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Abstract: Predator–prey interactions do not solely depend on biotic factors: rather, they depend on
many other abiotic factors also. One such abiotic factor is wind speed, which can crucially change
the predation efficiency of the predator population. In this article, the impact of wind speed along
with seasonality on various parameters has been investigated. Here, we present two continuous-
time models with specialist and generalist type predators incorporating the effect of wind and the
seasonality on the model parameters. It has been observed that wind speed plays a significant role
in controlling the system dynamics for both systems. It makes the systems stable for both of the
seasonally unperturbed systems. However, it controls the chaotic dynamics that occur in case of
no wind for the seasonally perturbed system with the predator as a specialist. On the other hand,
for the seasonally perturbed system with a generalist predator, it controls period-four oscillations
(which occur considering no wind speed) to simple limit-cycle oscillations. Furthermore, the wind
parameter has a huge impact on the survival of predator species. The survival of predator species
may be achieved by ensuring a suitable range of wind speeds in the ecosystem. Therefore, we observe
that seasonality introduces chaos, but wind reduces it. These results may be very useful for adopting
necessary management for the conservation of endangered species that are massively affected by
wind speed in an ecosystem.

Keywords: predator–prey interactions; wind effect; chaos; Hopf bifurcation; period-four oscillation;
limit cycle
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1. Introduction

Mathematical ecology is an inter-disciplinary field that studies various ecological
phenomena with the help of mathematical modelling to understand how a small change to
environmental parameters affects the system’s characteristic. The study of predator–prey
interactions by using mathematical modelling becomes very useful in different contexts
such as saving endangered species, controlling disease outbreak, etc. One well-known view-
point is that studies of such types of mathematical models have been mainly based on biotic
factors and direct effects. However, as of late, numerous scientists have given a lot of con-
sideration to investigate the job of backhanded impacts: for example, predator-prompted
dread impact in system dynamics [1–3]. However, abiotic factors such as temperature,
climate change, speed of wind, etc., may affect the interactions among different species.
In the field of theoretical ecology, a sufficient number of studies have been performed in this
context, but in mathematical ecology, less attention has been paid paid. Some research has
been performed by considering temperature as an abiotic factor [4]. However, this leaves a
knowledge deficit about how other abiotic elements affect the interactions among ecological
communities. Investigation on the effects of climate change all over the globe has recently
received renewed interest from theoretical ecologists, particularly with regard to the wind
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effect, which is a pervasive element of ecological systems and has a wide variety of effects
on intermediate species. Wind patterns can vary, and its speed varies correspondingly [5,6].
From recent studies, it is seen that wind affects predation efficiency in various ways. It
can change a species’ sensing ability in the presence of a predator [7,8]. It may hamper the
inherent movement of some species by creating disturbances in surrounding areas. In an
experiment, Klimczuk et al. [9] showed that aerial predators may more easily spot reed
warbler nests that are exposed by the wind. A higher rate of predation may occur if the
victim is less able to detect approaching predators [10]. According to Cherry and Barton’s
research [11], high wind speed in windy conditions forces prey animals to become more
vigilant because wind is found to negatively impact the detection abilities of prey species.
Depending on the sort of prey species being pursued, wind can have a variety of effects on
how one predator preys on its prey species [12]. For example, according to Stander and
Albon [10], under windy conditions, lions (Panthera leo) preyed more frequently on spring-
bok (Antidorcas marsupialis) and zebra (Equus quagga) than on wildebeest (Connochaetes
taurinus). According to the previous studies, windy conditions can have a significant
impact on species’ interactions by altering the mobility of some species [13]. A predator’s
movement can be hindered, slowed down, and decreased by wind [14,15]. Small-bodied
invertebrate aerial predators, such as mosquitoes and flies, have decreased predation suc-
cess when there is windy weather [16,17]. In contrast, strong winds are advantageous to
large predatory birds because they improve their efficacy and mobility. Strong winds also
improve their ability to fly, allowing them to spend more time successfully foraging [18,19].
According to Barton’s research [20], a windy environment decreases lady beetle hunting
effectiveness, which has a detrimental effect on the success of their aphid predation. All of
the aforementioned arguments imply that the concept of wind should be introduced into
the model system at the time of creating a mathematical model to estimate the dynamics of
a predator–prey system. In this context, Barman et al. [21] were the first ones to design a
mathematical model by modifying the Holling type-II functional response under windy
situations and studying the impacts of it on system dynamics. Later, Barman et al. [22]
performed another study in a spatio–temporal modelling sense to predict possible complex
dynamics by considering herd behaviour of prey species in windy conditions.

On the other hand, ecology has a seasonal component. The values of parameters of an
ecosystem change with the advancement of time. As a result, the dynamics of an ecological
system are greatly affected. Therefore, both theoretical and experimental ecologists have
performed studies on ecological systems that are vulnerable to seasonal changes. The inher-
ent characteristics of environmental and seasonal perturbations have also been considered
in this investigation [23]. Understanding the connection between the size of seasonal
fluctuation and system complexity is the fundamental issue. Much research [24–27] has
been conducted to examine how the seasons affect the internal biological cycles of simple
prey–predator ecosystems. These investigations have demonstrated that these interactions
can lead to a variety of spectacular outcomes, including multiple attractors and chaos [28].
So it is important to take into account seasonal variation into the mathematical model.

