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Abstract: This article describes a new form of an anticipated backward stochastic differential equation
(BSDE) with a time-delayed generator driven by fractional Brownian motion, further known as
fractional BSDE, with a Hurst parameter H ∈ (1/2, 1). This study expands upon the findings of the
anticipated BSDE by considering the scenario when the driver is fractional Brownian motion rather
instead of standard Brownian motion. Additionally, the generator incorporates not only the present
and future but also the past. We will demonstrate the existence and uniqueness of the solutions
to these equations by employing the fixed point theorem. Furthermore, an equivalent comparison
theorem is derived.
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1. Introduction

The field of theoretical research on backward stochastic differential equations (BSDEs)
has made significant progress since the introduction of Pardoux and Peng’s [1] first formu-
lation of non-linear BSDEs in 1990. Our analysis focuses on the scenario where there are
two adapted processes, Y· and Z·, used to solve the given type of BSDE:

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T,

where the terminal value ξ is square integrable, f is the Lipschitz generator, and Bt is a
standard Brownian motion.

Interest in BSDEs has increased since the work of Pardoux and Peng, primarily because
of the correlation between BSDEs and stochastic control and partial differential equations
(PDEs). Several publications have extensively explored these topics including research
that establishes the existence and uniqueness of BSDEs under weaker conditions (He [2];
Abdelhadiet al. [3]; Zhang et al. [4]). Additionally, there have been studies that establish
the connection between BSDEs and quasilinear parabolic PDEs (Pardoux and Răşcanu [5];
Ren and Xia [6]). Furthermore, a few cases with an analytical solution of BSDEs, more cases
with a numerical solution only (Zhang [7]; Zhao et al. [8]; Gobet et al. [9]), and a wide
range of applications of BSDEs in a variety of fields, such as finance, stochastic optimal
control problems, physics, and biology (examples can be found in [10–12]).

As the BSDE theory advances, a growing number of models are being investigated.
In 2009, Peng and Yang [13] proposed the following concerning anticipated BSDEs, a
fundamental category of BSDEs:
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Yt = ξT +

∫ T

t
f (s, Ys, Zs, Ys+ρ(s), Zs+$(s))ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + N;
Zt = ηt, T ≤ t ≤ T + N,

where ρ(s) and $(s) are two deterministic R+-valued continuous functions defined on
[0, T], respectively, which also satisfy the following conditions: t ≤ t + ρ(t) ≤ T + N, t ≤
t + $(t) ≤ T + N;

∫ T
t f (s + ρ(s))ds ≤ L

∫ T+N
t f (s)ds,

∫ T
t f (s + $(s))ds ≤ L

∫ T+N
t f (s)ds;

additionally, the authors established the existence and uniqueness theorem of the aforemen-
tioned equations. Feng [14] investigated the existence of a solution for the anticipated BSDE
with both Lipschitz and non-Lipschitz generators, denoted as f . Zhang et al. [15] derived
solutions for mean-field anticipated BSDEs in the presence of a time-delayed generator
function f . Wang and Cui [16] introduced a new type of differential equation called the
anticipated backward doubly stochastic differential equation. They used this equation to
solve various stochastic control problems by exploiting the relationship between stochastic
differential delay equations and anticipated BSDEs.

BSDEs involving time-delayed generators (Delong and Imkeller [17]) are given as below:

Yt = ξ +
∫ T

t
f (s, Ys−h1(s), Zs−h2(s))ds−

∫ T

t
Zs dBs, 0 ≤ t ≤ T,

where 0 ≤ h1(s), h2(s) ≤ T, and the generator f is dependent on the past value of a solution.
He et al. [2] and Zhuang [18] later examined certain delay and anticipated BSDEs as the
generalization of Peng and Yang [13] and Delong and Imkeller [17].

The fractional Brownian motion (fBm, for short) BH
t with the Hurst parameter H ∈

(1/2, 1) was first introduced by Kolmogorove [19] in 1940. It is a centered Gaussian process
with good properties such as self-similarity and long-wall correlation, which makes it
reasonable and efficient to use fBm as a random noise term in stochastic models in the
fields of communication engineering, finance, and economics. Consequently, it is crucial
to examine the stability, existence, and uniqueness of solutions to BSDEs driven by fBm;
that is, the disturbance source of traditional BSDEs will change from white noise to a more
general fBm and fractional BSDEs will be obtained. Firstly, Bender [20] established an
explicit solution of a type of linear fractional BSDE with a Hurst parameter H by using the
solution of linear parabolic PDEs. Soon afterwards, Hu and Peng [21] solved the nonlinear
fractional BSDEs with the Hurst parameter H > 1/2 by means of the quasiconditional
expectation, which has the general form of:

Yt = ξ +
∫ T

t
f (s, Ys, Zs)ds−

∫ T

t
Zs dBH

s , 0 ≤ t ≤ T.

