, an associated datum A, a ciphertext C, and a tag
T
Output: a leaking invalid plaintext M or >
J = HL(N, A, C) = GHASHL(A, C)⊕ N||[0] n

4
S = EK(J)
V = S⊕ T
M = SCTRK1,K2(V, N, C)
I = HL(N, A, M) = GHASHL(A, M)⊕ N||[0] n

4
V′ = EK(I)
if V′ = V, return >
else return M
endif

Algorithm 11 SoP-based CTR algorithm: SCTRK1,K2(V, N, M)

Input: two keys K1, K2, an initial vector V, a nonce N, and a plaintext M
Output: a ciphertext C
Partition M into M1‖ . . . ‖Mm, |Mi| = n, 1 ≤ i ≤ m− 1, 0 < |Mm| ≤ n
for i = 1 to m− 1 do

Ci ← EK1(V + i)⊕ EK2(N||[i] n
4
)⊕Mi

endfor
Cm ← msb|Mm |(EK1(V + m)⊕ EK2(N||[m] n

4
))⊕Mm

return C = C1||C2|| . . . ||Cm

5.2. Security of GCM-RIV2

We present the information-theoretic security proof of GCM-RIV2 under the assump-
tion that the underlying block cipher is a secure pseudorandom permutation.

Theorem 2. Let H be an ε-AXU hash function. Let A be an adversary against GCM-RIV2 that
makes at most q queries with at most σ blocks in total. Then, there exists an adversary B against E
that makes at most 7(2q + 2σ) queries, and one has

AdvSAE
GCM−RIV2(A) ≤AdvPRP

E (B) + +12q4/3ε +
6σ4/3

2n+1 +
6q4/3

2n+1 +
12σµ2

2n +
6σ2

22n + 6q2ε2

+
12q2ε

2n +
4σ2µ2

22n +
8q2ε2

2n +
486σ4/3 + 26σ + 1752q4/3 + 412q

2n .

Proof. Similar to the security proof of Theorem 1, according to the decomposition of SAE se-
curity, calculating the upper bound on AdvSAE

GCM−RIV2(A) is transformed into calculating the
upper bounds of AdvIND−CPA

GCM−RIV2(A1), AdvINT−CTXT
GCM−RIV2(A2), and AdvERR−CCA

GCM−RIV2(A3), where
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A1,A2 and A3 are IND-CPA, INT-CTXT, and ERR-CCA adversaries against GCM-RIV2,
respectively, and each makes at most q queries of at most σ blocks.

First, we upper-bound AdvIND−CPA
GCM−RIV2(A1). In the IND-CPA security model, the ad-

versary A1 makes q queries to the encryption oracle E (real scheme GCM-RIV2) or $ (ideal
version of GCM-RIV2).

We replace all block ciphers EK, EK1 , and EK2 in GCM-RIV2 with random permutations
π, π1, and π2, which costs AdvPRP

E (B) for a PRP adversary B against E with at most 2q+ 2σ
queries. Then, one has

AdvIND−CPA
GCM−RIV2(A1) ≤ AdvPRP

E (B) + AdvIND−CPA
GCM−RIV2[π,π1,π2]

(A1). (1)

We assume that the adversary A1 makes q queries (N1, A1, M1), . . . , (Nq, Aq, Mq) to
the encryption oracle and it reruns (C1, T1), . . . , (Cq, Tq). We record all query–response
pairs as a transcript τ = {(N1, A1, M1, C1, T1), . . . , (Nq, Aq, Mq, Cq, Tq)}. Then, one has

V :


V1 = π(HL(N1, A1, M1))

. . . . . . . . . . . . . . .

Vq = π(HL(Nq, Aq, Mq))

SCTR :



π1(V1 + 1)⊕ π2(N1||[1] n
4
) = M1

1 ⊕ C1
1

. . . . . . . . . . . . . . .

π1(V1 + m1)⊕ π2(N1||[m1] n
4
) = M1

m1 ⊕ C1
m1

π1(V2 + 1)⊕ π2(N2||[1] n
4
) = M2

1 ⊕ C2
1

. . . . . . . . . . . . . . .

π1(V2 + m2)⊕ π2(N2||[m2] n
4
) = M2

m2 ⊕ C2
m2

. . . . . . . . . . . . . . .

π1(Vq + 1)⊕ π2(Nq||[1] n
4
) = Mq

1 ⊕ Cq
1

. . . . . . . . . . . . . . .