Numerous natural systems such as weather and climate exhibit chaotic behaviour.
With the use of a nonlinear mathematical model, we can analyse this phenomenon. For ex-
ample, a natural food chain model exhibits chaos according to Hastings and Powell [29]. It
becomes difficult to keep chaos under control or to stabilise chaotic population dynamics.
A chaotic system can be controlled by small adjustments to the system parameters or
initial conditions. In this context, the Hastings and Powell model [29] has been explored
by other researchers [30–33], who also took into account some biological aspects, such as
alternate food, Allee effects, refuge, diseases, and fear, to control the chaotic dynamics.
This article primarily focuses on the control of chaotic dynamics of a model system taken
from the article [23] by varying a crucial parameter (which has been newly introduced) in a
systematic way. Apart from this, the possible impact on the survival and the huge decline
in biomass of the species of that parameter have been further investigated.
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On the other hand, the basic idea underpinning evolutionary trade-offs is that im-
proving one characteristic’s fitness (or function) must come at the price of lowering that
of another one [34]. Life history trade-offs are a type of evolutionary trade-off that are
defined as the reduction in fitness (basically, lifetime reproductive success) brought on by
one life history feature in exchange for an improvement in fitness brought on by a different
life history trait [35]. Life history features, such as those related to growth rate, size of the
body, response to stress, timing of reproduction, progeny quantity/quality, life expectancy,
and dispersion, are intimately connected to fitness [36]. The trade-off between the amount
of energy spent on reproduction and survival is a well-known example. If an organism only
has a certain quantity of energy to distribute among all the tasks it must carry out, then the
more energy is dedicated to reproduction (increased sexual activity/larger reproductive
organs), the less is left for survival (longevity/weapon size). For instance, researchers were
able to see that in male fruit flies (Drosophila melanogaster), an increase in reproductive
activity is associated with a decrease in lifespan through experimental manipulation in the
lab [37]. Research on pinnipeds provides more evidence of the trade-off between repro-
duction and survival, showing that both genital length and testicular mass are adversely
correlated with investment in precopulatory weapons [38]. In general, researchers have
presented a predator–prey interaction model and studied it. Here, we have taken general
classes of two models—(i) prey–specialist predator model [39] and (ii) prey–generalist
predator model [40]—covering the entire class of predator–prey interactions in nature and
then studied the effect of seasonality (which is the reality of the environment). We have
perturbed both model systems and studied the effects. In this article, it will be interesting
to explore whether wind speed has any trade-off relation or not.

This article is divided into different sections that together complete the research
findings. Section 2 deals with the formulation of the model systems. The model system’s
well-posedness is covered in Section 3, while Section 4 examines the model system’s overall
stability near various equilibrium points. In Section 5, the parametric conditions of global
stability are discussed. Extensive numerical simulations are performed in Section 6. Finally,
the obtained findings are interpreted in Section 7.

2. Model Formulation

Here, we have considered two different types of predator–prey models; one is for the
specialist predator, and the other one is for the generalist predator [41]. Additionally, we
have considered the corresponding perturbed version of the proposed model system.

2.1. Model System 1

Here, we have considered a specialist predator–prey model from Upadhyay and Iyen-
gar [23] and modified it by implementing the concept that wind reduces the predation
efficiency. The modification of the functional response has been done according to the
derivation of Barman et al. [21]. The functional response has been modified by consid-
ering the fact that wind speed increases the prey-handling time of predators. They have
considered the prey-handling time as

ψ(W)× original prey handling time considering no wind speed,

where the predation efficiency

ψ(W) = 1 +
W

1 + W
is based on the following assumptions:

(i) ψ(0) = 1; i.e., considering no wind speed, the handling time remains the same as
before.

(ii) ψ′(W) > 0; i.e., considering wind speed and with the acceleration of this speed,
the handling time for each prey per predator continuously increases.
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However, to get detailed insight of the modification of this functional response,
the readers are referred to study the article [21]. In this way, the following predator–prey
model has been formulated:

dX
dt

= AX
(

1− X
K

)
− C1XY

1 + W + B1X + B1WX
1+W

,

dY
dt

= −CY +
C2XY

1 + W + B2X + B2WX
1+W

,
(1)

with starting conditions

X(0) = X0 > 0, Y(0) = Y0 > 0, (2)

where A, K, C1, W, B1, C, C2, B2 are all positive parameters. Here, A denotes the intrinsic
growth rate of prey species, K is the environmental carrying capacity of the prey species,
C1 represents the maximum consumption rate of prey species, W indicates the level of
wind speed in the proposed system, C is the natural mortality rate of the specialist predator
species, C2 stands for the food conversion rate from prey to predator species, and B−1

1 , B−1
2

are the half-saturation constants considering no wind speed. Here, we have taken B1 = B2.
The units of all the parameters are provided in Table 1.

Table 1. Units of all non-negative parameters of System (1).

Parameter Unit

X (prey density)
Y (predator density)
A (time)−1

K (prey density)
C1 (predator density)−1

C2 (prey density)−1

B1 = B2 (prey density)−1

C (time)−1

W (time)−1

2.2. Model System 2

Similarly, the following model has been considered by taking the predator as a gen-
eralist; that means these types of predators have some common prey with the specialist
predators [40]. The growth of these predators happens according to the Leslie–Gower
scheme. However, the model considering wind speed can be presented as follows:

dX
dt

= AX
(

1− X
K

)
− C1XY

1 + W + B1X + B1WX
1+W

− C3X2

X2 + D2
1

,

dY
dt

= C4Y− C5Y2

X
,

(3)

with starting conditions

X(0) = X0 > 0, Y(0) = Y0 > 0. (4)

The units of all the parameters are provided in Table 2.

Remark 1. Here, the term
C3X2

X2 + D2
1

is incorporated in the system to consider the impact of

grazing pressure of the generalist predators on specialist predators as they share some common
food resources. It is assumed that at high population densities, the consumption of prey species of
generalist predators becomes asymptotic, and hence, the sigmoid type of functional response has been
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considered here. Interested readers can read the article by Upadhyay and Iyengar [23] and [39,40]
for better understanding related to the formulation of the model and the ecological descriptions of
every parameter considering no wind speed.

Table 2. Units of all other non-negative parameters of System (3).

Variable/Parameter Unit

C3 (prey density)·(time)−1

D1 (prey density)
C4 (time)−1

C5 (predator density)−1·(prey density)·time−1

Note: The units of the other parameters are the same as those of System (1) described in Table 1.

2.3. Perturbed Model System 1

In this subsection, we have considered the perturbed version of System (1) by adding
the sinusoidal term ε sin θt, where ε and θ, respectively, denote the strength of oscilla-
tion around an average value and angular frequency of the oscillations occurring due to
seasonality. Here, the intrinsic growth rate A of prey species and the natural mortality
rate C of predator species have been chosen to undergo seasonality. After giving the per-
turbation, the autonomous system becomes non-autonomous. Here, we have made the
non-autonomous system again an autonomous system by increasing its dimension. For this
purpose, we have introduced a new variable Θ = θt, and the obtained model is shown
below: 

dX
dt

= AX
(

1− X
K

)
− C1XY

1 + W + B1X + B1WX
1+W

+ Ag1(X, Θ),

dY
dt

= −CY +
C2XY

1 + W + B2X + B2WX
1+W

− Cg2(Y, Θ),

dΘ
dt

= θ,

(5)

with starting conditions

X(0) = X0 > 0, Y(0) = Y0 > 0, Θ(0) = Θ0 > 0, (6)

where
Θ = θt, g1(X, Θ) = εX sin Θ, g2(Y, Θ) = εY sin Θ,

and θ = 2π
t , where t represents the time period of sinusoidal oscillations, and 0 < ε ≤ 1.