The research on fractional BSDEs is steadily increasing. For example, Borkowska [22]
examined generalised BSDEs driven by fBm. Wen and Shi [23] solved anticipated backward
stochastic differential equations driven by fractional Brownian motion with H > 1/2.
Inspired by this work, Yu [24] studied the same model under the non-Lipschitz condition,
which is weaker than the ones in Wen and Shi [23], and both of their papers obtained some
general results via a rigorous approach with an associated Skorohod integral. Recently,
Douissi et al. [25] demonstrated a novel anticipated BSDE of the mean-field type while
the driver is fractional Brownian motion, which can be viewed as an improvement of the
result in the above research. In particular, they used two different fixed pointed theorem
methods to prove the existence and uniqueness of the solution to this kind of BSDE. The two
methods correspond to two hypotheses of generator f : one is under the Lipschitz continuity
condition, and the other is a stronger condition, which makes the proof more convenient.
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Recently, Aidara and Sylla [26] proved the existence and uniqueness of fractional BSDEs
with a delayed generator as follows:

Yt = ξ +
∫ T

t
f (s, ηs, Ys−u, Zs−u)ds−

∫ T

t
Z(s)dBH

s , 0 ≤ t ≤ T, (1)

where 0 ≤ u ≤ T and the Hurst parameter of fBM H is greater than 1/2.
Nevertheless, the study of BSDEs driven by fractional Brownian motion has not yet

been explored, in which the generator f takes into account not only both present and
future times but also the past time. Due to the stability, self-similarity, and auto-correlation
of the process increments of fBm, especially the positive correlation of its increments when
the Hurst parameter H is greater than 1/2, the equation after replacing standard Brownian
motion with the fBm driver can have significant applications in stochastic optimal control
problems with delay. Before that, it is necessary to solve some properties of the solution of
such an equation, such as existence and uniqueness and the comparison theorem. In order
to advance the theory of BSDEs, our research will concentrate on analyzing the BSDEs in
this case. The results of this work need to recall and define the Malliavin derivative and
integral operations related to fBm. The results could then enrich the theory of BSDEs and
potentially motivate future research into stochastic optimal control issues.

The main aim of this study is to examine fundamental characteristics of a novel kind
of BSDEs, specifically Anticipated BSDEs with Delayed Generators (DABSDEs). These
DABSDEs are driven by fBm with the Hurst parameter H ∈ (1/2, 1):

−dYt = f
(

t, Yt−d1(t), Zt−d2(t), Yt, Zt, Yt+d3(t), Zt+d4(t)

)
dt− Zt dBH

t , 0 ≤ t ≤ T;
Yt = ξt, T ≤ t ≤ T + N;
Zt = ηt, T ≤ t ≤ T + N,

(2)

where hi are four deterministic R+-valued continuous functions. In particular, we aim to
demonstrate the existence and uniqueness of the solutions to these equations, as well as to
construct a corresponding comparison theorem.

The subsequent section of this study’s framework is structured in the following
manner: Section 2 provides a comprehensive introduction to the fractional DABSDE
model, which is our proposed new BSDE model. In Section 3, we prove the existence and
uniqueness of the adapted solutions to the DABSDE form using the fixed point theorem.
Finally, in Section 4, the comparison theorem for this type of model’s solutions is derived.

2. Preliminaries

Commence by providing definitions pertaining to fractional Brownian motion and
associated assumptions. Additionally, establish a foundation for the article by referencing
specific fundamental results of propositions. To enhance the profundity of the discourse,
it is recommended that readers refer to scholarly works including those by Decreusefond
and Üstünel [27], Hu [28] and Duncan et al. [29].

2.1. Preliminaries on the Fractional Brownian Motion

Let BH = {BH
t }t≥0 be a fractional Brownian motion with its index (Hurst parameter)

H ∈ (0, 1), which is defined on the complete probability space (Ω,F , P) with the filtration
F generated by fBm {BH

t }t≥0. Its covariance kernel is given by

RH(s, t) = EH

[
BH

t BH
s

]
=

1
2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0.

In the particular case of H = 1/2, the fBm BH
t is identical to the standard Brownian

motion, which has continuous and almost surely non-differentiable sample paths and
independent increments, while the fBm with H 6= 1/2 does not have this property. Specif-
ically, when H ∈ (0, 1/2), fBm displays a negative correlation property and the paths
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are more irregular than those of the standard Brownian motion; however, it exhibits a
positive correlation and long-range dependence properties with a more regular path for
H ∈ (1/2, 1). Let H ≥ 1

2 , note that this study will only cover the one-dimensional case in
order to make the presentation simpler. Next, consider the following definitions as given
by Hu [28]. First, we define a Hilbert scalar product 〈ξ, η〉t as

〈ξ, η〉t =
∫ t

0

∫ t

0
φ(u− v)ξuηv du dv, and ‖ξ‖2

t = 〈ξ, ξ〉t,

where ξ and η are two continuous functions on [0, T] and φ(x) := 2H(2H − 1)|x|2H−2 for
all x ∈ R. Let Θt be the completion of the continuous functions under this Hilbert norm.

Let ξ1, ξ2, . . . , ξk, . . . be continuous functions on [0, T] and f is a polynomial of n
variables. Denote PT as the set of all polynomials of fBm over [0, T], which contains all
elements of the following form

F(ω) = f
(∫ T

0
ξ1(t)dBH

t , . . . ,
∫ T

0
ξn(t)dBH

t

)
.

