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Abstract: There are several areas of knowledge in which (pseudo-)random numbers are necessary,
for example, in statistical–mathematical simulation or in cryptography and system security, among
others. Depending on the area of application, it will be necessary that the sequences used meet certain
requirements. In general, randomness and uniformity conditions are required in the generated
sequences, which are checked with statistical tests, and conditions on sequence unpredictability if
the application is in security. In the present work, a literature review on cryptographically secure
pseudo-random number generators (CSPRNGs) is carried out, they are implemented, and a critical
analysis of their statistical quality and computational efficiency is performed. For this purpose,
different programming languages will be used, and the sequences obtained will be checked by means
of the NIST Statistical Test Suite (NIST STS). In addition, a user’s guide will be provided to allow
the selection of one generator over another according to its statistical properties and computational
implementation characteristics.

Keywords: cryptographically secured pseudo-random number generators; hypothesis testing;
NIST STS; test battery; test suite
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1. Introduction

The use of random sequence generators in various fields of knowledge such as informa-
tion and communication technologies (see [1,2]), computer security (see [3–5]), mathemati-
cal simulation [6–8]), sampling ([9]), generation of random variates (see, for example, [10]),
etc., is ubiquitous. They appear in telephone communication signals and GPSs. Most
cryptographic protocols make use of random numbers as input at some points [11] or use
them as a key in stream cipher systems [12].

However, the problem of obtaining random sequences is by no means trivial from a
computational point of view. Since computers are deterministic, instruction-driven ma-
chines, it is difficult to generate algorithms that “produce” randomness. While performing
operations can give the appearance of being random, there is a pre-determined pattern
behind them. Therefore, we resort to physical phenomena that have intrinsic randomness to
obtain “truly” random data: radioactive decay, thermal noise, atmospheric phenomena, etc.

Obtaining data from physical phenomena, however, is relatively expensive, so it is not
possible to extract the required number of random numbers in a short time. Sometimes,
either because computational capacity is quite low or because many numbers are needed in
a very short time, as in stream ciphering, it is of interest to create fast and computationally
simple generators that produce seemingly random sequences.

At this point, it is necessary to specify the concept of being random or having the
appearance of being random. From a purely linguistic point of view, random is that
which depends on chance. In a more formal context, a generally accepted definition
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of a sequence of random numbers is Marsaglia’s [13]: a sequence of random numbers is
uniformly distributed over all possible values, each number in it being independent of those
generated before it. Similarly, a random number generator can be defined as a system that
creates random sequences, as defined above. However, due to the diversity of applications
of random numbers, it will be necessary for the sequences to have some characteristics or
others. In the case of applications in statistics, the requirements demanded will be different
from those demanded in cryptography, for example, mainly because in the latter case the
condition of unpredictability of the sequence is essential. In this paper, we will focus on the
analysis of number generators that are suitable precisely for cryptographic applications.

The rest of the paper is organized as follows: in Section 2, a classification of random
numbers is given, with a description of them. In Section 3, we will focus on pseudo-
random numbers and their generators. In Section 4, a description of cryptographically
secure pseudo-random number generators is given, and an in-depth analysis is performed.
Section 5 focuses on the experimental design. A detailed explanation will be given of
both the computational and statistical aspects that have arisen during the experimentation,
which will allow conclusions to be drawn on the pros and cons of the analyzed generators.
Finally, in Section 6, the conclusions of our study are given.

2. Classification of Random Numbers

A well-known classification of the different types of random numbers (see, for exam-
ple, [14–16]) establishes three fundamental groups of numbers: the so-called “true” random
numbers, pseudo-random numbers, and quasi-random numbers.

True Random Numbers are generated with an unpredictable input, using as a re-
source the entropy of a random phenomenon such as the computer clock or photoelectric
fluctuations. As they are unpredictable since there is no rule that allows us to know the
values that are generated through those already generated, they are very useful in en-
cryption systems. Two factors are involved in the generation of the sequences of this
kind of numbers: (i) an unpredictable resource in the sense of having high entropy. As
a measure, min-entropy is used, defined as the maximum number k such that for each
x ∈ X P[X = x] ≤ 2−k is verified, where X is the resource (min-entropy is a stricter measure
than Shannon’s entropy since the min-entropy of X is always less than or equal to Shan-
non’s entropy for X [17]). This factor is critical, as it will determine the available entropy.
Some resources may be biased, so it would be necessary to remove them or perform a
post-processing step. (ii) A “harvesting” mechanism, which is a function that is applied
on the high-entropy resource collecting the maximum possible entropy. The objective is
in the second component since the aim is to find a mechanism that can be used with all
types of high-entropy resources. Sometimes, it is necessary to introduce a post-processing
component in the generation of these sequences to strengthen the algorithms, either by
masking imperfections of the entropy resource or the mechanism or also to have a tolerance
in contexts of changes and manipulation. When applying post-processing, it is necessary
to verify that the statistical properties of the sequences have not been modified. The most
commonly used post-processing techniques in practice are cryptographic hash functions,
Von Neumann’s corrector, extractor functions, and resilient functions. For a more detailed
description of the post-processing techniques, see [18].

Pseudo-random numbers are generated through a mathematical algorithm that pro-
duces a periodic sequence in a deterministic way; this process is completely determined by
the initial condition, called the seed. It is intended to resemble true random numbers. With
a suitable formula and a satisfactorily chosen seed, a sequence of pseudo-random numbers
can be obtained that can practically be regarded as truly random in terms of passing a
series of statistical tests of randomness (test suites or test batteries). They are used in the
field of statistics and cryptography. A paper that describes pseudo-random numbers and
generation methods in-depth is [19].

Quasi-random numbers, also known as low-discrepancy points. The series of these
numbers is not intended to be random but shares statistical properties with random se-
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quences. They are generated in such a way as to cover the feasible region in an optimal way.
They do not obtain numbers but a sequence of points in a desired dimension, satisfying an
equidistributional criterion, and are used in the numerical evaluation of integrals. More
formal definitions of these numbers can be found in [20].

In general, when working with sequences of (pseudo-)random numbers, a series of
characteristics are sought, which can be grouped into four broad categories: structural,
computational, statistical, and complexity [21]. The structural category refers to aspects
such as the length of the period (a sequence x0, x1, . . . of elements of a nonempty set is
periodic, with period T, if there exists a positive integer T such that xn+T = xn for all n ≥ 0)
or the lattice structure desired to be as long as possible, while the computational category
deals with aspects of computer implementation such as ease of code, computation time,
or memory space required. The statistical category is concerned with the properties of
the distribution and statistical independence. One possible formalization of the statistical
properties of uniform random numbers is shown in Definition 1.