2.4. Perturbed Model System 2

Similarly, we have considered the perturbed version of System (3) by taking A and C4
as the seasonality parameters. The resulting system is:

dX
dt

= AX
(

1− X
K

)
− C1XY

1 + W + B1X + B1WX
1+W

− C3X2

X2 + D2
1
+ Ag1(X, Θ),

dY
dt

= C4Y− C5Y2

X
+ C4g2(Y, Θ),

dΘ
dt

= θ,

(7)

with starting conditions

X(0) = X0 > 0, Y(0) = Y0 > 0, Θ(0) = Θ0 > 0, (8)
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where
Θ = θt, g1(X, Θ) = εX sin Θ, g2(Y, Θ) = εY sin Θ.

3. Model Validation
3.1. Positivity

Theorem 1. Every solution of both Model Systems (1) and (3) with respect to respective initial
conditions exists in [0, ∞) and remains positive ∀ t > 0.

Proof. The proof is trivial and so omitted.

3.2. Boundedness

Theorem 2. Every solution of both Model Systems (1) and (3) with respect to the respective initial
conditions is always bounded.

Proof. The proof is trivial and so omitted.

Remark 2. The checking of positivity and boundedness of a proposed system is necessarily required
because no population can be negative and/or unbounded due to limited food resources.

3.3. Persistence

Definition 1. Let q1, q2, Q1, Q2 be positive constants and be independent of the initial conditions
X(0) > 0, Y(0) > 0 of System (1). If the underlying restrictions hold,

q1 ≤ lim
t→∞

in f X(t) ≤ lim
t→∞

sup X(t) ≤ Q1,

q2 ≤ lim
t→∞

in f Y(t) ≤ lim
t→∞

sup Y(t) ≤ Q2,

then System (1) will be called a ’permanent system’.

Lemma 1. Let ξ, χ, X(0) > 0. Now, if dX
dt ≤ X(t)

(
ξ − χX(t)

)
, then lim

t→∞
sup X(t) ≤ ξ

χ
.

Also, if dX
dt ≥ X(t)

(
ξ − χX(t)

)
, then lim

t→∞
inf X(t) ≥ ξ

χ
.

Theorem 3. System (1) becomes permanent if the two requirements listed below are true at the
same time:

(i) 1 + W > KL2;
(ii) e2(L3 − ε3) > e1(2 + W + W

1+W ).

Proof. The first equation of Model System (1) gives us

dX
dt
≤ X(1− X). (9)

By using Lemma 1 in (9), we can derive

lim
t→∞

sup X(t) ≤ 1. (10)

Therefore, for an arbitrary small ε1 > 0, ∃ a positive number T1 > 0 such that

X(t) ≤ 1 + ε1, ∀t ≥ T1.
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Now,

d
dt

(
X +

1
e2

Y
)
≤ (1 + e1)X− e1

(
X +

1
e2

Y
)

.

i.e.,
d
dt

(
X +

1
e2

Y
)
+ e1

(
X +

1
e2

Y
)
≤ L1, where L1 = (1 + e1)(1 + ε1).

In this way, we can write

lim
t→∞

sup
(

X +
c1

c2
Y(t)

)
≤ L1

e1
.

As a result, we can say that there is a positive real number L2 for which lim
t→∞

sup Y(t) ≤ L2.

So we will be able to discover another sufficiently small value for ε2 > 0 for which ∃ a
positive real number T2 > T1 such that Y(t) ≤ L2 + ε2, ∀ t ≥ T2. Hence, the system is
always dissipative.

From first equation of (1), we get

dX
dt
≥ X

{(
1− L2

W + 1

)
− X

}
. (11)

So on the basis of Lemma 1, we may obtain

lim
t→∞

inf X(t) ≥ L3, where L3 =
1 + W − KL2

1 + W

provided 1 + W > KL2.
Thus, for any arbitrary small ε3 > 0, ∃ a positive number T3 > T2 such that

X(t) ≥ L3 − ε3, ∀ t ≥ T3.

Now, from the second equation of Model System (1), we achieve

dY
dt
≥ Y(A′ − B′Y), where A′ =

e2(L3 − ε3)− e1(2 + W + W
1+W )

1 + W + X + WX
1+W

and B′ =
1

1 + W + X + WX
1+W

.

Now, using Lemma 1, we get

lim
t→∞

inf Y(t) ≥ A′

B′

provided e2(L3 − ε3) > e1(2 + W + W
1+W ).

Let us choose ε = min
{

L3, A′
B′

}
. Then for ε > 0, lim

t→∞
inf X(t) ≥ ε and lim

t→∞
inf Y(t) ≥

ε. Therefore, if the aforementioned requirements are true, System (1) is uniformly persis-
tent.

Remark 3. From the above theorem, it is observed that System (1) is inextricably dependent on the
strength of the wind speed parameter for the survival of all the species in a feasible region.

Remark 4. In a similar way, we can show that the dynamical System (3) will be permanent for
1 > e1

e2(1+W)
+ 1

p2
1
. Here also, the populations stay in the domain/region based on the strength of the

wind parameter.
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4. General Stability Analysis and Hopf Bifurcation of the Model Systems
4.1. Equilibria, Their Conditions of Existence, and Local Stability Analysis of System (1)

At first, we reduced the number of parameters of System (1) by setting a proper choice
of non-dimensional variables as follows:

x =
X
K

, y =
C1

A
Y, T = At, C = A, B1 = B2 =

1
K

, e1 =
C
A

, e2 =
KC2

A
.