Define the Malliavin derivative DH
s of the polynomial function F from L2(Ω,F , P)→

(Ω,F , Θt) as follows:

DH
s F =

n

∑
k=1

∂ f
∂xk

(∫ T

0
ξ1(t)dBH

t , . . . ,
∫ T

0
ξn(t)dBH

t

)
ξk(s), 0 ≤ s ≤ T.

For F ∈ PT , let DH
1,2 be the completion of PT with respect to the norm

‖F‖H,1,2 := E
[(
‖F‖2

T

) 1
2
]
+ E

[(∥∥∥DH
s F
∥∥∥

T

) 1
2
]

.

Additionally, we define another derivative

DH
t F =

∫ T

0
φ(t− s)DH

s F ds.

Proposition 1 (Hu [28], Proposition 6.25). If Fs : (Ω,F , P)→ Θt is a continuous process such
that E

[
‖F‖2

T +
∫ T

0

∫ T
0 |D

H
s Ft|2 ds dt

]
≤ ∞, denoted as Fs ∈ L1,2

H , then the Itô-type stochastic

integral
∫ T

0 Fs dBH
s exists in L2(Ω,F , P) and

E
[∫ T

0
Fs dBH

s

]
= 0,

E
[∫ T

0
Fs dBH

s

]2

= E
[
‖F‖2

T +
∫ T

0

∫ T

0
DH

s FtDH
t Fs ds dt

]
.

Proposition 2 (Hu [28], Theorem 10.3). For i = 1, 2, let fi(s) and gi(s), for s ∈ [0, T], be real-
valued stochastic processes where gi(s) ∈ DH

1,2, satisfying E
[∫ T

0 (| fi(s)|2 + |gi(s)|2)ds
]
< ∞.

And then, suppose that DH
t gi(s) are continuously differentiable with respect to 0 ≤ s, t ≤ T for

almost all ω ∈ Ω, and E
[∫ T

0

∫ T
0 |D

H
t gi(s)|2 ds dt

]
< ∞. Denote

Yi(t) =
∫ t

0
fi(s)ds +

∫ t

0
gi(s)dBH

s , 0 ≤ t ≤ T.
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Then

Y1(t)Y2(t) =
∫ t

0
Y1(s) f2(s)ds +

∫ t

0
Y1(s)g2(s)dBH

s +
∫ t

0
Y2(s) f1(s)ds

+
∫ t

0
Y2(s)g1(s)dBH

s +
∫ t

0
DH

s Y1(s)g2(s)ds +
∫ t

0
DH

s Y2(s)g1(s)ds.

Meanwhile, the fixed point theorem, which will be used in this paper, is briefly
introduced below.

Proposition 3 (Granas and Dugundji [30], Theorem 1.1). Let (Y, d) be a complete metric space
and F : Y → Y be contractive. Then, F has a unique fixed point u, and Fn(y)→ u for each y ∈ Y.

Its main idea is to obtain fixed points by constructing contractive mappings in order
to obtain the existence and uniqueness of solutions to BSDEs.

2.2. Assumptions

Assume (Ω,F , P) is a complete probability space with natural filtration Ft. Consider
the sets below:

L2(Ft;R) :=
{

ϕ : Ω→ R
∣∣E[|ϕ|2] < ∞, and ϕ is Ft −measurable

}
;

L2
F (0, T;R) :=

{
ϕ : [0, T] × Ω → R

∣∣ E
[∫ T

0 |ϕ(t)|
2]dt

]
< ∞, and ϕ is progressively

measurable process
}

;

Ck,l([0, T]×R) :=
{

ϕ : [0, T] × R → R
∣∣ ϕ is k times differentiable with respect to t ∈

[0, T] and l times continuously differentiable with respect to x ∈ R
}

;

Ck,l
pol([0, T]×R) :=

{
ϕ
∣∣ ϕ ∈ Ck,l([0, T]×R), where each derivatives of ϕ are of polynomial

growth
}

;

W[0,T] :=
{

ϕ
∣∣ ϕ ∈ C1,3

pol([0, T]×R) with ∂ϕ
∂t ∈ C

0,1
pol([0, T]×R)

}
.

Let W̃[0,T+N] and W̃H
[0,T+N] be the completions ofW[0,T+N] under the following norms,

respectively:

‖ϕ(·)‖β =

{
E
[ ∫ T+N

0
eβt|ϕt|2 dt

]}2

,

‖ϕ(·)‖β =

{
E
[ ∫ T+N

0
eβtt2H−1|ϕt|2 dt

]}2

,

where β ≥ 0 is a constant; according to Lemma 7 of Maticiuc and Nie [31], we obtain
W̃H

[0,T+N] ⊆ W̃[0,T+N] ⊆ W[0,T+N] ⊆ L1,2
H,[0,T+N]

. Moreover, we shall introduce assumptions

regarding hi. For 0 ≤ t ≤ T, suppose hi(t) are R+-valued continuous functions, where
i = 1, 2, 3, 4. Consider the following assumptions:

(A1) For all 0 ≤ t ≤ T, t− hi(t) ∈ [0, t], i = 1, 2; t + hi(t) ∈ [t, T + N], i = 3, 4, where N is
a positive constant;
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(A2) For all non-negative and integrable f (·), there exists a positive constant L, such that∫ T
t f (s− hi(s))ds ≤ L

∫ T+N
t f (s)ds, i = 1, 2,∫ T

t f (s + hi(s))ds ≤ L
∫ T+N

t f (s)ds, i = 3, 4.