Definition 1. A sequence x0, x1, . . . of numbers in I = [0, 1] is completely uniformly distributed
if for each integer s ≥ 1, the sequence of points (xn, xn+1, . . . , xn+s−1) ∈ Is, n = 0, 1, . . . , is
uniformly distributed in Is.

As for the complexity category, the definition of Chaitin’s [22] for a finite sequence of
random digits can be seen in Definition 2.

Definition 2. If b ≥ 2 is an integer and σN is a finite sequence of length N formed by the elements
of Zb = {0, 1, . . . , b− 1}, then its Kolmogorov’s complexity is the minimum length of the program
that generates the sequence σN on a Turing’s machine.

The sequence is considered random if it has the maximum Kolmogorov’s complexity
among those sequences of size N formed by the elements of Zb. Although this definition is
not very useful from a practical point of view, it is necessary that the sequences are suffi-
ciently complex so that the algorithms cannot be discovered and the sequence of random
numbers can be known, having dire consequences in applications such as cryptography.

There are two main types of generators (see, for example, [19,23]):

• Physical generators (true random number generators, TRNGs) are physical devices
that use external sources to generate random numbers. The more widely generators
used are based on electrical circuits equipped with a noise source that is amplified,
sampled, and compared with a reference signal to produce sequences of bits. These
random bits are joined together to form bytes, integers, or real numbers as required.
The output sequences of TRNGs can be used directly as random sequences or can be
used as input to a pseudo-random number generator.

• Arithmetic generators (pseudo-random number generators, PRNGs): these are de-
terministic algorithms that run on computers. There are two main sub-types, linear
and nonlinear.

It is also possible to find the classification expressed in terms of (see [24]): deterministic
(pseudo-random, PRNG) and truly non-deterministic (truly random, TRNG). The former
is further divided into pure and hybrid, while the latter can be separated into physical
(PTRNG) and non-physical (NPTRNG), each being either pure or hybrid. Hybrid generators
are those that combine elements of the truly random and pseudo-random generators.

From a cryptographic point of view, it is essential that the generators used are secure; in
this sense, the unpredictability property must be verified. This implies that the knowledge
of any substring of a generated sequence does not imply that the complete sequence can be
calculated or estimated and that the knowledge of any given internal state does not imply
that the preceding or subsequent numbers can be calculated. In this sense, it is possible to
find in the literature the name cryptographically secure pseudo-random number generator
(CSPRNG). CSPRNGs are a special type of PRNG with the property of unpredictability.
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This means that given n consecutive bits of the key, there is no algorithm in polynomial
time that can predict the next bit with probability of success greater than 50%.

In this paper, we will focus on analyzing the class of cryptographically secure random
number generators. Being a subgroup within the PRNGs, in the following section we will
discuss the essential aspects of such generators.

3. Key Aspects of Pseudo-Random Number Generators

As mentioned above, pseudo-random numbers are characterized by the fact that they
are generated based on a numerical algorithm and are not truly random, although they
may appear to be so if the algorithm is not known. In particular, one can define random
number generation algorithms as shown in Definition 3 (see [13]).

Definition 3. Given a finite set X, a function f : X → X and an initial value called the seed (the
seed can be obtained by a truly random number generator, or be proposed by the user; in any case, it
is sought to be unpredictable). x ∈ X, the generated sequence by a generation algorithm is:

x, f (x), f 2(x), f 3(x), . . . (1)

where f 2(x) = f ( f (x)) and f n(x) = f ( f n−1(x)), ∀n ≥ 3.

The desirable properties required of pseudo-random numbers are having a sufficiently
long period, having no structure, having good statistical properties, and computational
efficiency.

Generally, a distinction is made between uniform and non-uniform pseudo-random
numbers. A paper that surveys the methods used for the generation of pseudo-random
numbers is [19]. Examples of the best-known methods include: congruential generators,
lagged Fibonacci generators, and linear-feedback shift register (LFSR), among others.

As for non-uniform pseudo-random numbers, they are generally generated from a
uniform pseudo-random number and subsequently transformed into the non-uniform
target distribution. Among the best-known transformation methods are the inversion
method, the rejection method, the composition method, or the ratio of uniforms method
(ROU method), among others.

Once the (pseudo-)random values have been generated, they must be tested. Some of
the best-known tests are the runs test, the gap test, the Kolmogorov–Smirnov test, etc.

Usually, the tests are grouped into sets of tests called batteries or suites, and some
of the best-known are Diehard [25], Dieharder [26], NIST SP 800-22 [11], Practrand [27],
ENT [28], FIPS 140-2 [29], etc. Modules validated as FIPS 140-2 compliant will continue
to be accepted by federal agencies in the United States and Canada for the protection of
sensitive information or designated information until 21st September 2026. The new version,
FIPS 140-3 [30] (final draft: https://csrc.nist.gov/publications/detail/fips/140/3/final,
accessed on 1 January 2022), does not include hypothesis tests, and therefore FIPS 140-2
is still currently in use (although there are some linear interdependencies between some
of the tests that make it up; see [31]). ENT battery allows the quality of the PRNGs to be
checked by comparing their output with that of a TRNG. However, some vulnerabilities
have recently been discovered in its design, and therefore we will not use it in our empirical
tests (see [32]). The most widely used standard is the NIST SP 800-22 battery, and that
is why in the present work we make use of its tests, although it is true that many of
them can be found in other suites, such as Dieharder and in particular in its version for R,
RDieharder. An article that studies in detail the tests that are included in the most used
batteries in the literature is [33]. In fact, there is currently a line of research that focuses
on the development of new tests and batteries. Some of the most recent works in this
direction are [34–37], among others. On the other hand, there are also various hardware-
level tests that consist of physically examining the hardware used for generation to check
if the generator is working properly and that there are no vulnerabilities or weak points
that could compromise security [35]. An interesting paper that analyzes the nomenclature

https://csrc.nist.gov/publications/detail/fips/140/3/final
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of random number generators, the available test suites, and the methodology to test a
generator implementation is [38].