So System (1) becomes 
dx
dT

= x(1− x)− xy
1 + W + x + Wx

1+W
,

dy
dT

= −e1y +
e2xy

1 + W + x + Wx
1+W

,
(12)

with initial conditions

x(0) = x0 > 0, y(0) = y0 > 0. (13)

To check the local stability, first of all, we must derive the Jacobian matrix. For this
cause, let us now consider the right-hand side of Model System (12) as a set of distinct
functions as shown below:

f (x, y) = x(1− x)− xy
1 + W + x + Wx

1+W
,

g(x, y) = −e1y +
e2xy

1 + W + x + Wx
1+W

.

The Jacobian matrix can be written as

J(x, y) =

 J11 J12

J21 J22

,

where

J11 =
∂ f
∂x

= 1− 2x− (1 + W)y(
1 + W + x + Wx

1+W

)2 ,

J12 =
∂ f
∂y

= − x
1 + W + x + Wx

1+W
,

J21 =
∂g
∂x

=
e2(1 + W)y(

1 + W + x + Wx
1+W

)2 ,

J22 =
∂g
∂y

=
e2x

1 + W + x + Wx
1+W

− e1.

Now, let us analyse the existence of equilibrium points along with their local stability for
Model System (12) one-by-one in the following way.

Theorem 4. The equilibrium point E0(0, 0) is known as a trivial equilibrium point, and it always
persists. Model System (12) always exhibits locally unstable phenomenon around the point E0(0, 0)
at any time T.
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Proof. λ1 = 1 (> 0) and λ2 = −e1 (< 0) are the eigenvalues of the Jacobian matrix
obtained at the trivial equilibrium point E0(0, 0). As a result, since E0(0, 0) is a saddle point,
it exhibits unstable behaviour there.

Theorem 5. The equilibrium point E1(1, 0) is known as the axial or predator-free equilibrium
point, and it always persists. Model System (12) exhibits locally asymptotically stable phenomenon
around the predator-free equilibrium point E1(1, 0) at any time T for e2 < e1

(
2 + W + W

1+W

)
,

i.e., the ratio of the parameter e2 and e1 should be smaller than the expression containing the wind
parameter.

Proof. The eigenvalues of the Jacobian matrix computed at E1(1, 0) are λ1 = −1 (< 0) and
λ2 = −e1 +

e2
2+W+ W

1+W
. So the system will show stable phenomenon around E1(1, 0) for

e2 < e1

(
2 + W + W

1+W

)
.

Remark 5. The system may experience a bifurcation at e2 = e1

(
2 + W + W

1+W

)
.

Theorem 6. The interior or co-existence equilibrium point E∗(x∗, y∗) of System (12) exists for
e2 > e1

(
2 + W + W

1+W

)
. The system shows locally asymptotically stable (LAS) behaviour around

this interior equilibrium point E∗(x∗, y∗) for

1− 2x∗ − e1(1 + W)(1− x∗)
e2x∗

< 0.

Proof. The interior or co-existence equilibrium point E∗(x∗, y∗) is where

x∗ =
e1(1 + W)

e2 − e1 − e1W
1+W

, (14)

y∗ =
e2(1 + W)

(
e2 − e1(1 + W)− e1 − e1W

1+W

)
(

e2 − e1 − e1W
1+W

)2 . (15)

Now, both the expressions x∗ and y∗ become positive under the following restrictions:

e2 > e1(1 + W) + e1 +
e1W

1 + W
. (16)

So e2 > e1(2 + W + W
1+W ) is the foremost condition behind the subsistence of the interior

steady state E∗(x∗, y∗).
The characteristic equation of the Jacobian matrix associated with the interior steady

state E∗(x∗, y∗) is
λ2 − (J∗11 + J∗22)λ + J∗11 J∗22 − J∗12 J∗21 = 0, (17)

where J∗11, J∗12, J∗21, J∗22 are obtained by evaluating J11, J12, J21, J22 at interior steady state
E∗(x∗, y∗).

Now,

Trace(J(x∗, y∗)) = J∗11 + J∗22 = 1− 2x∗ − e1(1 + W)(1− x∗)
e2x∗

,

det(J(x∗, y∗)) = J∗11 J∗22 − J∗12 J∗21 =
e2(1 + W)x∗y∗(

1 + W + x∗ + Wx∗
1+W

)3 (> 0).



Mathematics 2023, 11, 4863 10 of 26

Equation (17) will have two negative real roots for J∗11 + J∗22 < 0, i.e., for

1− 2x∗ − e1(1 + W)(1− x∗)
e2x∗

< 0.

Hence, we have the theorem.

Theorem 7. The existence condition e2 > e1

(
2 + W + W

1+W

)
of the interior equilibrium point

E∗(x∗, y∗) and the local stability condition 1− 2x∗ − e1(1+W)(1−x∗)
e2x∗ < 0 depends on the wind

parameter. Thus, it crucially controls the behaviour (existence, survival, etc. of the species) of the
interior point.

4.2. Hopf Bifurcation Analysis

For 1− 2x∗ − e1(1+W)(1−x∗)
e2x∗ = 0, Equation (17) possesses two purely imaginary roots;

and Equation (17) becomes:

λ2 +
e2(1 + W)x∗y∗(

1 + W + x∗ + Wx∗
1+W

)3 = 0. (18)

So we have obtained two purely imaginary eigenvalues such as λ1,2 = ± iω0, where

ω0 =

√√√√ e2(1 + W)x∗y∗(
1 + W + x∗ + Wx∗

1+W

)3 .

Now, the task is to prove the transversality condition, i.e., the non-zero speed of the eigen-
values for crossing the imaginary axis. This can be accomplished by checking the expression
of the derivative of the J∗11 + J∗22 with respect to wind speed W as a non-zero quantity.

At this time,

d(J∗11 + J∗22)

dW
= − e1

K

(
1 +

1 + W
Kx∗2

) e2 − e1 − e1W
1+W + e1

1+W(
e2 − e1 − e1W

1+W

)2 − e1K(1− x∗)
e2x∗

6= 0.

As a result, System (12) exhibits Hopf bifurcation close to the interior steady state E∗(x∗, y∗)
with respect to wind speed W.

4.3. Equilibria, Their Conditions of Existence, and Local Stability Analysis of System (3)

At first, we reduced the number of parameters of System (3) by setting the proper
choice of non-dimensional variables as follows:

x =
X
K

, y =
C1

A
Y, T = At, C3 = AK, B1 =

1
K

, e1 =
C4

A
, e2 =

C5

KC1
, P1 =

D1

K
.