The assumption about function hi in (A1) and (A2) shows the generator f includes
not only the past and the present but also the future solutions intuitively, and we can find
that the form of the simplest function h that can satisfy (A1) and (A2) is constant delay and
hi(t) = t.

Next, we shall discuss assumptions regarding the generator f . Assume that
f (t, ω, θ, ϑ, y, z, φ, ψ) : [0, T]×Ω× L2(Fs′ ,R)× L2(Fs,R)×R2× L2(Fr′ ,R)× L2(Fr, R)→
L2(Ft,R) is a C0,1

pol-continuous function, where 0 ≤ s′, s ≤ t ≤ r′, r ≤ T + N, t ∈ [0, T], and
that it satisfies the following assumptions:

(A3) For all t ∈ [0, T], there exists a positive constant C, such that∣∣ f (t, θ, ϑ, y, z, φ, ψ)− f (t, θ′, ϑ′, y′, z′, φ′, ψ′
)∣∣

≤ C
(
|θ − θ′|+ tH− 1

2 |ϑ− ϑ′|+ |y− y′|+ tH− 1
2 |z− z′|

+ E
[
|φ− φ′|+ tH− 1

2 |ψ− ψ′|
∣∣∣Ft

])
,

where y, y′, z, z′ ∈ R; θ, θ′, ϑ, ϑ′ ∈ L2
F (0, t;R); φ, φ′, ψ, ψ′ ∈ L2

F (t, T + N;R);
(A4) E

[∫ T
0 | f (t, 0, 0, 0, 0, 0, 0)|2dt

]
< ∞, and f (t, 0, 0, 0, 0, 0, 0) ∈ L2

F (0, T + N;R).

The above two assumptions ensure the generator f is stronger than the uniformly
Lipschitz condition. Compared with other BSDEs driven by standard Brownian motion,
the coefficient of z in our assumption (A3) is tH−1/2. That means strengthening the condition
of the coefficient f with respect to z will make the proof of our results more convenient.

3. Existence and Uniqueness Results

If there exists a pair of processes (Yt, Zt) ∈ W̃[0,T+N] × W̃H
[0,T+N] that satisfy the

fractional DABSDEs of model (2), we refer to (Yt, Zt) as a solution of Equation (2).

Theorem 1. Let the assumptions (A3) and (A4) be satisfied and for i = 1, 2, 3, 4, hi(t) to sat-
isfy (A1) and (A2). Suppose that ξt ∈ W̃[T,T+N] and ηt ∈ W̃H

[T,T+N], then, for the fractional

DABSDE (2), there exists a unique solution (Yt, Zt)t∈[0,T+N] ∈ W̃[0,T+N] × W̃H
[0,T+N].

Proof. The fractional DABSDE given in Equation (2) can be rephrased as
Yt = ξT +

∫ T

t
f
(

t, Yt−h1(t), Zt−h2(t), Yt, Zt, Yt+h3(t), Zt+h4(t)

)
ds−

∫ T

t
Zt dBH

s , 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + N;
Zt = ηt, T ≤ t ≤ T + N.

(3)

Then, we define the mapping I : W̃[0,T+N] × W̃H
[0,T+N] → W̃[0,T+N] × W̃H

[0,T+N] such

that (Y·, Z·) = I(y·, z·). For two arbitrary elements (y·, z·), (y′·, z′·) ∈ W̃[0,T+N] × W̃H
[0,T+N],

set I(y·, z·) = (Y·, Z·), and I(y′·, z′·) = (Y′· , Z′·), we can then define the differences as follows:

(Ŷ·, Ẑ·) := (Y· −Y′· , Z· − Z′·),

(ŷ·, ẑ·) := (y· − y′·, z· − z′·).
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We will now prove certain expectations. Applying Itô’s formula for eβt|Ŷt|2, t ∈ [0, T],
and using Proposition 2, we obtain

d
(

eβt∣∣Ŷt
∣∣2) = βeβt∣∣Ŷt

∣∣2dt + 2eβt∣∣Ŷt
∣∣d∣∣Ŷt

∣∣+ eβtd
∣∣Ŷt
∣∣2

= −2eβt∣∣Ŷt
∣∣∣∣∣ f(t, yt−h1(t), zt−h2(t), yt, zt, yt+h3(t), zt+h4(t)

)
− f

(
t, y′t−h1(t)

, z′t−h2(t)
, y′t, z′t, y′t+h3(t)

, z′t+h4(t)

)∣∣∣dt

+ 2eβt∣∣Ŷt
∣∣∣∣Ẑt

∣∣dBH
t + 2eβtDH

t
∣∣Ŷt
∣∣∣∣Ẑt

∣∣dt.