In general, some PRNGs are not suitable for cryptographic purposes, while there are
designs that are theoretically proven to be secure ([39–41]). In practice, however, most
of the generators implemented in operating systems and cryptographic libraries are not
based on the main security models and present weaknesses that make them vulnerable
against known attacks. Attacks on pseudo-random generators can be of three types: direct
cryptanalytic attacks, entry-based attacks, and state compromise extension attacks (further
subdivided into: backtracking, permanent compromise, and meet-in-the-middle attacks).
For more details about these attacks, see [42].

Among the most common failures in pseudo-random generators that allow external
attacks are [43] entropy overestimation and guessable starting points, incorrect handling of
keys and seeds, implementation errors, cryptographic attacks on generation mechanisms,
side-channel attacks, and chosen-input attacks.

4. Description of Cryptographically Secure Pseudo-Random Number Generators

Having defined the different types of existing random number generators, we now
analyze those that can be used in the context of cryptography. In this field, it is necessary
that a number cannot be predicted before it is generated. For example, if a random number
in the range 0, . . . , 2n − 1 is to be generated, an observer outside the generation may not be
able to predict the number with a probability greater than 1/2n. Similarly, if a sequence
with m random numbers has been generated, an observer who knows m− 1 of them cannot
predict the m-th element of the sequence with a probability greater than 1/2n.

TRNGs can be used in cryptography with very good results; however, due to their
high computational cost, it is necessary to look for computationally simpler alternatives.
An exhaustive analysis of the application of these generators in cryptography can be found
in [18].

The aim of this paper is the analysis of pseudo-random generators in cryptography,
which are less expensive than the truly random ones. A simple definition of a cryptographic
pseudo-random number generator could be the following: it is a cryptographic mechanism
to process an unpredictable input by generating pseudo-random outputs. If it is well
defined, implemented, and used properly, even an attacker with a huge amount of resources
would not be able to distinguish between the generated output and a random sequence
of bits.

The first cryptographically secure pseudo-random number generator was proposed by
Shamir [44], who is one of the inventors of RSA [45]. In this case, the integer factorization
problem is used as an essential element to ensure security. As for the design, it uses modular
exponentiation of large numbers, which makes it very slow and, in sequence, not very
useful from a computational point of view. An improved version of the RSA generator
was proposed in [46]. This generator generates bN(1− 2/e)c bits per exponential by e,
where e is encryption key for RSA. However, each exponentiation requires one modular
square per bit. In [47], the BBS (Blum Blum Shub) generator is introduced, which requires
only one modular square per bit instead of a modular exponentiation. It works with the
concept of quadratic residue one-way function, and its security also depends on the fact of
the intractability of the integer factorization of modulus N. In [48], a generation algorithm
based on the transformation of sequences obtained with linear congruential generators,
multiple recursive generators with large orders, fast multiple recursive generators, and
dx generators ([49]) is proposed. The mechanism used makes it difficult to predict the
sequence of the generator even if the partial sequence or parameters are known or there is
knowledge of the algorithm used in the transformation of the generators. Subsequently,
other models have been proposed, as in, for example, [50], where a CSPRNG based on
a hybrid methodology including chaotic additional input is defined; in [51], where a
CSPRNG based on controlling the distribution of generated random numbers with the
chaotic henon congruential generator is proposed; and in [52,53], where a CSPRNG based
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on the permutation of the internal state of the PRNG is proposed. The results are checked
with Dieharder.

In the following, the most important generators used in practice, which can be used
individually or in combination, will be discussed in detail. Their characteristics, mathemat-
ical foundations, and implementation will be presented, and then a critical analysis of them
will be made, establishing the pros and cons of each one of them, making a comparison
between them and a statistical validation by means of the suite of statistical tests provided
by NIST.

4.1. Blum–Blum–Shub (BBS) Generator

It was proposed by L. Blum, M. Blum, and M. Shub in 1986 [47]. In order to define this
generator, it is necessary to use the following notation (see [54]):

• s ∈R S states that s has been randomly chosen from the set S.
• N is a Blum integer, (i.e., N = pq, where p and q are prime and verify p ≡ q ≡ 3

mod 4).
• n is the size in bits of N.
• ZN(+1) is the set of Jacobi’s integers symbol +1 modulus N (The Jacobi’s symbol is

an arithmetic function that takes two arguments and returns an integer value from the
interval [−1,1]. In [55], a more detailed definition and the way to obtain these integers
can be seen).

• ΛN = ZN(+1) ∩
(

0, N
2

)
.

• | y |N= y mod N ∈ [0, N), ∀y ∈ Z.

• y mod N ∈
(
−N

2 , N
2

)
denotes the smallest residue in absolute value of y modulus N.

• li(y) denotes the i-th least significant bit of y, i = 1, 2, . . . .
• EN(y) =| y2 mod N |, referred to as the absolute of Rabin’s function (Rabin’s func-

tion [56] is a public-key cryptosystem whose decryption is equivalent to factorization).

Definition 4. Let N = pq be the product of two prime numbers congruent to 3 mod 4 and let x0
be the seed, with x0 ∈R ZN(+1) mod N. The sequence obtained with the BBS pseudo-random
generator is the bit sequence b0, b1, . . . generated through the following steps:

1. Update xi as follows: xi+1 = EN(xi), where EN(x) = x2 mod N.
2. Extract the bit bi = li(xi).

An alternative definition is given by Sidorenko and Schoenmakers [54]:

Definition 5. Let k, j be two positive integers and let x1 ∈R ΛN be the seed. We consider a
deterministic algorithm that transforms the seed into a binary sequence of length M = jk by
repeating the following steps for i = 1, . . . , k:

1. For r = 1, . . . , j, consider b(i−1)j+r = lj−r+1(xi).
2. Update xi as follows: xi+1 = EN(xi).

This algorithm is the BBS generator with j output bits per iteration.

An interesting property of the BBS generator is the possibility to compute every value
xi directly:

xi =

(
x2i mod (p−1)(q−1)

0

)
mod M (2)

Intuitively, the performance of the BBS generator can be improved in two ways, either
by increasing the number of bits per iteration or by using a smaller module size. However,
these improvements could cause the security of the generator to be weakened, which is
why the parameters to be used as well as the optimal value of the number of extracted bits,
j per iteration, must be carefully analyzed. The security of the BBS generator is proved by
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reduction (security reduction is a type of mathematical proof to show whether a protocol is
secure in the sense of being at least as hard to break as another problem that is believed
to be complicated [57]). If the generator is insecure, then there exists an algorithm B that,
given EN(x) for some x ∈ ΛN and the j − 1-th least significant bits of x, can guess the
j-th; that is, it can factorize the modulus and put the security of the generator at risk. For
asymptotic security (j > 1), the reduction is sought to be in polynomial time, while for
concrete security (j = 1), the reduction is desired to be as tight as possible.