So System (3) becomes
dx
dT

= x(1− x)− xy
1 + W + x + Wx

1+W
− x2

x2+P2
1

,

dy
dT

= e1y− e2y2

x
,

(19)

with initial conditions

x(0) = x0 > 0, y(0) = y0 > 0. (20)

Here, the Jacobian matrix is given by
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J(x, y) =


1− 2x− (1 + W)y(

1 + W + x + Wx
1+W

)2 +
2P2

1 x
(x2 + P2

1 )
2
− x

1 + W + x + Wx
1+W

,

e2y2

x2 e1 −
2e2y

x

.

Let us now state Model System (12)’s equilibria existence criteria along with their local
stability requirement, expressed by the following theorems surrounding each equilibrium
point.

Theorem 8. The trivial equilibrium point E0(0, 0) always exists, and it is unstable at any moment
T.

Proof. λ1 = 1 and λ2 = e1 (> 0) are the eigenvalues of the Jacobian matrix calculated at
(0, 0), which results in the trivial point E0(0, 0) as being unstable.

Theorem 9. The axial or predator-free equilibrium point E1(x1, 0) always exists, and it is always
unstable.

Proof. The axial or predator-free equilibrium point is E1(x1, 0), where x1 can be obtained
from the following equation:

x1
3 − x1

2 + (1 + P2
1 )x1 − P2

1 = 0. (21)

Equation (21) always possesses at least one positive root. Now, λ1 = 1− 2x1 +
2x1P2

1
(x2

1+P2
1 )

2

and λ2 = e1 are the eigenvalues of the Jacobian matrix calculated at (x1, 0). So E1(x1, 0)
will always be unstable.

Theorem 10. The interior steady state E∗(x∗, y∗) shows stability or instability depending upon
various parametric restrictions.

Proof. The interior steady state is E∗(x∗, y∗), where

y∗ =
e1x∗

e2
, (22)

and x∗ can be obtained from the following equation:

R1x∗4 + R2x∗3 + R3x∗2 + R4x∗ + R5 = 0, (23)

where

R1 = e2

(
1 +

W
1 + W

)
,

R2 = e1 − e2

(
W

1 + W
−W

)
,

R3 = e2P2
1

(
1 +

W
1 + W

)
− e2(1 + W),

R4 = e1P2
1 + e2 +

e2W
1 + W

− e2P2
1

(
W

1 + W
−W

)
,

R5 = e2(1 + W)(1− P1).
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Now, the interior steady state E∗(x∗, y∗) will exist depending upon the existence of a
positive root of Equation (23).

The local stability analysis of the interior steady state E∗(x∗, y∗) has been done in the
Numerical Simulation section because it is very complicated to analyse analytically. Simi-
larly, the existence of Hopf bifurcation analysis has also been performed numerically.

5. Global Stability Analysis
5.1. For System (12)

Theorem 11. If the following stipulation is true, the interior steady state E∗(x∗, y∗) of System (12)
becomes globally asymptotically stable:(

2 + W +
W

1 + W

)(
1 + W + x∗ +

Wx∗

1 + W

)
>

(
1 +

W
1 + W

)
y∗.

Proof. Let us take the Lyapunov function in the underlying manner:

L(x, y) = α1

∫ x

x∗

x− x∗

x
dx + α2

∫ y

y∗

y− y∗

y
dy,

where α1 and α2 are defined as positive constants and are chosen appropriately.
Now, performing differentiation on the aforementioned function with respect to T, we get

dL
dT

= α1
x− x∗

x
dx
dT

+ α2
y− y∗

y
dy
dT

,

= α1(x− x∗)

{
1− x− y

1 + W + x + Wx
1+W

}
+ α2

{
−e1 +

e2x
1 + W + x + Wx

1+W

}
,

= −α1(x− x∗)2

1−

(
1 + W

1+W

)
y∗(

1 + W + x + Wx
1+W

)(
1 + W + x∗ + Wx∗

1+W

)
−

α1(x− x∗)(y− y∗)(
1 + W + x + Wx

1+W

)(
1 + W + x∗ + Wx∗

1+W

)[− α2e2(1 + W) + 1 + W + x∗ +
Wx∗

1 + W

]
.

Now, we choose α2 =
1+W+x∗+ Wx∗

1+W
e2(1+W)

. So the above time derivative becomes

dL
dT

= −α1(x− x∗)2

1−

(
1 + W

1+W

)
y∗(

1 + W + x + Wx
1+W

)(
1 + W + x∗ + Wx∗

1+W

)
,

< −α1(x− x∗)2

1−

(
1 + W

1+W

)
y∗(

2 + W + W
1+W

)(
1 + W + x∗ + Wx∗

1+W

)
, (24)

Now, if the parametric limitation
(

2 + W + W
1+W

)(
1 + W + x∗ + Wx∗

1+W

)
>
(

1 + W
1+W

)
y∗ is

applied, then from (24), we can obtain

dL
dT

< 0.

Therefore, according to the invariance principle of Lyapunov–Lassalle [42], the steady state
E∗(x∗, y∗) becomes asymptotically stable globally if the aforementioned condition holds
true.
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5.2. For System (19)

Theorem 12. The dynamical System (19) will be globally asymptotically stable around its interior
equilibrium point for

(i) (1+ W
1+W )y∗

l[1+W+(1+ W
1+W )x∗]

+ l+x∗
(1+P2

1 )(x∗2+P2
1 )

< 1,

(ii) e2 > e1l,

where l = 1− e1
e2(1+W)

− 1
P2

1
.

Proof. The proof can be done in a similar fashion.

Remark 6. The parametric restrictions obtained for both Systems (12) and (19) are sufficient
conditions. As with the earlier case, they depend on the wind parameter, which reveals the fact that
the stability of both systems may depend on the wind parameter.

6. Numerical Simulations

In this section, we have performed extensive numerical simulation to explore the
model systems’ possible dynamics. For this purpose, we have used MATLAB (R2018a)
software. We have mainly used the ‘Ode45’ toolbox and default error tolerance level for the
simulations. Since we want to explore the effect of wind speed on the dynamics of all four
systems, we have considered all the parameter values from the article [23] and varied the
levels of wind speed accordingly. The adopted parameter sets for different model systems
can be seen from Table 3. Now, let us explore the systems’ possible dynamics individually
in the following subsections.