π1(Vq + mq)⊕ π2(Nq||[mq] n
4
) = Mq

mq ⊕ Cq
mq

S :


S1 = π(HL(N1, A1, C1))

. . . . . . . . . . . . . . .

Sq = π(HL(Nq, Aq, Cq))

T :


S1 ⊕V1 = T1

S2 ⊕V2 = T2

. . . . . . . . . . . . . . .

Sq ⊕Vq = Tq

According to the H-coefficient lemma (Lemma 3), here, we first define a bad transcript
and then state the probability of a bad transcript in the ideal world and the ratio between
the probability of good transcripts in the real world and the probability of good transcripts
in the ideal world.

After observing, we found that the equations above correspond to two distinct mir-
ror systems: the SCTR mirror system and the T mirror system. Let Xi,j = π1(Vi + j),
Yi,j = π2(Ni||[j] n

4
), and λi,j = Mi

j ⊕ Ci
j, where i ∈ [q], j ∈ [mi] and σ = ∑i∈[q] mi. Let V=

1
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be a set of vertices {Xi,j}i∈[q],j∈[mi ], V=
2 be a set of vertices {Yi,j}i∈[q],j∈[mi ], E= be a set of

edges {(Xi,j, Yi,j)}i∈[q],j∈[mi ], and W= : E= → {λi,j}i∈[q],j∈[mi ] be a weighted function. Then,
the SCTR mirror system corresponds to a bipartite graph G=

SCTR =< V=
1 , V=

2 , E=, W= >.
Similarly, the T mirror system corresponds to a graph G=

T =< V=
T , E=

T , W=
T >, where

V=
T = {Si, Vi}i∈[q], E=

T = {(Si, Vi)}i∈[q] and W=
T : E=

T → {Ti}i∈[q].
In order to be able to use the extended mirror theory and H-coefficient technique, we

need to define bad transcripts.

Definition 9. A transcript τ is called bad if one of the following events holds:

1. The number of collisions from the outputs of the hash function HL is larger than q2/3.

• Bad1: |Ii = I j| ≥ q2/3 or |Vi = V j| ≥ q2/3.
• Bad2: |Ji = J j| ≥ q2/3 or |Si = Sj| ≥ q2/3.
• Bad3: |Ii = J j| ≥ q2/3 or |Vi = Sj| ≥ q2/3.

2. The number of collisions from the inputs of π1 is larger than σ2/3.

• Bad4: |Vi + k = V j + l| ≥ σ2/3.

3. The number of collisions from the inputs of π2 is larger than q2/3.

• Bad5: |Ni = N j| ≥ q2/3.

4. The number of collisions from the authentication tag is larger than q2/3.

• Bad6: |Ti = T j| ≥ q2/3.

5. The constraints of the extended mirror theory include the constraints of the SCTR mirror
system (Bad7–Bad9) and the constraints of the the T mirror system (Bad10–Bad15).

• Bad7: There exist distinct i, k ∈ [q] such that Xi,j = Xk,l and Yi,j = Yk,l , where j ∈ [mi]

and l ∈ [mk], i.e., Vi + j = Vk + l and Ni||[j]n/4 = Nk||[l]n/4 (it implies j = l).
• Bad8: There exist distinct i, k ∈ [q] such that Xi,j = Xk,l and λi,j = λk,l , where j ∈ [mi]

and l ∈ [mk], i.e., Vi + j = Vk + l and Mi
j ⊕ Ci

j = Mk
l ⊕ Ck

l .

• Bad9: There exist distinct i, k ∈ [q] such that Yi,j = Yk,l and λi,j = λk,l , where j ∈ [mi]

and l ∈ [mk], i.e., Ni||[j]n/4 = Nk||[l]n/4 (it implies j = l) and Mi
j ⊕ Ci

j = Mk
l ⊕ Ck

l .