In the case of j = 1, it has been widely studied in the literature by several au-
thors, highlighting Fischlin and Schnorr’s work [58] achieving a tight reduction in an
efficient generator. This reduction is achieved by modifying the Rabin function used in
the generator.

For the case j > 1, asymptotic security has also been analyzed in [59]. This paper shows
that the BBS generator is secure if j = O(log log N). Sidorenko and Schoenmakers [54]
obtained a more efficient result than Vazirani and Vazirani. An auxiliary definition is
necessary to understand the result.

Definition 6. A pseudo-random generator is (TA, ε)-secure if it passes all statistical tests with a
tolerance ε in at most TA time.

Sidorenko and Schoemakers proved that the pseudo-random BBS generator is (TA, ε)-
is safe if:

TA ≤
L(n)

36n(log2 n)δ−2 − 22j+9nδ−4 (3)

where δ = (2j− 1)−1M−1ε, and L(n) is the number of clock cycles required to factor an n-bit
integer; this value is estimated to be L(n) ≈ 2.8 · 10−3 · exp(1.9229(n ln 2)1/3 ln(n ln 2))2/3).

4.2. LFSR Generators

This type of generators is widely used due to their simplicity, easy and efficient
computational implementation, and good statistical properties. However, some of these
characteristics make them vulnerable to cryptographic attacks. In this subsection, we
analyze some of the generators proposed in the literature that show good results against
attacks. An LFSR is a shift register in which the input is a bit that comes from applying a
linear transformation to a previous state.

The first generator to be studied was proposed by D. Coopersmith, H. Krawczyk, and
Y. Mansour [60], known as the Shrinkage generator. This method uses two pseudo-random
bit resources to construct a third one with a better quality than the original resources,
understanding quality as the difficulty of predicting the sequence. The generation process
is as follows: let {ai}∞

i=0 be the first sequence and {si}∞
i=0 the second; the third sequence

{zi}∞
i=0 is constructed with those bits ai such that the corresponding si is a 1, and the

remaining bits of the first sequence are discarded. Mathematically, ∀k = 0, 1, . . . , zk = aik ,
where ik is the position of the k-th 1 of the sequence s0, s1, . . . , we denote A to the first
sequence, S to the second, and Z to the third, which is the one returned by the generator.

In [60], the two bit sequences are generated with LFSR using as feedback function
the linear combination in Z2, being able to be fixed or variable. This generator has the
necessary statistical properties to be used in cryptography in a secure way.

Different attacks on this generator have been raised to check its security; if the linear
combination function of A and S is known, it would be possible to make an exhaustive
search for the seed of S in order to try to recover the seed of A through the resolution of
a linear system of dimension n/2, being n the length of the sequence A. Once the seeds
are obtained, it would be possible to discover the whole generation process. This process
would have a complexity of O(2m · n3) with n being the length of A and m the length of
the sequence S. Whereas if the linear combination is secret, which is more normal, the
above procedure no longer works; being necessary to try multiple combinations of seed
and linear combination function for S and with part of the Z sequence, it might be possible
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to generate the complete sequence. In this case, the complexity is higher, O(22m · n2 ·m),
where n and m are the lengths of the sequences.

Another type of attack that can be performed on this generator is based on its linear
complexity, but it requires knowledge of a large number of bits of the final sequence for the
attack to be effective, namely 2m−2 · n, which makes it practically impossible to perform.
The complexity of this attack would be O(2m · n2).

A modification of this Shrinkage generator is the one proposed by W. Meier and O.
Staffelbach [61], known as the Self-Shrinkage generator. Unlike the Shrinkage generator
that used two LFSRs to generate the sequence, only one LFSR is used in this proposal.
The process of obtaining the sequence is as follows: we have a sequence a = (a0, a1, . . . )
generated from an LFSR, and it is considered a bit pair sequence ((a0, a1), (a2, a3), . . . ). If
the pair (a2i, a) is equal to (1, 0) or (1, 1), then a pseudo-random bit 0 or 1, respectively,
occurs. In case the bit pair was (0, 1) or (0, 0), they would be discarded. The final sequence
will be s = (s0, s1, . . . ).

This Self-Shrinkage generator can be implemented as the generator with two LFSRs in
the following way: starting from the sequence a = (a0, a1, . . . ), the sequences (a0, a2, . . . )
and (a1, a3, . . . ) are formed, and the methodology of the Shrinkage generator can be applied,
obtaining the same sequence by applying the same feedback function. It is also possible to
make the inverse implementation, starting from the sequences generated by two LFSRs,
(b0, b1, . . . ) and (c0, c1, . . . ), and the sequence a = (c0, b0, c1, b1, . . . ) can be constructed and
the Self-Shrinkage generator can be used. Different cryptographic attacks have also been
executed on this generator; starting from a known subsequence of s, one tries to reconstruct
the entire sequence from the different possible combinations of the sequence a. In this case,
if the feedback function is known, the complexity of this process would be O(20.75N), where
N is the length of the sequence a generated with an LFSR, while if the feedback function is
unknown, the complexity increases to O(21.75N).

Another interesting LFSR-based generator is the one proposed by C. G. Günther [62],
known as the Alternating Step generator (ASG), consisting of three LFSR sub-generators, K,
M, and M̄, which are interconnected. The output of generator K controls the clock of the
other two; i.e., the output of generators M and M̄ is repeated whenever K produces a 1 or
a 0, respectively. This generator can be described as follows: let κ, µ, µ̄ be the sequences
generated by K, M, M̄, and let ft = ∑t−1

s=0 κs and f̄t = t − ft, and then the output ωt is
described by:

ωt = µ ft ⊕ µ̄ f̄t
(4)

This generator passes all the necessary tests to be used in cryptography and also allows
a cascade structure in which each generator can be an ASG, which makes it more secure
and efficient.

In recent years, different generators based on LFSRs have been proposed, such as the
one proposed by J. Melià-Seguí, J. García-Alfaro, and J. Herrera-Joancomartí [63]. In this
generator, a physical TRNG is combined with an LFSR. It consists of four blocks: an LFSR
with a multi-polynomial architecture, a logic decoder, a polynomial selector, and the TRNG.
Basically, the generator works as follows: the output of the TRNG feeds the decoder that
drives the polynomial selector, which rotates depending on the value of the TRNG, thus
avoiding the linearity that the LFSR may have. Another interesting generator is the one
proposed by H. Zhang, Y. Wang, B. Wang, and X. Wu [64], which combines LFSR generators
together with genetic algorithms with the objective of having nonlinearity in the generator,
improving the period of the sequence and its efficiency.