Taking the integral on [t, T] and rearranging the terms above,

eβt∣∣Ŷt
∣∣2 + β

∫ T

t
eβs∣∣Ŷs

∣∣2ds + 2
∫ T

t
eβs∣∣Ŷs

∣∣∣∣Ẑs
∣∣dBH

s + 2
∫ T

t
eβsDH

s
∣∣Ŷs
∣∣∣∣Ẑs

∣∣ds

= eβT∣∣ŶT
∣∣2 + 2

∫ T

t
eβs∣∣Ŷs

∣∣∣∣∣ f(s, ys−h1(s), zs−h2(s), ys, zs, ys+h3(s), zs+h4(s)

)
− f
(

s, y′s−h1(s)
, z′s−h2(s)

, y′s, z′s, y′s+h3(s)
, z′s+h4(s)

)∣∣∣ds.

Furthermore, according to Equation (9) and Proposition 24 from Maticiuc and Nie [31],
for all t ∈ [0, T], there exists a suitable constant M > 0, such that

t2H−1

M
Zt ≤ DH

t Yt =
σ̂t

σt
Zt ≤ Mt2H−1Zt.

Therefore,

eβt∣∣Ŷt
∣∣2 + β

∫ T

t
eβs∣∣Ŷs

∣∣2ds + 2
∫ T

t
eβs∣∣Ŷs

∣∣∣∣Ẑs
∣∣dBH

s +
2
M

∫ T

t
eβss2H−1∣∣Ẑs

∣∣2ds

≤ eβT∣∣ŶT
∣∣2 + 2

∫ T

t
eβs∣∣Ŷs

∣∣∣∣∣ f(s, ys−h1(s), zs−h2(s), ys, zs, ys+h3(s), zs+h4(s)

)
− f
(

s, y′s−h1(s)
, z′s−h2(s)

, y′s, z′s, y′s+h3(s)
, z′s+h4(s)

)∣∣∣ds.

Taking expectations on both sides and applying the fact that 2AB ≤ A2 + B2, one has

E
[

eβt∣∣Ŷt
∣∣2 + β

∫ T

t
eβs∣∣Ŷs

∣∣2ds +
2
M

∫ T

t
eβss2H−1∣∣Ẑs

∣∣2ds
]

≤ E
[

eβT∣∣ŶT
∣∣2 + 2

∫ T

t
eβs∣∣Ŷs

∣∣∣∣∣ f(s, ys−h1(s), zs−h2(s), ys, zs, ys+h3(s), zs+h4(s)

)
− f

(
s, y′s−h1(s)

, z′s−h2(s)
, y′s, z′s, y′s+h3(s)

, z′s+h4(s)

)∣∣∣ds
]

≤ E
[

eβT∣∣ŶT
∣∣2 + β

2

∫ T

t
eβs∣∣Ŷs

∣∣2ds +
2
β

∫ T

t
eβs
∣∣∣ f(s, ys−h1(s), zs−h2(s), ys, zs, ys+h3(s), zs+h4(s)

)
− f

(
s, y′s−h1(s)

, z′s−h2(s)
, y′s, z′s, y′s+h3(s)

, z′s+h4(s)

)∣∣∣2ds
]

.

By rearranging the terms again, we obtain

E
[

eβt∣∣Ŷt
∣∣2 − eβT∣∣ŶT

∣∣2 + β

2

∫ T

t
eβs∣∣Ŷs

∣∣2ds +
2
M

∫ T

t
eβss2H−1∣∣Ẑs

∣∣2ds
]

≤ 2
β

E
[ ∫ T

t
eβs
∣∣∣ f(s, ys−h1(s), zs−h2(s), ys, zs, ys+h3(s), zs+h4(s)

)
− f

(
s, y′s−h1(s)

, z′s−h2(s)
, y′s, z′s, y′s+h3(s)

, z′s+h4(s)

)∣∣∣2ds
]

(4)
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Taking the assumption (A3) and Jensen’s inequality into account, we will now deter-
mine the expectation for the right side of the preceding equation.

E
[ ∫ T

t
eβs
∣∣∣ f(s, ys−h1(s), zs−h2(s), ys, zs, ys+h3(s), zs+h4(s)

)
− f

(
s, y′s−h1(s)

, z′s−h2(s)
, y′s, z′s, y′s+h3(s)

, z′s+h4(s)

)∣∣∣2ds
]

≤ C2E
[ ∫ T

t
eβs
(∣∣∣ŷs−h1(s)

∣∣∣+ (s− h2(s))H− 1
2

∣∣∣ẑs−h2(s)

∣∣∣+ |ŷs|+ sH− 1
2 |ẑs|

+ E
[∣∣∣ŷs+h3(s)

∣∣∣+ (s + h4(s))H− 1
2

∣∣∣ẑs+h4(s)

∣∣∣∣∣∣∣Ft

])2

ds
]

≤ 12C2E
[ ∫ T

t
eβs
(∣∣∣ŷs−h1(s)

∣∣∣2 + (s− h2(s))2H−1
∣∣∣ẑs−h2(s)

∣∣∣2 + |ŷs|2 + s2H−1|ẑs|2

+
∣∣∣ŷs+h3(s)

∣∣∣2 + (s + h4(s))2H−1
∣∣∣ẑs+h4(s)

∣∣∣2)ds
]

.