• Bad10: There exist distinct i, j ∈ [q] such that Si = Sj and Vi = V j, i.e., HL(Ni, Ai, Ci)

= HL(N j, Aj, Cj) and HL(Ni, Ai, Mi) = HL(N j, Aj, Mj).
• Bad11: There exist distinct i, j ∈ [q] such that Si = Sj and Ti = T j, i.e., HL(Ni, Ai, Ci)

= HL(N j, Aj, Cj) and Ti = T j.
• Bad12: There exist distinct i, j ∈ [q] such that Vi = V j and Ti = T j, i.e., HL(Ni, Ai, Mi)

= HL(N j, Aj, Mj) and Ti = T j.
• Bad13: There exist distinct i, j ∈ [q] such that Si = V j and Vi = Sj, i.e., HL(Ni, Ai, Ci)

= HL(N j, Aj, Mj) and HL(Ni, Ai, Mi) = HL(N j, Aj, Cj).
• Bad14: There exist distinct i, j ∈ [q] such that Si = V j and Ti = T j, i.e., HL(Ni, Ai, Ci)

= HL(N j, Aj, Mj) and Ti = T j.
• Bad15: There exist distinct i, j ∈ [q] such that Vi = Sj and Ti = T j, i.e., HL(Ni, Ai, Mi)

= HL(N j, Aj, Cj) and Ti = T j.

Let Γbad be a set of all bad transcripts, Γ be a set of all transcripts, and Γ = Γbad ∪ Γgood.
Let Xre be the random variable interacting with the real scheme GCM-RIV2[π, π1, π2] and
Yid be the random variable interacting with the ideal version. We first upper-bound the
probability Pr[Yid ∈ Γbad].
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For Bad1, according to the properties of ε-AXU hash functions, the expectation of
|Ii = I j| for all q queries is E[|Ii = I j|] = q(q − 1)ε/2. Then, according to Markov’s
inequality, the probability that Bad1 occurs is

Pr[Bad1] = Pr[|Ii = I j|] ≥ q2/3] ≤ E[|Ii = I j|]
q2/3 ≤ q4/3ε/2.

Similarly, for Bad2, one has Pr[Bad2] ≤ q4/3ε/2.
For Bad3, according to the properties of ε-AXU hash functions, the expectation of

|Ii = J j| for all q queries is E[|Ii = J j|] = q2ε. Then, according to Markov’s inequality, the
probability that Bad1 occurs is

Pr[Bad3] = Pr[|Ii = J j|] ≥ q2/3] ≤ E[|Ii = J j|]
q2/3 ≤ q4/3ε.

For Bad4, the probability that Vi + k = V j + l occurs for any i, j, k, l is 2−n. Therefore,
the expectation of |Vi + k = V j + l| for all σ blocks is E[|Vi + k = V j + l|] ≤ σ2/2n+1. Then,
according to Markov’s inequality, the probability that Bad4 occurs is

Pr[Bad4] = Pr[|Vi + k = V j + l|] ≥ σ2/3] ≤ E[|Vi + k = V j + l|]
σ2/3 ≤ σ4/3

2n+1 .

For Bad5, we consider the nonce-faulty setting. Let N be a µ-faulty nonce and µ2 <
q2/3. Therefore, the probability that Bad5 occurs is 0.

For Bad6, the probability that Ti = T j occurs for any i, j is 2−n. Therefore, the
expectation of |Ti = T j| for all q blocks is E[|Ti = T j|] ≤ q2/2n+1. Then, according to
Markov’s inequality, the probability that Bad6 occurs is

Pr[Bad6] = Pr[|Ti = T j|] ≥ q2/3] ≤ E[|Ti = T j|]
q2/3 ≤ q4/3

2n+1 .

For Bad7, the probability that Vi + j = Vk + l occurs for any i, j, k, l is 2−n and the number
of pairs (i, k) such that Ni = Nk is at most µ2. Then, the probability that Bad7 occurs is

Pr[Bad7] = ∑
i,j,k,l

Pr[Xi,j = Xk,l , Yi,j = Yk,l ] = ∑
i,j,k

Pr[Vi + j = Vk + j, Ni = Nk] ≤ σµ2/2n.

Similarly, for Bad8, the probability that Mi
j ⊕ Ci

j = Mk
l ⊕ Ck

l occurs for any i, j, k, l is
2−n. Then, the probability that Bad7 occurs is

Pr[Bad8] = ∑
i,j,k,l

Pr[Xi,j = Xk,l , λi,j = λk,l ] = ∑
i,j,k,l

Pr[Vi + j = Vk + l, Mi
j ⊕ Ci

j = Mk
l ⊕ Ck

l ]

≤ σ2/22n.