In [65], a thermal noise-based oscillator physical TRNG is combined with an LFSR,
such that each cycle of the LFSR is modified by an XOR operation involving the TRNG.
The introduction of this operation makes the output sequence of the LFSR unpredictable
and unrepeatable, making it a secure generator for cryptography. The authors also propose
several methods to reduce the computational cost of the TRNG.
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4.3. /dev/random Generator

This generator was implemented by Theodore T’so in the Linux operating system in
1994, and since then, it has been the pseudo-random number generator of Linux. This gen-
erator uses the external entropy of different resources, such as user input or unpredictable
elements. Once this entropy is collected, it is used to generate random bits.

The structure of the generator consists of two sets (pools) (see [66]); the first one P1 is
used to store the entropy collected from the external events E , while the second pool P2 is
used to obtain the random bits. In addition, there are two functions that interact with the
pools, the mixing function m and the generating function gen. The former mixes the input
to the pool, while the latter handles the generation. Entropy extraction occurs in two steps.
First, the extractor function e : E → D converts the events of E into data from the pool D
with the appropriate format. Subsequently, these data are combined into the pool P1 by the
mixing function m, being of the hash type. To generate the random bits from P2, the gen
function is applied. If P2 contains sufficient entropy, then the bits are generated using only
P2. In the case of insufficient entropy, bits are shifted from P1 to P2 to increase the entropy.
The generator checks that the amount of entropy in P1 is sufficient for generation but does
not check in P2. This shift is performed through the function s = gen ◦m. First, bits are
generated from P1 and combined with the m function in P2.

The transition function T is responsible for processing the new input, moving the
information from the first to the second pool and mixing P2 after generation. The latter is
performed by the t function: P2 → P2, being of the hash type. So, the function T is formed
by e : E → D, m : D → P1, s : P1 → P2, and t : P2 → P2.

Regarding the security of this generator, the partitioning into two pools prevents
iterative attacks since the input does not have a direct influence on the generator output. In
addition, by using information from the system itself, input attacks are complicated to carry
out. Employing hash functions in both the mix for P1 and the post-generation mix makes
the generator not vulnerable to the various direct attacks. This generator is very dependent
on the entropy used; if a large amount of unpredictable resources is available, good pseudo-
random numbers will be generated, with good properties to be applied in cryptography
and passing the randomness tests. However, if few entropy resources are available, the
generator will slow down, and the generated numbers will be more vulnerable to different
cryptographic attacks.

A problem with this generator is the speed; if a large set of pseudo-random numbers
is needed, its use is not recommended, being suitable for short sequences, as for example,
for obtaining the key in encryption algorithms [66].

4.4. AES Generator

The AES (Advanced Encryption Standard) generator is a block cipher scheme that
can be used to encrypt or decrypt information. It was announced by the National Institute
of Standards and Technology (NIST) in 2001 [67], representing limited instances of the
Rijndael algorithm proposed by Daemen and Rijmen [68]. It is currently one of the most
widely used algorithms in the field of symmetric cryptography.

The AES algorithm can be used in two different ways in the generation of pseudo-
random numbers, the counter mode and the PRNG mode. In the former, a 128-bit C counter
is used, which starts at c0 and generates the sequence {ci}, where ci = ci−1 + 1 mod 2128.
The output of this generator at time i is EK(ci), where EK(x) represents the encryption of x
using AES with the key K. In the second mode, the AES algorithm is applied iteratively
on the internal state of the generator. The sequence of pseudo-random numbers {xi} is
produced successively, where xi = EK(xi−1), and the output of the generator is xi itself.

Regarding the AES encryption algorithm itself, a two-dimensional array of bytes (a
byte consists of 8 bits) called state is used, which consists of four rows of bytes, where
each row contains Nb bytes, where Nb is the length of the input sequence divided by 32.
In the array state, we denote by s each of the bytes with its two indices, where the row is
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represented by r in the range 0 ≤ r < 4 and the columns by c with 0 ≤ c < Nb, so that each
byte is represented as sr,c.

For the AES algorithm, it is usual to use 128-bit sequences, although it is also possible
to work with 192 and 256 bits. The encryptor scheme is as follows: first, the information
of the input bytes is copied to the status array, then a series of operations are performed,
which are detailed below, to finally generate the output bytes.

To copy the information from the input array to the status array, this scheme is
followed: s[r, c] = in[r + 4c] with 0 ≤ r < 4 and 0 ≤ c < Nb, while for passing the array
state to the output, the following is performed: out[r + 4c] = s[r, c] with 0 ≤ r < 4 and
0 ≤ c < Nb. (see [69]).

The operations performed on the array state to obtain the output of the encryptor are
as follows:

• SubBytes transformation: it is a byte substitution using a two-dimensional,
nonlinear, invertible matrix, called S-box. The construction of the matrix is made
in two steps:

1. The inverse of each byte is obtained, the element {00} is assigned to itself.
2. The following transformation is applied in Z2:

b
′
i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci (5)

with 0 ≤ i < 8, where bi represents the i-th bit of the byte being transformed, b
′
i

is the i-th bit of the transformed byte, ci is the i-th bit of the byte d = {63}, and
⊕ is the XOR operator.

Once the matrix is obtained, the byte of the status array is replaced by the correspond-
ing byte in the S-box matrix.