By substituting the preceding result into inequality (4), letting t = 0 and assuming
(A1) and (A2), we are able to derive the following:

E
[∫ T

0
eβs
(

β

2

∣∣Ŷs
∣∣2 + 2

M
s2H−1∣∣Ẑs

∣∣2)ds
]

≤ 24C2

β
E
[ ∫ T

0
eβs
(∣∣∣ŷs−h1(s)

∣∣∣2 + (s− h2(s))2H−1
∣∣∣ẑs−h2(s)

∣∣∣2 + |ŷs|2 + s2H−1|ẑs|2

+
∣∣∣ŷs+h3(s)

∣∣∣2 + (s + h4(s))2H−1
∣∣∣ẑs+h4(s)

∣∣∣2)ds
]

≤ 24C2(2L + 1)
β

E
[ ∫ T+N

0
eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds
]

.

Multiplying M
2 by both sides of the preceding inequality yields

E
[∫ T

0
eβs
(

Mβ

4

∣∣Ŷs
∣∣2 + s2H−1∣∣Ẑs

∣∣2)ds
]

≤ 12C2(2L + 1)M
β

E
[ ∫ T+N

0
eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds
]

.

Letting β = 12C2(2L + 1)M + 4
M , we obtain

E
[∫ T

0
eβs
(∣∣Ŷs

∣∣2 + s2H−1∣∣Ẑs
∣∣2)ds

]
≤ 1

2
E
[ ∫ T+N

0
eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds
]

.

Hence, ∥∥(Ŷ·, Ẑ·)
∥∥

β
≤ 1√

2
‖(ŷ·, ẑ·)‖β.

Thus, the mapping I we constructed is a strict contraction on W̃[0,T+N] × W̃H
[0,T+N];

using the Method of Contraction Mapping, this contraction mapping I has a fixed point
that is unique. This indicates that Equation (3) has a unique solution (Yt, Zt) ∈ W̃[0,T+N] ×
W̃H

[0,T+N] such that I(yt, zt) = (Yt, Zt).
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4. Comparison Theorem

In this part, we present the following comparison theorem for fractional DABSDEs
under a one-dimensional case:

Yt = ξT +
∫ T

t
f (s, Ys−h1(s), Ys, Zs, Ys+h3(s))ds−

∫ T

t
Zs dBH

s , 0 ≤ t ≤ T;

Yt = ξt, T ≤ t ≤ T + N;
Zt = ηt, T ≤ t ≤ T + N.

We will start by presenting the conventional approach of applying the comparison
theorem to fractional BSDEs.

Lemma 1 (Hu et al. [32], Theorem 12.3). Define ηt = η0 +
∫ t

0 bsds +
∫ t

0 σsdBH
s , where bs and

σs are bounded deterministic functions and σs > 0. For j = 1, 2, assume ξ
j
T are continuously

differentiable and are of polynomial growth, and f j(t, x, y, z) and ∂
∂y f j(t, x, y, z) are uniformly

Lipschitz continuous with respect to y and z. Assume that the solutions of the following two
classical fractional BSDEs are (y(1), z(1)) and (y(2), z(2)), respectively:{

dy(j)
t = − f j

(
t, ηt, y(j)

t , z(j)
t

)
dt + z(j)

t dBH
t ,

y(j)
T = ξ

(j)
T .

If ξ
(1)
T ≤ ξ

(2)
T , f1(t, x, y, z) ≤ f2(t, x, y, z) for t ∈ [0, T], then

y(1)t ≤ y(2)t , a.s.

Suppose (Y(j)
· , Z(j)

· ), j = 1, 2, represent the solutions of the following two one-dimensional
fractional DABSDEs:

Y(j)
t = ξ

(j)
T +

∫ T

t
f j

(
s, Y(j)

s−h1(s)
, Y(j)

s , Z(j)
s , Y(j)

s+h3(s)

)
ds−

∫ T

t
Z(j)

s dBH
s , 0 ≤ t ≤ T;

Y(j)
t = ξ

(j)
t , T ≤ t ≤ T + N;

Z(j)
t = η

(j)
t , T ≤ t ≤ T + N,

(5)

Hence, we can derive the following theorem:

Theorem 2. Suppose that for i = 1, 2, 3, 4, hi(t) satisfy the assumptions (A1) and (A2), for j = 1, 2,
f j(t, ·) satisfy (A3) and (A4), and ξ

(j)
t ∈ W̃[T,T+N]. Furthermore, suppose that

(i) ξ
(1)
t ≤ ξ

(2)
t ;

(ii) the generator f2(t, θ, y, z, φ) is increasing with respect to θ and φ;

(iii) f1

(
t, yt−h1(t), yt, zt, yt+h3(t)

)
≤ f2

(
t, yt−h1(t), yt, zt, yt+h3(t)

)
,

yt−h1(t) ∈ L2
F (0, t), yt+h3(t) ∈ L2

F (t, T + N).