For Bad9, one has

Pr[Bad9] = ∑
i,j,k,l

Pr[Yi,j = Yk,l , λi,j = λk,l ] = ∑
i,j,k

Pr[Ni = Nk, Mi
j ⊕ Ci

j = Mk
j ⊕ Ck

j ] ≤ σµ2/2n.
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For Bad10, the probability that Si = Sj and Vi = V j occur for any i, j is ε. Then, the
probability that Bad10 occurs is

Pr[Bad10] = ∑
i,j

Pr[Si = Sj, Vi = V j]

= ∑
i,j

Pr[HL(Ni, Ai, Ci) = HL(N j, Aj, Cj), HL(Ni, Ai, Mi) = HL(N j, Aj, Mj)]

≤ q2ε2/2.

For Bad11, one has

Pr[Bad11] = ∑
i,j

Pr[Si = Sj, Ti = T j]

= ∑
i,j

Pr[HL(Ni, Ai, Ci) = HL(N j, Aj, Cj), Ti = T j]

≤ q2ε/2n+1.

For Bad12, one has

Pr[Bad12] = ∑
i,j

Pr[Vi = V j, Ti = T j]

= ∑
i,j

Pr[HL(Ni, Ai, Mi) = HL(N j, Aj, Mj), Ti = T j]

≤ q2ε/2n+1.

For Bad13, the probability that Si = V j and Vi = Sj occur for any i, j is ε. Then, the
probability that Bad13 occurs is

Pr[Bad13] = ∑
i,j

Pr[Si = V j, Vi = Sj]

= ∑
i,j

Pr[HL(Ni, Ai, Ci) = HL(N j, Aj, Mj), HL(Ni, Ai, Mi) = HL(N j, Aj, Cj)]

≤ q2ε2/2.

For Bad14, one has

Pr[Bad14] = ∑
i,j

Pr[Si = V j, Ti = T j]

= ∑
i,j

Pr[HL(Ni, Ai, Ci) = HL(N j, Aj, Mj), Ti = T j]

≤ q2ε/2n+1.

For Bad15, one has

Pr[Bad15] = ∑
i,j

Pr[Vi = Sj, Ti = T j]

= ∑
i,j

Pr[HL(Ni, Ai, Mi) = HL(N j, Aj, Cj), Ti = T j]

≤ q2ε/2n+1.
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To sum up, the probability of bad transcripts is

Pr[Yid ∈ Γbad] =
⋃

1≤i≤15

Pr[Badi] ≤ ∑
1≤i≤15

Pr[Badi]

≤ 2q4/3ε +
σ4/3

2n+1 +
q4/3

2n+1 +
2σµ2

2n +
σ2

22n + q2ε2 +
2q2ε

2n . (2)

In the good transcript τ, we bound the ratio Pr[Xre=τ]
Pr[Yid=τ]

between the real scheme GCM-
RIV2[π, π1, π2] and its ideal version.

First, we consider Pr[Xre = τ] for a good transcript τ in the real scheme GCM-
RIV2[π, π1, π2].

For the SCTR mirror system, as |Vi + k = V j + l| ≤ σ2/3, the number of edges in
components with a size of more than 2 is σc ≤ 4σ2/3. Therefore, according to Theorem 5,
the number of solutions of G=

SCTR is at least

(2n)|V=
1 |(2

n)|V=
2 |

2nσ
(1− δ1),

where δ1 = 9σ2
c

4·2n + 9σ2
c σ+6σcσ2+4σ2

4·22n + 8σ4

3·23n ≤ 36σ4/3

2n + 36σ7/3+6σ8/3+σ2

22n + 8σ4

3·23n ≤ 81σ4/3+σ
2n .

Similarly, for the T mirror system, as |Si = Sj| ≤ q2/3 and |Vi = V j| ≤ q2/3, the
number of edges in components with a size of more than 2 is qc ≤ 4q2/3. Therefore,
according to Theorem 4, the number of solutions of G=

T is at least

(2n)|V=
T |

2nq (1− δ2),

where δ2 = 9q2
c

4·2n + 9q2
c q+24qcq2+6qcq+40q2

22n + 16q4

23n ≤ 36q4/3

2n + 144q7/3+96q8/3+24q5/3+40q2

22n + 16q4

23n ≤
292q4/3+64q

2n .
Therefore, for a good graph, it must satisfy both G=

SCTR and G=
T . It follows that the

number of solutions of a good graph G is at least

(2n)|V=
1 |(2

n)|V=
2 |

2nσ

(2n)|V=
T |

2nq (1− δ1)(1− δ2).