Table 3. Parameter set for different model systems (∗ = assumed).

Model System Parameter Values Source

System 1
A = 2, K = 40, B1 =

0.1, B2 = 0.1, C1 = 0.1, C2 =
0.2, C = 1, W = ∗

[23]

System 2

A = 2, K = 100, B1 =
0.1, C1 = 0.1, C3 = 1, W =
∗, D1 = 10, C4 = 0.45, C5 =

0.2

[23]

Perturbed System 1

A = 2, K = 75, B1 =
0.1, B2 = 0.1, C1 = 0.1, C2 =

0.2, C = 1, θ = 0.681, ε =
0.6, W = ∗

[23]

Perturbed System 2

A = 2, K = 100, B1 =
0.1, C1 = 0.1, C3 = 1, W =
∗, D1 = 10, C4 = 0.45, C5 =

0.2, θ = 0.153, ε = 0.6

[23]

6.1. For System (1)

To start with, we have plotted the phase portrait dynamics both in the absence and
presence of wind speed for System (1). The system shows unstable behaviour by producing
limit-cycle oscillation considering no wind speed, i.e., for W = 0, as shown in Figure 1a.
But considering wind speed, i.e., for W = 0.4, the limit-cycle oscillation vanishes and the
system becomes stable, as portrayed in Figure 1b. The possible ecological reason behind
this scenario might be the overpredation of prey species considering no wind speed. But
considering a certain wind speed threshold, the predator individuals may not be able to
catch the prey species conveniently, which gives a space for the prey species to grow and
maintains balance in the prey–predator interactions.
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(a) W = 0 (b) W = 0.4

Figure 1. Phase portrait plot for different levels of wind speed for System (1). Subfigure (a) and
Subfigure (b), respectively, represent the unstable and stable behaviour of the corresponding system.
The parameter values are taken from Table 3.

In Figure 2, we have plotted the Hopf bifurcation diagram with respect to the wind
speed for [0, 0.5]. Here, it is seen that the system remains stable until it crosses the threshold
value W = W∗ = 0.25. Both the prey and predator population densities oscillate between
some ranges when the wind level lies below the aforesaid threshold value. As soon as
it crosses the corresponding threshold value, the oscillation of the species stops, and the
system becomes stable. However, to know the effect of wind speed on population den-
sity, we plotted the biomass of both the species in the range W ∈ [0.2, 1.5] in Figure 3.
From Figure 3a, it is seen that the density of the prey population increases with the rise
in wind speed and then saturates after reaching a particular wind speed threshold value.
On the other hand, the predator biomass starts to decline with the rise in wind speed and
eventually goes very close to zero.

(a) (b)

Figure 2. Plot of Hopf bifurcation diagram with respect to wind speed W for Model System (1) for
W ∈ [0, 0.5]. The other parameter values have been taken from Table 3.
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Figure 3. Plot of population biomass with respect to wind speed W for Model System (1) for
W ∈ [0.2, 1.5]. The other parameter values have been taken from Table 3.

Remark 7. The ecological reason behind the huge decline in biomass of the specialist predator can
be interpreted as follows:

The specialist predator entirely relies upon the availability of a favourable prey species for
its livelihood, so it becomes very tough for it to survive without the proper interactions with prey
species. Since wind speed acts as an obstacle for it and reduces the predation efficiency, for higher
values of wind level, the predation efficiency starts to reduce, which eventually causes the declination
of its biomass. Once the level of the wind speed crosses some threshold, the predator species biomass
goes very close to zero, and on the other hand, the prey species biomass increases continuously.

6.2. For System (5)

In this subsection, we have considered the perturbed model (5) associated with
model (1). Here, we have considered the perturbation on the parameters A and C, re-
spectively, as in the article [23]. Our main aim is to determine the impact of wind speed W
on the perturbed system dynamics considering the parameter set described in Table 3. So
in Figure 4, we have plotted the phase portrait and time-series plot considering no wind
speed for the system. From Figure 4, it is noticed that System (5) shows chaotic behaviour
around the interior steady state. But for W = 1.5, it is seen that this chaotic attractor turns
into a simple periodic oscillations as exhibited in Figure 5. So it can be said that the level of
the wind speed crucially impacts the system dynamics and is responsible for controlling
the chaotic behaviour of the considered system. Again, to check the further impact of the
wind parameter on both population biomasses, we have considered an increased level of
wind speed W = 2 and noticed that the predator population biomass goes very close to
zero, while the prey biomass sustains a range in an oscillatory manner. This observation
has been depicted in Figure 6. The possible ecological explanation behind this scenario is
very much apparent.

The bifurcation diagram for the perturbed System (5) with respect to the wind speed
W has been depicted in Figure 7. From Figure 7a, it is noticed that the system undergoes
chaotic oscillation considering no wind speed; but considering wind speed (for increasing
the value of it), the system undergoes a simple periodic oscillation between the range 0
to 120. However, for the increasing value of the wind parameter, the predator population
goes very close to zero. The threshold that accounts for the huge decline in biomass of the
predator species is W = 1.57, below which the system shows multi-periodic oscillation.
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Figure 4. Considering no wind speed, the perturbed System (5) exhibits chaotic behaviour: (a) dis-
plays the phase plane projection of chaotic attractor, while (b,c) show the corresponding time-series
solution of prey and predator species, respectively. The parameter set has been used from Table 3.
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Figure 5. Plot of phase portraits and time evolution for prey species considering wind speed W = 1.5
for the perturbed System (5). Here, the chaotic attractor disappears considering wind speed. The other
parameter values have been taken from Table 3.
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Figure 6. Time-series plot for W = 2 for the perturbed System (5). It shows that for a higher level of
wind speed, the prey population oscillates in a particular region while the predator population goes
very close to zero. The other parameter values have been taken from Table 3.

(a) (b)

Figure 7. Plot of bifurcation diagram with respect to the wind speed W for System (5). It exhibits that
the prey population oscillates, while the predator population goes very close to zero with the rise in
wind parameter value. The other parameter values have been taken from Table 3.