• ShiftRows transformation: the last three status rows are moved, and the first row
remains unchanged. The transformation is:

s
′
r,c = sr,(c+ shi f t(r,Nb)) mod Nb) for 0 < r < 4 and 0 ≤ c < Nb (6)

where shi f t(r, Nb) depends on the file number, r, for the case Nb = 4:

shi f t(1, 4) = 1; shi f t(2, 4) = 2; shi f t(3, 4) = 3 (7)

• MixColumns transformation: in this step, the state columns are multiplied by an
invertible polynomial a(x) of the form:

a(x) = a3x3 + a2x2 + a1x + a0 (8)

Specifically, the polynomial used in the AES algorithm is:

a(x) = {03}x3 + {01}x2 + {01}x + {02} (9)

• AddRoundKey transformation: a RoundKey is added to the state. RoundKeys are
extracted from the K key and stored in a linear array of dimension (4× 11). The first
four words (a word is a group of 32 bits that are treated as a single element or as
a 4-byte array) of the array are equal to that of the key, and the remaining ones are
generated by the S-box matrix and multiplying by xi−1, where ii ≥ 1 and x = {02}.
A more detailed explanation of the processes can be found in [67,68].
The AES algorithm was developed to be secure against cryptographic attacks, so both

generation modes will be secure as well. Part of the security of this algorithm is based on
fuzziness and diffusion, which make it virtually impossible to guess the internal state of
the generator from the output or to guess the output if part of the internal state is known to
the attacker. If the seed of the algorithm is modified from a pool, and the attacker could
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introduce some regularity into the pool through an input attack, this would have no effect
on the structure of the output, and the generated numbers would be safe.

One of the weaknesses of this generator occurs when the internal state is compromised,
which can make it possible to calculate past and future numbers. This makes the PRNG
mode less suitable for cryptographic applications since by using part of the internal state in
the process, it becomes weaker to attacks. However, the counter mode has a higher strength
to these attacks and would be a good choice in these applications.

Both generation modes pass randomness tests. The advantage of AES generators lies
in the combination of speed with cryptographic security. If you can couple the counter
mode together with a random resource and a good key update mechanism, you will have a
fast and highly secure generator for cryptographic applications.

4.5. Yarrow Generator

Proposed by J. Kelsey, B. Schneier, and N. Ferguson [43], it has four major components
that attempt to stand alone: the entropy accumulator (collects samples of entropy resources
and stores them in a pool), the reseed mechanism (periodically the key is modified with a
new resource from the pool), the generator mechanism (generates outputs from seed), and
the reseed control (determines when the generator key needs to be updated).

In a more detailed way, the entropy accumulator is the process in which the PRNG
obtains the new internal state, being non-guessable. This step is critical both at the time
of generator initialization and seed update. To avoid iterative attacks and to update
the generator regularly, it is critical that the amount of entropy accumulated is correctly
estimated. The entropy accumulation mechanism must also resist chosen input attacks.
In the Yarrow generator, the entropy of the samples is collected in two pools, each in
a hashed context. The fast pool provides the key updates, seeking to make the keys as
short-lived as possible with accurate entropy estimates, while the slow pool provides rare,
but conservative, key updates, so that you always have a secure key update. As for the
key update mechanism, in the Yarrow generator a new key K is generated from the pool
entropy. The steps of this mechanism are:

1. The entropy accumulator computes the hash function of the inputs to the fast pool; let
v0 be this result.

2. Determine vi := h(vi−1 | v0 | i) for i = 1, . . . , t, where h is the hash function.
3. Update the key: K ←− h′(h(vpt | K), k), where h′(m, k) := first k bits of (s0 | s1 | . . . ).
4. C ←− EK(0) is updated, where EK is a triple-DES (data encryption standard) algo-

rithm (algorithms are methods for encrypting information, and the triple-DES variant
is more secure to attacks). A construction of these algorithms and how they differ
from the basic DES can be seen in [70]).

The generating mechanism works as follows: an n-bit counter, C, is available; to
generate the next output block, C is incremented and the block is encrypted with the
triple-DES algorithm using the K key. To generate the next block, the values are updated as
follows (see [43]):

C ← (C + 1) mod 2n

R← EK(C) (10)

where R is the next output block and K is the key.
Finally, the update control occurs automatically. The fast pool is used to update

whenever any of its sources has an entropy estimate above some threshold value; in the
Yarrow generator this threshold is 100 bits. The slow pool is used to update whenever at
least two of its sources have entropy estimates above some other threshold value; in this
case, this threshold is 160 bits.

This generator is secure against iterative attacks since it has pool separation as well as
key update, which means that the input does not have a direct influence on the generator
output. In addition, the slow pool prevents damage caused by entropy overestimation,
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protecting against cryptographic attacks. Due to the generator mechanism, the number of
bits of the output that can be known from a backtracking attack is limited.

4.6. Fortuna Generator

Proposed by B. Schneier and N. Ferguson [71] as an improvement to Yarrow generator,
this generator solves the problem of having to define entropy estimators since it dispenses
with them.

The generator consists of three parts: the first part is a generator, which takes a seed
with a prefixed size giving as output an arbitrary amount of pseudo-random data. Secondly,
there is the accumulator, which is responsible for collecting and pooling the entropy of
various resources, occasionally also performing an update of the generator seed. Finally,
the seed control file ensures that the generator can output good pseudo-random numbers.

The generator part uses the AES encryption algorithm in counter mode with a 256-bit
encryption key and a 128-bit counter. The key and counter form the secret internal state
of the generator. After each generation of pseudo-random data, a new 256-bit block is
generated, which will serve as the key for the next generation, forgetting the one used. This
eliminates any possibility of information leakage about previous generations since it would
be impossible for an attacker to obtain the previous outputs despite knowing the internal
state of the generator because the key would be different. The operations performed in this
generator are:

• Initialization: both the key and the counter are set to 0, indicating that the generator
has not yet been updated.

• Update: in this operation, the internal state is updated with a new string. A hash
function is used to update the key, performing an exhaustive mix of the input string
together with the existing key. The counter is also incremented by one unit, in this
case a 16-byte integer.

• Block generation: a number of blocks with random output are generated using AES
encryption with the key and the counter. This operation has an initial condition in
which it is determined if the counter is non-zero to use the encryption algorithm. The
output of this part is 16-byte blocks.

• Generate random data: a pseudo-random byte string with the length required by
the user is obtained. To reduce the statistical deviation with respect to a truly ran-
dom output, the length of the output string is limited to 220. Once the output is
obtained, the key is modified with the block generating operation, and a 32-byte key
is obtained.

In the second part of this generator, it is necessary to use different entropy resources,
such as mouse movements, number of clicks, or internal computer data, such as memory
or clock. These resources must be unpredictable to prevent the generator from being
vulnerable to attacks.

To update the generator, it is necessary to group the resources into a pool large enough
so that the attacker cannot enumerate the possible values in the pool. Unlike the Yarrow
generator, where entropy estimators and various heuristic rules are used, in the Fortuna
generator, this is solved in a simpler way.