In the real scheme GCM-RIV2[π, π1, π2], one has

Pr[Xre = τ] = Pr[π, π1, π2 ∈ Perm(n) : GCM− RIV2[π, π1, π2] ` τ]

=
|π, π1, π2 ∈ Perm(n) : GCM− RIV2[π, π1, π2] ` τ|

|Perm(n)|3

≥
(2n)|V=

1 |
(2n)|V=

2 |
2nσ

(2n)|V=
T |

2nq (1− δ1)(1− δ2)(2n − |V=
1 |)!(2n − |V=

2 |)!(2n − |V=
T |)!

(2n!)3

=
1

2nσ

1
2nq (1− δ1)(1− δ2).

In the ideal version $, one has

Pr[Yid = τ] = Pr[$ ∈ Func(|N|+ |A|+ |M|, (q + σ)n) : $ ` τ] =
1

2(q+σ)n
.

Therefore, the ratio between Pr[Xre = τ] and Pr[Yid = τ] in the good transcript is

Pr[Xre = τ]

Pr[Yid = τ]
≥ (1− δ1)(1− δ2) ≥ 1− (δ1 + δ2) = 1− δ, (3)
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where δ = δ1 + δ2 ≤ 81σ4/3+σ+292q4/3+64q
2n .

According to the H-coefficient technique and Equations (1)–(3), for a PRP adversary B
against E with at most 2q + 2σ queries, one has

AdvIND−CPA
GCM−RIV2(A1) ≤AdvPRP

E (B) + 2q4/3ε +
σ4/3

2n+1 +
q4/3

2n+1 +
2σµ2

2n +
σ2

22n + q2ε2 +
2q2ε

2n

+
81σ4/3 + σ + 292q4/3 + 64q

2n .

Then, we upper-bound AdvINT−CTXT
GCM−RIV2(A2). The evaluation process is similar to that

of AdvIND−CPA
GCM−RIV2(A1) except that it also includes that of the extended mirror system with

equations and non-equations under forgery attempts. In the INT-CTXT security model,
the adversary can access the encryption and decryption oracles. We assume that the ad-
versary A2 makes q forgery attempts (N∗1, A∗1, C∗1, T∗1), . . . , (N∗q, A∗q, C∗q, T∗q) to the
decryption oracle after q queries (N1, A1, M1), . . . , (Nq, Aq, Mq) to the encryption oracle
and does not make invalid queries. We record all query–response pairs as a transcript
τ = {(N1, A1, M1, C1, T1), . . . , (Nq, Aq, Mq, Cq, Tq), (N∗1, A∗1, M∗1, C∗1, T∗1), ..., (N∗q, A∗q,
M∗q, C∗q, T∗q)}. Unlike the mirror system in the IND-CPA security model, here, we con-
sider an extended mirror system with equations and non-equations. The system with
equations generated by the encryption oracle is the same as that of IND-CPA, so they are
not listed. Let us simply list the system with equations and non-equations generated by the
decryption oracle (forgery attempts) below.

S∗ :


S∗1 = π(HL(N∗1, A∗1, C∗1))

. . . . . . . . . . . . . . .

S∗q = π(HL(N∗q, A∗q, C∗q))

V∗ :


V∗1 = π(HL(N∗1, A∗1, M∗1))

. . . . . . . . . . . . . . .

V∗q = π(HL(N∗q, A∗q, M∗q))

SCTR∗ :



π1(V∗1 + 1)⊕ π2(N∗1||[1] n
4
) 6= M∗11 ⊕ C∗11

. . . . . . . . . . . . . . .

π1(V∗1 + m∗1)⊕ π2(N∗1||[m∗1] n
4
) 6= M∗1m∗1 ⊕ C∗1m∗1

π1(V∗2 + 1)⊕ π2(N∗2||[1] n
4
) 6= M∗21 ⊕ C∗21

. . . . . . . . . . . . . . .

π1(V∗2 + m∗2)⊕ π2(N∗2||[m∗2] n
4
) 6= M∗2m∗2 ⊕ C∗2m∗2

. . . . . . . . . . . . . . .

π1(V∗q + 1)⊕ π2(N∗q||[1] n
4
) 6= M∗q1 ⊕ C∗q1

. . . . . . . . . . . . . . .

π1(V∗q + m∗q)⊕ π2(N∗q||[m∗q] n
4
) 6= M∗qm∗q ⊕ C∗qm∗q

T∗ :


S∗1 ⊕V∗1 6= T∗1

S∗2 ⊕V∗2 6= T∗2

. . . . . . . . . . . . . . .