Remark 8. Reason behind the occurrence of chaos and its mitigation:
Considering no wind speed, the system exhibits a chaotic phenomenon (see the article [23]).

There may be many possible reasons behind this scenario. One possible reason can be interpreted
as a continuous fluctuation in the population biomass in an unpredictable way. This continuous
fluctuation in the population biomass may occur depending upon over-predation of prey species
or something related to the interacting relationships among them. Considering wind speed, this
unpredictable periodic fluctuation in the biomass turns to a simple periodic fluctuation within a
feasible range; that means wind speed can control the randomness of population biomass fluctuations
in a meaningful way. It is thought that wind speed controls this chaotic behaviour by regaining a
proper balance for the interactions among the prey species and the specialist predator species.

In Figure 8, we plotted the dynamics of the Lyapunov exponents both in the presence
and the absence of wind speed for System (5). From Figure 8a, we noticed that the prey
population exhibits chaotic phenomenon as the Lyapunov exponent takes the non-negative
value; but the predator species does not exhibit chaotic phenomenon, as it is seen that the
corresponding Lyapunov exponent is always negative. However, in the presence of wind
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speed, i.e., for W = 1.5, both of the Lyapunov exponents of the species take negative values
(as shown in Figure 8b), which eventually expresses the non-chaotic phenomenon of the
interacting species.
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(a) For W = 0 (b) For W = 1.5

Figure 8. Plot of Lyapunov exponents with respect to the wind speed W for System (5). It exhibits
that the prey population shows chaotic behaviour while the predator population shows non-chaotic
behaviour. The other parameter values have been taken from Table 3.

6.3. For System (3)

Here, initially, we have plotted the phase portrait dynamics both in the absence and
presence of wind speed for System (3). The system shows unstable behaviour by producing
limit-cycle oscillation considering no wind speed, i.e., for W = 0, as shown in Figure 9a.
The corresponding time-series plot has been shown in Figure 9b. But considering wind
speed, i.e., for W = 0.5, the limit-cycle oscillation vanishes, and the system becomes
stable, as portrayed in Figure 10a. The corresponding time-series plot has been shown in
Figure 10b. The possible ecological reason behind this scenario might be the over-predation
of prey species considering no wind speed. But considering a certain amount of wind
speed threshold value, the predator populations may not be able to catch the prey species
conveniently, which gives space for the prey species to grow and maintains a balance in the
prey–predator interactions.
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Figure 9. Plot of phase portraits and time evolution for prey species considering no wind speed for
System (3). The other parameter values have been taken from Table 3.
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Figure 10. Plot of phase portraits and time evolution for prey species considering wind speed
(W = 0.5) for System (3). The other parameter values have been taken from Table 3.

In Figure 11, we plotted the Hopf bifurcation diagram with respect to the wind speed
for [0, 0.5]. Here, it is seen that the system remains stable until it crosses the threshold value
W = W∗ = 0.35. Both the prey and predator population densities oscillates between some
ranges when the wind level lies below the mentioned threshold value. As soon as it crosses
the corresponding threshold value, the oscillation of the species stops, and the system
becomes stable.

(a) (b)

Figure 11. Plot of Hopf bifurcation diagram with respect to wind speed W for Model System (3) for
W ∈ [0, 0.5]. The other parameter values have been taken from Table 3.

Remark 9. Considering no wind speed, the generalist predator exhibits periodic fluctuation; but
considering wind speed, it shows stable behaviour. Unlike the specialist predator, here, the generalist
predator can persist without the presence of the prey species because it has other food options.
Considering no wind speed, the generalist predator over-predates its favourite food and creates an
imbalance on the biotic relationships, which thus demonstrates the periodic fluctuation of its biomass.
As opposed to that, considering wind speed, this imbalance is overcame, and as a result, the systems
exhibit stable behaviour around the co-existence steady state.

The population biomass plot for both species is shown in Figure 12 with respect to
the wind parameter W for System (3). It has been noted that both populations grow more
biomass as the wind parameter value increases.
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Figure 12. Plot of population density with respect to wind speed W for Model System (3) for
W ∈ [0.35, 20]. The other parameter values have been taken from Table 3.

6.4. For System (7)

In this subsection, we have considered the perturbed Model (7) associated with
Model (3). Here, we have considered the perturbation of the parameters A and C4, respec-
tively, as in the article [23]. Our main aim is to determine the impact of wind speed W
on the perturbed system dynamics considering the parameter set described in Table 3. So
in Figure 13, we have plotted the phase portrait and time-series plot considering no wind
speed for the system. Figure 4 shows that System (5) experiences period-four oscillating
behaviour around the interior steady state. But for W = 8, it is seen that this period-four
oscillating behaviour turns into a simple periodic oscillation as exhibited in Figure 14. So it
can be said that the level of the wind speed crucially impacts the system dynamics and is
responsible for controlling the period-four oscillating behaviour of the considered system.
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Figure 13. Time-series and phase portrait plot of the perturbed System (7) considering no wind,
which reveals the system undergoes period-four oscillations. The other parameter values have been
taken from Table 3.
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Figure 14. Time-series and phase portrait plot of the perturbed System (7) considering wind, W = 8,
which reveals the system undergoes simple periodic oscillations. The other parameter values have
been taken from Table 3.

Remark 10. Reason behind the occurrence of period-4 oscillation and its control:
Considering no wind speed, the system exhibits period-4 oscillation. There may be many

possible reasons behind this scenario. One possible reason can be interpreted as a continuous
fluctuation in the population biomass in a feasible range in a periodic way. This fluctuations in the
population biomass may occur depending upon over-predation of prey species or something related
to the interacting relationships among them. Considering wind speed, this period-4 oscillation in the
biomass turns to a simple periodic fluctuation within a feasible range; that means wind can control
the period-4 oscillation in the population biomass fluctuation in a meaningful way. It is thought
that wind controls this scenario by regaining a proper balance for the interactions among the prey
species and the generalist predator species.