There are 32 pools: Pi, i = 0, . . . , 31, and each one contains a number of bytes coming
from the entropy resources; this distribution of events is performed cyclically. An update
of the generator is performed each time the pool P0 has a sufficient amount of information.
These updates are numbered 1, 2, 3, . . . . Depending on the update number, r, one or more
pools are included in the update. To determine which pools are included, the following
rule is followed: pool Pi is included in the update if 2i is a divisor of r. So P0 is always
included, P1 is included in even updates, P2 is included every fourth update, and so on
with the rest of the pools. After having been employed in an update, the corresponding
pool is emptied. This technique makes the generator more secure against attacks since in
the case where the attacker can know a significant amount of the P0 pool, he will be able to
reconstruct the new state of the generator. However, when P1 is used in the update, it will
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contain twice as much unpredictable information for the attacker, and P2 will contain four
times as much unpredictable information. So, no matter how many false random events
the attacker creates or how many events he knows about, if there is at least one source
of random events that he cannot predict, there will always be a set that gathers enough
entropy to defeat him.

The third part of the generator, the seed control file, serves as data storage with high
entropy; specifically, it consists of 64 bytes of data. This preserves the internal state of
the generator, ensuring that after restarting the generator, good pseudo-random numbers
are produced. This file would only be available to the generator, and once it is used, it is
rewritten with new data.

Despite the simplicity of this idea, the implementation is complicated and highly
dependent on the programming environment used. A more detailed explanation of the
problems associated with this part of the generator, as well as the other parts of the
generator, can be found in [71].

4.7. Trifork Generator

Proposed by A. B. Orúe, F. Montoya, and L. Hernández [72], it is a method based
on the combination of three sequences generated from three coupled, delayed Fibonacci
generators, with all of them being mutually perturbed. The perturbed, delayed Fibonacci
generator is a modification of the conventional method. This transformation consists of
perturbing the smallest and largest bit of the samples, defined by:

xn = ((xn−r ⊕ x′n−s) + ((xn−s ⊕ x′n−r)) mod m

x′n−s = (xn−s � d) (11)

x′n−r = (xn−r � d)

where r and s are the delays, N is the size, m is the basis verifying m = 2N , d is a constant,
2 ≤ d ≤ 0.7N,⊕ is the XOR operator,� and� are the operators to shift right and left,� d
is equivalent to multiplying by 2−d followed by a floor operation, while� d is equivalent
to multiplying by 2d followed by the mod m operation.

This modification employs three types of operations of different natures. On the one
hand, there is the mod 2N operation used in algebraic generators; secondly, the XOR sum
operator and then the shift operations to the right and left that are peculiar to shift register
methods are used.

The Trifork generator has three branches, each consisting of a perturbed Fibonacci
delayed generator. The three branches are interconnected with each other cyclically by the
perturbation. Two branches are combined with the sum XOR operator to form the output
of the joint generator, while the third generator remains hidden; thus, analyzing the output
of the generator to discover the parameters would be a waste of time. This is one of the
advantages of the Trifork generator over other generators.

The Trifork generator is defined as:

wn = xn ⊕ zn

xn = (xn−r1 + xn−s1) mod m⊕ z′n
yn = (yn−r2 + yn−s2) mod m⊕ x′n
zn = (zn−r3 + zn−s3) mod m⊕ y′n (12)

x′n = ((xn−r1 + xn−s1) mod m)� d

y′n = ((yn−r2 + yn−s2) mod m)� d

z′n = ((zn−r3 + zn−s3) mod m)� d

where wn is the output of the generator at instant n; xn, yn, zn are the outputs of the three
generators; r1, s1, r2, s2, r3, s3 are the values of the delays; and r1, r2, r3 should be different to
ensure different lengths in the sequences.
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The seeds of this generator are obtained as follows:

Xk+1 = aXk + c

Yk+1 = aYk + c (13)

Zk+1 = aZk + c

where Xk, Yk and Zk are the sets of the seeds of each individual generator.

4.8. Trit Generators

Among the new quantum cryptographic methods, we can highlight those that employ
quantum secure direct communication (QSDC), which allows the transmission of informa-
tion directly through an open channel without the need for encryption, eliminating the
problem of key discovery. Several works related to this methodology require the generation
of trits of pseudo-random numbers to be efficient. In [73], a method for generating secure
pseudo-random numbers based on trits is proposed. The process consists of two steps: first,
the internal state is initialized to subsequently generate the pseudo-random numbers. In
more detail:

1. The internal state of the vector, U, is initialized. Using vector initialization VI ∈ Ve
and in the secret key K ∈ Vn, it is considered:

U = (x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, k1, k2, k3, k4),

where xi ∈ Vl , yj ∈ Vl and k j ∈ Vl are parts of the vector U, with i = 1, . . . , 6
and j = 1, 2, 3, 4. Vector VI is VI = (VI1, VI2, . . . , VI10), while the key is made
up of four parts K = (K1, K2, K3, K4). Then, vector U can be initialized as follows:
xi = VIi, yj = VI6+j, k j = Kj, with i = 1, . . . , 6; j = 1, ..., 4.

2. The sequence is generated progressively, M = (M1, . . . , Mb), M ∈ Vm, where Mq are
the parts of the generated sequence.

(a) To generate each of the Mq, the following steps are executed:

i. New values for x1, x2, x3.
ii. New values for k1, k2, y1, y2.
iii. New values for x4, x5, x6.
iv. New values for k3, k4, y3, y4.

(b) The vectors y are concatenated, obtaining Mq = (y1 | y2 | y3 | y4).

Based on this process, the authors computationally implemented this generator
(TriGenv.2.0), whose pseudo-code is presented in Algorithm 1.

In [73], two comparisons are made in terms of the efficiency of this generator with
the basic C++ language pseudo-random generator. The first one is compared with NIST
Statistical Test Suite (NIST STS) [11], and the second one is compared with a modification
of the NIST STS for pseudo-random number terns. The results are briefly detailed below:

1. For the case of the NIST STS, 100 sequences consisting of 6 · 107 trits from each
generator were simulated. Subsequently, these terns are converted to bits and the
test is applied. In this case, the TritGen generator failed the test most of the time.
The authors conclude that the standard bit sequence tests do not work properly in
evaluating the trit sequences.