S∗q ⊕V∗q 6= T∗q

According to the H-coefficient lemma (Lemma 3), here, we first define a bad transcript
and then state the probability of a bad transcript in the ideal world and the ratio between
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the probability of good transcripts in the real world and the probability of good transcripts
in the ideal world.

After observing, we found that the system above corresponds to two distinct extended
mirror systems: the SCTR with SCTR∗ system and the T with T∗ system. Let Xi,j =

π1(Vi + j), Yi,j = π2(Ni||[j] n
4
), and λi,j = Mi

j ⊕Ci
j, where i ∈ [q], j ∈ [mi] and σ = ∑i∈[q] mi.

Let V=
1 be a set of vertices {Xi,j}i∈[q],j∈[mi ], V=

2 be a set of vertices {Yi,j}i∈[q],j∈[mi ], E=

be a set of edges {(Xi,j, Yi,j)}i∈[q],j∈[mi ], and W= : E= → {λi,j}i∈[q],j∈[mi ] be a weighted
function. Then, the SCTR mirror system corresponds to a bipartite graph G=

SCTR =<
V=

1 , V=
2 , E=, W= >. Let X∗i,j = π1(V∗i + j), Y∗i,j = π2(N∗i||[j] n

4
), and λ∗i,j = Mj∗i ⊕ Cj∗i,

where i ∈ [q], j ∈ [m∗i] and σ = ∑i∈[q] m∗i. Let V 6=1 be a set of vertices {X∗i,j}i∈[q],j∈[m∗i ],

V 6=2 be a set of vertices {Y∗i,j}i∈[q],j∈[m∗i ], E 6= be a set of edges {(X∗i,j, Y∗i,j)}i∈[q],j∈[m∗i ], and

W 6= : E 6= → {λ∗i,j}i∈[q],j∈[m∗i ] be a weighted function. Then, the SCTR with the SCTR∗

system corresponds to a bipartite graph GSCTR =< V1, V2, E, W >, where V1 = V=
1 ∪V 6=1 ,

V2 = V=
2 ∪V 6=2 , E = E= ∪ E 6=, and W = W= ∪W 6=.

Similarly, the T mirror system corresponds to a graph G=
T =< V=

T , E=
T , W=

T >, where
V=

T = {Si, Vi}i∈[q], E=
T = {(Si, Vi)}i∈[q] and W=

T : E=
T → {Ti}i∈[q]. Then, the T with T∗

system corresponds to a graph GT =< VT , ET , WT >, where VT = V=
T ∪V 6=T , ET = E=

T ∪ E 6=T ,
and WT = W=

T ∪W 6=T .
In order to be able to use the extended mirror theory and H-coefficient technique, we

need to define bad transcripts.

Definition 10. A transcript τ is called bad if one of the following events holds:

1. Bad1–Bad15 is the same as that of Definition 9.
2. Bad16: V∗i + j = Vk + l, N∗i||[j] n

4
= Nk||[l] n

4
, and M∗ij ⊕ C∗ij = M∗kl ⊕ C∗kl .

3. Bad17: S∗i = Sj, V∗i = V j, and T∗i = T j.
4. Bad18: S∗i = V j, V∗i = Sj, and T∗i = T j.

Let Γbad be a set of all bad transcripts, Γ be a set of all transcripts, and Γ = Γbad ∪ Γgood.
Let Xre be the random variable interacting with the real scheme GCM-RIV2[π, π1, π2] and
Yid be the random variable interacting with the ideal version. We first upper-bound the
probability Pr[Yid ∈ Γbad].

For Bad1–Bad15, Equation (2) has given

Pr[Bad1− Bad15] ≤ 2q4/3ε +
σ4/3

2n+1 +
q4/3

2n+1 +
2σµ2

2n +
σ2

22n + q2ε2 +
2q2ε

2n .

For Bad16, the probability that V∗i + j = Vk + l or M∗ij ⊕ C∗ij = M∗kl ⊕ C∗kl occurs for

any i, j, k, l is 2−n and the number of pairs (i, k) such that N∗i = Nk is at most µ2. Then, the
probability of Bad16 is

Pr[Bad16] = ∑
i,j,k,l

Pr[V∗i + j = Vk + l, N∗i||[j] n
4
= Nk||[l] n

4
, M∗ij ⊕ C∗ij = M∗kl ⊕ C∗kl ]

= ∑
i,j,k

Pr[V∗i + j = Vk + j, N∗i = Nk, M∗ij ⊕ C∗ij = M∗kj ⊕ C∗kj ]

≤ σ2µ2

22n .
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For Bad17, the probability that S∗i = Sj or V∗i = V j occurs for any i, j is at most ε and
the probability that T∗i = T j occurs for any i, j is 2−n. Then, the probability of Bad17 is

Pr[Bad17] = ∑
i,j

Pr[S∗i = Sj, V∗i = V j, T∗i = T j] ≤ q2ε2

2n .