Therefore, Y(1)
t ≤ Y(2)

t almost surely.

Proof. Consider the BSDEs below: Y(1)
t = ξ

(1)
T +

∫ T

t
f1

(
s, Y(1)

s−h1(s)
, Y(1)

s , Z(1)
s , Y(1)

s+h3(s)

)
ds−

∫ T

t
Z(1)

s dBH
s , 0 ≤ t ≤ T;

Y(1)
t = ξ

(1)
t , T ≤ t ≤ T + N.

(6)

As previously stated,
(

Y(1)
· , Z(1)

·
)

is the solution of the fractional DABSDEs with only
one dimension given in Equation (5). Then, we also consider the fractional DABSDEs
as follows:
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 Y(3)
t = ξ

(2)
T +

∫ T

t
f2(s, Y(1)

s−h1(s)
, Y(3)

s , Z(3)
s , Y(1)

s+h3(s)
)ds−

∫ T

t
Z(3)

s dBH
s , 0 ≤ t ≤ T;

Y(3)
t = ξ

(2)
t , T ≤ t ≤ T + N.

(7)

We observe that the above equation has a unique solution
(

Y(3)
t , Z(3)

t

)
∈ W̃[0,T+N] ×

W̃H
[0,T]. Since ξ

(1)
t ≤ ξ

(2)
t , f1

(
s, Y(1)

s−h1(s)
, y, z, Y(1)

s+h3(s)

)
≤ f2

(
s, Y(1)

s−h1(s)
, y, z, Y(1)

s+h3(s)

)
, consid-

ering Equations (6) and (7), by Lemma 1, we obtain

Y(1)
t ≤ Y(3)

t a.s.

Let Y(4)
t = ξ

(2)
T +

∫ T

t
f2

(
s, Y(3)

s−h1(s)
, Y(4)

s , Z(4)
s , Y(3)

s+h3(s)

)
ds−

∫ T

t
Z(4)

s dBH
s , 0 ≤ t ≤ T;

Y(4)
t = ξ

(2)
t , T ≤ t ≤ T + N.

(8)

Consider Equations (7) and (8) and note that since f2(t, θ, y, z, φ) is increasing in θ and φ and
that Y(1)

t ≤ Y(3)
t , one could obtain f2

(
s, Y(1)

s−h1(s)
, y, z, Y(1)

s+h3(s)

)
≤ f2

(
s, Y(3)

s−h1(s)
, y, z, Y(3)

s+h3(s)

)
.

Similarly to the above case, we obtain

Y(3)
t ≤ Y(4)

t a.s.

For n = 5, 6, 7, . . . , take into consideration the BSDEs as follows: Y(n)
t = ξ

(2)
T +

∫ T

t
f2

(
s, Y(n−1)

s−h1(s)
, Y(n)

s , Z(n)
s , Y(n−1)

s+h3(s)

)
ds−

∫ T

t
Z(n)

s dBH
s , 0 ≤ t ≤ T;

Y(n)
t = ξ

(2)
t , T ≤ t ≤ T + N.

Similarly, we obtain

Y(4)
t ≤ Y(5)

t ≤ · · · ≤ Y(n)
t ≤ . . . , a.s.

We shall now show that
{

Y(n)
t , Z(n)

t

}
n≥4

are Cauchy sequences. Denote Ŷ(n)
t :=

Y(n)
t −Y(n−1)

t , Ẑ(n)
t := Z(n)

t − Z(n−1)
t , n ≥ 4, then from inequality (4), we obtain

E
[

eβt
∣∣∣Ŷ(n)

t

∣∣∣2 − eβT
∣∣∣Ŷ(n)

T

∣∣∣2 + β

2

∫ T

t
eβs
∣∣∣Ŷ(n)

s

∣∣∣2ds +
2
M

∫ T

t
eβss2H−1

∣∣∣Ẑ(n)
s

∣∣∣2ds
]

≤ 2
β

E
[ ∫ T

t
eβs
∣∣∣ f2

(
s, Y(n−1)

s−h1(s)
, Y(n)

s , Z(n)
s , Y(n−1)

s+h3(s)

)
− f2

(
s, Y(n−2)

s−h1(s)
, Y(n−1)

s , Z(n−1)
s , Y(n−2)

s+h3(s)

)∣∣∣2ds
]

Taking into consideration the assumptions (A1)–(A3) and Jensen’s inequality, along
with the fact that (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) and setting t = 0, we obtain

E
[∫ T

0
eβs
(

β

2

∣∣∣Ŷ(n)
s

∣∣∣2 + 2
M

s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2)ds
]

≤ 2C2

β
E

[∫ T

0
eβs
(∣∣∣Ŷ(n−1)

s

∣∣∣+ ∣∣∣Ŷ(n)
s

∣∣∣+ sH− 1
2

∣∣∣Ẑ(n)
s

∣∣∣+ E
[∣∣∣Ŷ(n−1)

t

∣∣∣∣∣∣∣Ft

])2

ds

]