Figure 15a clearly exhibits that for W = 0.5, ε = 0.6, System (5) exhibits chaotic
nature. However, this chaotic nature can be transformed into period-2 oscillation if the
strength of the seasonality parameter ε is increased by fixing the wind speed parameter
value at W = 0.5 (see Figure 15b). On the other hand, fixing the strength of the seasonality
parameter ε at ε = 0.6, the chaotic phenomenon can be completely transformed into a
simple periodic oscillation as exhibited in Figure 15c. From this contradictory behaviour of
these parameters with each other in the context of the stability, we can say that there is a
trade-off between these two parameters.
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Figure 15. Time-series plot of the perturbed System (5) considering different combinations between
the wind speed W and strength of seasonality ε. The other parameter values have been taken from
Table 3.

Remark 11. The study of predator–prey models based on wind effect was lacking significantly as
compared to other models due to the insufficient amount of experimental evidence. However, in the
article [11], the authors have beautifully summarized all the information regarding the interactions
of species related to wind speed. All the presented information dealt with some limited types of
species. However, in this article, we have considered broader types of interactions between prey
species and specialist as well as generalist predators. We have modified the models presented in the
article [23] with the wind factor, and the obtained results vary significantly from those published
previously. The previous results have shown that the perturbed version of a prey–specialist predator
system undergoes chaotic behaviour, whereas we have shown that this chaos can be controlled with
the help of the wind parameter. On the other hand, for the perturbed version of a prey–generalist
predator system, it is observed that wind can transform the period-4 oscillation (which was not
presented in that article) into a simple limit-cycle oscillation. For the non-perturbed version of a
prey–specialist predator system, the wind parameter acts as a stabilizing factor, which matches the
results of the article [21].

6.5. For Perturbed System 1

Let us consider another form (considered in article [43]) of the perturbed version of
System (1) as follows:

dX
dt

= A(t)X
(

1− X
K

)
− C1XY

1 + W + B1X + B1WX
1+W

,

dY
dt

= −C(t)Y +
C2XY

1 + W + B2X + B2WX
1+W

,
(25)
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with starting conditions

X(0) = X0 > 0, Y(0) = Y0 > 0, (26)

where A(t) = A + A1 sin θt, C(t) = C + C11 sin θt, 0 < A1 < A, 0 < C11 < C.
Here, we have considered the parameter set as A = 2, K = 40, C1 = 0.1, C2 =

0.2, B1 = 0.1, B2 = 0.2, C = 1, θ = 2π
365 , A1 = 0.5, C11 = 0.4. The perturbed Sys-

tem (25) has been plotted for different time series by varying the wind speed parameter
W. From Figure 16a, it is seen that in the absence of wind speed, the system undergoes a
bursting pattern (for details, please see the article [43]); this pattern continues for W = 0.5
also, as shown in Figure 16b. However, for W = 1.5, this pattern vanishes, and there exist
very few individuals of the predator species (Figure 16c).
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Figure 16. Time-series plot of the perturbed System (25) considering different values of the wind
speed parameter W. The other parameter values have been mentioned in the text.

6.6. For Perturbed System 2

Let us consider another form (considered in the article [43]) of the perturbed version
of System (3):

dX
dt

= A(t)X
(

1− X
K

)
− C1XY

1 + W + B1X + B1WX
1+W

− C3X2

X2 + D2
1

,

dY
dt

= C4(t)Y−
C5Y2

X
,

(27)

with starting conditions

X(0) = X0 > 0, Y(0) = Y0 > 0, Θ(0) = Θ0 > 0, (28)

where A(t) = A + A1 sin θt, C4(t) = C4 + C41 sin θt, 0 < A1 < A, 0 < C41 < C4.



Mathematics 2023, 11, 4863 24 of 26

Here, we have considered the parameter set as A = 2, K = 100, C1 = 0.1, C3 = 1, B1 =
0.1, D1 = 10, C4 = 0.45, C41 = 0.4, C5 = 0.2, θ = 2π

365 , A1 = 0.5 The perturbed System (27)
is plotted as different time series by varying the wind speed parameter W. From Figure 17a,
it is seen that in the absence of wind speed, the system undergoes a bursting pattern (for
details, please see the article [43]); this pattern continues for W = 0.5 also, as shown in
Figure 17b. However, for W = 1.5, this pattern vanishes, as depicted in Figure 16c.
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Figure 17. Time-series plot of the perturbed System (27) considering different values of the wind
speed parameter W. The other parameter values have been mentioned in the text.

Remark 12. For System (5), in the absence of the wind speed parameter, we have obtained the
chaotic phenomenon; whereas for System (25), we have obtained the bursting pattern. For higher
values of wind speed, the predator population goes very close to zero for the earlier perturbed system;
here also, it goes very close to zero. For System (7), in the absence of the wind speed parameter,
we have obtained period-4 oscillations; whereas for System (27), we have obtained the bursting
pattern. For higher values of wind speed, the populations simply oscillate for both of these two
perturbed versions.

7. Conclusions and Discussion

In this article, two continuous predator–prey models and their corresponding per-
turbed versions have been considered and studied in windy conditions. The models and
the parameters that are considered for seasonal perturbation have been considered from
the article [23]. It is noticed that the speed level of the wind parameter has a significant
impact on controlling the systems’ stability. When the predator is considered a specialist,
it is observed that the wind parameter stabilizes the non-perturbed system through the
occurrence of a Hopf bifurcation. However, considering no wind speed, the corresponding
perturbed version shows chaotic behaviour, which can be controlled by the varying level of
wind speed. Considering wind speed, the chaotic attractor turns to a simple limit-cycle
oscillation; thus, wind can control the occurrence of such a chaotic attractor. Moreover,
for higher levels of wind speed, the non-perturbed system experiences a huge decline in



Mathematics 2023, 11, 4863 25 of 26

the biomass of the predator species. On the other hand, when the predator is considered as
a generalist, it is observed that the wind parameter stabilizes the non-perturbed system
through the occurrence of a Hopf bifurcation in a similar way to the case of the special-
ist predator. But here, considering no wind speed, the corresponding perturbed version
shows period-4 oscillation, which can be controlled by the varying level of wind speed.
Considering wind speed, the period-4 orbit turns to a simple limit-cycle oscillation; thus,
wind can control the occurrence of such complex dynamics. So it is seen that wind has
a great impact on the system dynamics of all the model systems. In this article, all the
models are formulated based on the fact that the predator reduces its hunting rate due to
the obstacle created by the wind speed. However, more research can be performed in view
of the increased predation rate of the predator species in the context of windy conditions.
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