For Bad18, the probability that S∗i = V j or V∗i = Sj occurs for any i, j is at most ε and
the probability that T∗i = T j occurs for any i, j is 2−n. Then, the probability of Bad18 is

Pr[Bad18] = ∑
i,j

Pr[S∗i = V j, V∗i = Sj, T∗i = T j] ≤ q2ε2

2n .

To sum up, the probability of bad transcripts in the ideal world is

Pr[Yid ∈ Γbad] =
⋃

i∈[18]

Pr[Badi] ≤ ∑
i∈[18]

Pr[Badi]

≤ 2q4/3ε +
σ4/3

2n+1 +
q4/3

2n+1 +
2σµ2

2n +
σ2

22n + q2ε2 +
2q2ε

2n +
σ2µ2

22n +
2q2ε2

2n . (4)

In the good transcript τ, we bound the ratio Pr[Xre=τ]
Pr[Yid=τ]

between the real scheme GCM-
RIV2[π, π1, π2] and its ideal version.

First, we consider Pr[Xre = τ] for a good transcript τ in the real scheme GCM-
RIV2[π, π1, π2].

For the SCTR with the SCTR∗ extended mirror system, as |Vi + k = V j + l| ≤ σ2/3,
the number of edges in components with a size of more than 2 is σc ≤ 4σ2/3. Therefore,
according to Theorem 5, the number of solutions of GSCTR is at least

(2n)|V1|(2
n)|V2|

2nσ
(1− δ1),

where δ1 = 9σ2
c

4·2n + 9σ2
c σ+6σcσ2+4σ2

4·22n + 8σ4

3·23n + 5σ
2n ≤ 36σ4/3

2n + 36σ7/3+6σ8/3+σ2

22n + 8σ4

3·23n + 5σ
2n ≤

81σ4/3+6σ
2n .

Similarly, for the T with the T∗ extended mirror system, as |Si = Sj| ≤ √q and
|Vi = V j| ≤ q2/3, the number of edges in components with a size of more than 2 is
qc ≤ 4q2/3. Therefore, according to Theorem 4, the number of solutions of GT is at least

(2n)|VT |
2nq (1− δ2),

where δ2 = 9q2
c

4·2n + 9q2
c q+24qcq2+6qcq+40q2

22n + 16q4

23n + 7q
2n ≤ 36q4/3

2n + 144q7/3+96q8/3+24q5/3+40q2

22n +
16q4

23n + 7q
2n ≤ 292q4/3+71q

2n .
Therefore, for a good graph, it must satisfy both GSCTR and GT . It follows that the

number of solutions of a good graph is at least

(2n)|V1|(2
n)|V2|

2nσ

(2n)|VT |
2nq (1− δ1)(1− δ2).
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In the real scheme GCM-RIV2[π, π1, π2], one has

Pr[Xre = τ] = Pr[π, π1, π2 ∈ Perm(n) : GCM− RIV2[π, π1, π2] ` τ]

=
|π, π1, π2 ∈ Perm(n) : GCM− RIV2[π, π1, π2] ` τ|

|Perm(n)|3

≥
(2n)|V1 |(2

n)|V2 |
2nσ

(2n)|VT |
2nq (1− δ1)(1− δ2)(2n − |V1|)!(2n − |V2|)!(2n − |VT |)!

(2n!)3

=
1

2nσ

1
2nq (1− δ1)(1− δ2).

In the ideal version $, one has

Pr[Yid = τ] = Pr[$ ∈ Func(|N|+ |A|+ |M|, (q + σ)n) : $ ` τ] =
1

2(q+σ)n
.

Therefore, the ratio between Pr[Xre = τ] and Pr[Yid = τ] in the good transcript is

Pr[Xre = τ]

Pr[Yid = τ]
≥ (1− δ1)(1− δ2) ≥ 1− (δ1 + δ2) = 1− δ, (5)

where δ = δ1 + δ2 ≤ 81σ4/3+6σ+292q4/3+71q
2n .