≤ 8C2(2L + 1)
β

E
[∫ T

0
eβs
(∣∣∣Ŷ(n−1)

s

∣∣∣2 + ∣∣∣Ŷ(n)
s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2 + ∣∣∣Ŷ(n−1)
s

∣∣∣2)ds
]

.
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Multiplying M
2 by both sides of the preceding inequality yields

E
[∫ T

0
eβs
(

Mβ

4

∣∣∣Ŷ(n)
s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2)ds
]

≤ 4C2(2L + 1)M
β

E
[∫ T

0
eβs
(∣∣∣Ŷ(n−1)

s

∣∣∣2 + ∣∣∣Ŷ(n)
s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2 + ∣∣∣Ŷ(n−1)
s

∣∣∣2)ds
]

.

Letting β = 16MC2(2L + 1) + 4
M , M > 2, we obtain

E
[∫ T

0
eβs
(∣∣∣Ŷ(n)

s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2)ds
]

≤ 1
4

E
[∫ T

0
eβs
(∣∣∣Ŷ(n)

s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2)ds
]
+

1
2

E
[∫ T

0
eβs
∣∣∣Ŷ(n−1)

s

∣∣∣2ds
]

.

Furthermore,

E
[∫ T

0
eβs
(∣∣∣Ŷ(n)

s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2)ds
]

≤ 2
3

E
[∫ T

0
eβs
∣∣∣Ŷ(n−1)

s

∣∣∣2ds
]

≤ 2
3

E
[∫ T

0
eβs
(∣∣∣Ŷ(n−1)

s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n−1)

s

∣∣∣2)ds
]

.

Therefore,

E
[∫ T

0
eβs
(∣∣∣Ŷ(n)

s

∣∣∣2 + s2H−1
∣∣∣Ẑ(n)

s

∣∣∣2)ds
]
≤
(

2
3

)n−4
E
[∫ T

0
eβs
(∣∣∣Ŷ(4)

s

∣∣∣2 + s2H−1
∣∣∣Ẑ(4)

s

∣∣∣2)ds
]

.

It follows that
(

Ŷ(n)
t , Ẑ(n)

t

)
n≥4

are Cauchy sequences in W̃[0,T+N] × W̃H
[0,T]. For all

0 ≤ t ≤ T, let (Y·, Z·) be the limit of
(

Ŷ(n)
t , Ẑ(n)

t

)
; therefore, when n→ ∞,

E
[∫ T

t
eβs
∣∣∣ f2

(
s, Y(n−1)

s−h1(s)
, Y(n)

s , Z(n)
s , Y(n−1)

s+h3(s)

)
− f2

(
s, Ys−h1(s), Ys, Zs, Ys+h3(s)

)∣∣∣2 ds
]

≤ 4C2E
[∫ T

t
eβs
(∣∣∣Y(n)

s −Ys

∣∣∣2 + s2H−1
∣∣∣Z(n)

s − Zs

∣∣∣2 + 2L
∣∣∣Y(n−1)

s −Ys

∣∣∣2)ds
]
−→ 0.

Consequently, (Yt, Zt) is the solution of the fractional DABSDE as follows: Yt = ξ
(2)
T +

∫ T

t
f2(s, Ys−h1(s), Ys, Zs, Ys+h3(s))ds−

∫ T

t
Zs dBH

s , 0 ≤ t ≤ T;

Yt = ξ
(2)
t , T ≤ t ≤ T + N.

Then, based on Theorem 1 regarding the uniqueness of the solution, we obtain

Y(2)
t = Yt, a.s.

Given that

Y(1)
t ≤ Y(3)

t ≤ Y(4)
t ≤ Yt,

we achieve the desired outcome, which is Y(1)
t ≤ Y(2)

t , a.s.
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5. Conclusions

This work specifically examines a category of fractional anticipated BSDEs with de-
layed generators. It explores many features of the solution to these equations, including
their existence, uniqueness, and the comparison theorem. The research concepts, condi-
tions, and assumptions for investigating the solvability of the BSDE model in the existing
literature vary. Fractional Brownian motion as a driving noise in our models (2) has self-
similarity, steady increment, and long memory properties at H ∈ (1/2, 1). This implies that
our suggested fractional DABSDEs have wide applicability in various real-world domains,
including finance and physics. This article utilises the fBm driver and a more general gen-
erator f , which leads to more intricate methods compared to the original studies conducted
by Peng and Yang [13] and Delong and Imkeller [17]. Furthermore, the simpler fixed point
theorem in this study makes the assumptions required more stringent, and we then obtain
the comparison theorem of solutions in the one-dimensional case, which further broad-
ens the theoretical research of BSDEs. It is important to note that, once the solvability of
fractional DABSDEs has been discussed, a new issue arises in establishing the relationship
between their solution and the solution of parabolic partial differential equations with
some special conditions. Furthermore, akin to the study of anticipated BSDEs driven by
fractional Brownian motion under mean field limits in Douissi et al. [25], our model has
the potential to be employed in stochastic optimal control issues. This aspect, however,
necessitates further investigation in future studies.
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