According to the H-coefficient technique and Equations (1), (4) and (5), for a PRP
adversary B against E with at most 4q + 4σ queries, one has

AdvINT−CTXT
GCM−RIV2(A1) ≤AdvPRP

E (B) + 2q4/3ε +
σ4/3

2n+1 +
q4/3

2n+1 +
2σµ2

2n +
σ2

22n + q2ε2 +
2q2ε

2n

+
σ2µ2

22n +
2q2ε2

2n +
81σ4/3 + 6σ + 292q4/3 + 71q

2n .

Finally, we upper-bound AdvERR−CCA
GCM−RIV1(A3). In the ERR-CCA security model, the

adversary A3 has access to the encryption, decryption, and leakage oracles, with at most
q queries of at most σ blocks each. The security analysis in the encryption or decryption
oracle is similar to that under the above security models, and the security analysis in the
leakage oracle is similar to that of the decryption oracle with forgery attempts under the
INT-CTXT. Besides this, we also need to consider an extended mirror system with equations
and non-equations for distinct dummy keys in the leakage oracle. Therefore, for a PRP
adversary B against E with at most 8q + 8σ queries, one has

AdvERR−CCA
GCM−RIV2(A3) ≤AdvPRP

E (B) + 8q4/3ε +
4σ4/3

2n+1 +
4q4/3

2n+1 +
8σµ2

2n +
4σ2

22n + 4q2ε2 +
8q2ε

2n

+
3σ2µ2

22n +
6q2ε2

2n +
324σ4/3 + 19σ + 1168q4/3 + 277q

2n .

To summarize, according to Lemma 2, the SAE security of GCM-RIV2 is upper-
bounded by

AdvSAE
GCM−RIV2(A) ≤AdvPRP

E (B) + 12q4/3ε +
6σ4/3

2n+1 +
6q4/3

2n+1 +
12σµ2

2n +
6σ2

22n + 6q2ε2 +
12q2ε

2n

+
4σ2µ2

22n +
8q2ε2

2n +
486σ4/3 + 26σ + 1752q4/3 + 412q

2n .

The security proof of Theorem 2 is finished.

Theorem 2 shows that GCM-RIV2 enjoys beyond-birthday-bound SAE security with
3n/4-bit and its security bound decreases as parameter µ increases if the underlying block
cipher is a secure PRP and ε = 2−n.
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6. Discussion and Conclusions

GCM-RIV1 and GCM-RIV2 are robust authenticated encryption modes with an inverse-
free nature. Both of them are based on the RIV framework, which extends the SIV construc-
tion by adopting an extra hash function with block cipher encryption and support nonce
misuse. GCM-RIV1 is rate 1 (a plaintext block per each encryption), while GCM-RIV2 is
rate 1/2 (a plaintext block per two encryptions). However, fortunately, the nonce-based
encryption part of GCM-RIV2 can be precomputed, which means that the running speed
of GCM-RIV2 is close to that of GCM-RIV1. Besides this, GCM-RIV1 and GCM-RIV2 are
parallelizable. Therefore, overall, the performance of GCM-RIV1 and GCM-RIV2 is only
slightly lower than that of GCM-SIV1.

From the perspective of the security, GCM-RIV1 and GCM-RIV2 support stronger
security than GCM-SIV1. GCM-RIV1 guarantees birthday-bound SAE security of n/2-
bit and supports robustness against the leakage of invalid plaintext. GCM-RIV2 enjoys
beyond-birthday-bound SAE security with 3n/4-bit graceful degradation and supports
robustness against faulty nonces and the leakage of invalid plaintext. Table 1 shows the
comparison between our schemes and previous related schemes.

Currently, GCM, GCM-SIV, and its related variants have been widely used in network
security protocols. With the complexity, isomerization, and diversification of the network
environment, GCM-RIV1 and GCM-RIV2, as robust AE modes, will be highly valued. GCM-
RIV1 and GCM-RIV2 provide subtle AE security, nonce-faulty resistance, and birthday-
bound security or even degradation-friendly beyond-birthday-bound security, meeting
the requirements of the complex, isomerized, and diversified network environments for
the robustness, elasticity, and reliable security of AE schemes. However, GCM-RIV1 and
GCM-RIV2 need to be further optimized in terms of efficiency and security. GCM-RIV1
only ensures birthday-bound security, while GCM-RIV2 is rate 1/2. One potential future
task is to further design more efficient and robust cryptographic schemes adapted to
specific environments.
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