2. In the test modified by the authors, five sequences of 1.5 · 107 trits were obtained in
each generator. In this case, the TritGen generator showed better results than the
C++ generator.
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Algorithm 1 Pseudo-code TriGen v.2.0 [73]

Input: Vector VI, key K, VI ∈ V240, K ∈ V96 and parameter b
Output: Sequence M = (M1, . . . , Mb), M ∈ V96b, Mq ∈ V96, q ∈ 1, b
1. xi ∈ VIi,yj ∈ VI6+j, k j ∈ Kj, i ∈ 1, 6, j ∈ 1, 4.
2.
for q = k step 1 until q ≤ b do

for j = 0 step 1 until j < 4 do
x1 = (Sbox(x1 + k1)⊕ x4) ≪ k4; x2 = (Sbox(x2 + k2)⊕ x5) ≫ k3;
x3 = (Mix((x3 + x6)⊕ y3) ≪ x1;
k1 = Sbox((Sbox(x1 ⊕ k1) + x5)⊕ y1); k2 = Sbox(Mix(x2 + k2 + x6)⊕ y2);
y1 = Sbox(((k1 + y1) ≪ x2)⊕ k3); y2 = Mix(Sbox(((k2 + y2) ≫ x3)⊕ k4));
x4 = (Sbox(x4 + k3)⊕ x1) ≪ k2; x5 = (Sbox(x5 + k4) + x2) ≫ k1;
x6 = Mix((x6 + x3)⊕ y1) ≪ x4;
k3 = Sbox((Sbox(x4 ⊕ k3) + x2)⊕ y3); k4 = Sbox(Mix(x5 + k4 + x3)⊕ y4);
y3 = Sbox(((k3 + y3) ≪ x5)⊕ k1); y4 = Mix(Sbox(((k4 + y4) ≫ x6)⊕ k2))

end
Mq = (y1 | y2 | y3 | y4)

end

More detailed results of these simulations as well as details of the modified test can be
found in [73].

Another pseudo-random number tern generator is proposed in [74], in which a prim-
itive polynomial, the trace function, and Legendre’s symbol in an odd feature field are
employed. Before introducing the generator algorithm, several definitions are necessary
(see Definitions 7 and 8).

Definition 7. Legendre’s symbol (a/p) for an element in a field Fp is defined as:

(a/p) =


0, if a = 0
1, if a is a quadratic residual different from 0
−1, if a is not a quadratic residual different from 0

(14)

where an integer x is a quadratic residual if, x2 ≡ q mod n.
Legendre’s symbol is calculated as (a/p) = a(p−1)/2 mod p.

Definition 8. The trace function performs a mapping from an element of the extension field
X ∈ Fpm to an element of the prime field x ∈ Fp as follows:

x = Tr(X) =
m−1

∑
i=0

Xpi
(15)

Now, it is possible to define the algorithm. Let p be an odd characteristic prime, and let
m be the degree of the primitive polynomial f (x) over the field Fp. Using this polynomial,
one can generate a vector of maximum length over Fpm . Let ω be the primitive element of
this field, and then the sequence of ternaries:

T = {ti}, ti =

(
Tr(ωi) + A

p

)
i = 0, 1, 2, . . . , pm − 2 (16)

is the longest length having period pm − 1. With A ∈ Fp not equal to 0.
In Table 1, we show in each category of the generator their characteristics, statistical

properties, and security parameters.
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Table 1. Overview of described generators.

Generator Characteristics Statistical Properties Security Parameters

BBS

• Congruential model
• Extracts least significant

bi bits from the sequence
xi

• Criptographically secure
• Deterministic algorithm

• N = pq, where p and q
are prime an verify p ≡
q ≡ 3 mod 4

• y mod N ∈
(
− N

2 , N
2

)
• EN(y) = |y2 mod N|, ab-

solute of Rabin’s function

LFSR

• Uses bit sequences to ob-
tain a criptographically
secure sequence

• Common in the literature

• Random sequences
• Scalable algorithm

• Secure based on its linear
complexity

• Resources used are
pseudo-random

/dev/random

• Linux random number
generator

• Two pools and two func-
tions

• Unpredictable sequences
• External entropy

• Pools partitions increase
the security

• Information from the sys-
tem itself

AES

• Block cipher scheme
• Widely used in symmet-

ric cryptography
• Two ways of generation

• Encryption algorithm
• Different operations us-

ing bytes

• Fuzziness and diffusion
• No effect if the seed is

modified externally

Yarrow
• Four components
• Uses hash functions

• Encrypted with triple-
DES algorithm

• No entropy overestima-
tion

• Input does not have di-
rect influence on the out-
put

• Key updates with accu-
rate entropy estimators

• Pool separation

Fortuna

• Improvement to Yarrow
generator

• Three parts: generator,
accumulator, and reseed
control file

• Encrypted with AES al-
gorithm

• Unpredictable resources

• New key every genera-
tion

• 32 pools gather enough
entropy

Trifork

• Combination of three se-
quences generated with
delayed Fibonacci gen-
erators, mutually per-
turbed

• Modification of conven-
tional method

• Unpredictable output
• Employs three opera-

tions: mod 2N , sum XOR,
and shift operations

• Third generator remains
hidden

• Parameters are chosen as
appropriate

5. Experimental Analysis

In this section, we will analyze the randomness of the PRNGs described in the previous
section. For this purpose, we will apply the NIST Statistical Test Suite (NIST STS) [11] to
the output sequence in binary format of these algorithms.

It is reasonable to expect that all the generators analyzed will pass the NIST STS with
satisfactory results since these algorithms have been proposed following a correct statistical
design. However, this analysis will be carried out with the objectives of empirically showing
the statistical goodness of these generators and checking their correct implementation.

On the other hand, a study will be conducted on the computational speed of data
generation with the described generators to later establish a series of recommendations for
the user when deciding on one generator or another.
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In order to consider whether the proportion of sequences passing a test is acceptable
or not, we are working with the following confidence interval, recommended in [11]:

p̂± 3

√
p̂(1− p̂)

m
(17)

where p̂ = 1− α and m is the sample size.

5.1. Materials and Methodology

The computer used for the simulations is an HP Pavilion laptop with 16 GB of RAM
and an Intel core i7-10750H CPU @ 2.60GHz. For the application of the tests, the Linux
console was used, specifically the STS package that is available on the official NIST web-
site (https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software,
accessed on 1 January 2020).

In the cases studied, the generator is considered to pass the test if 96 or more sequences
pass the test. For the random excursion test and its variant, this ratio is approximately 0.95,
which implies that 60 sequences have to pass the test.

To carry out this analysis, 100 sequences of 106 bits each will be generated. This number
of bits is because some tests require this amount in order to be executed, while the number
of sequences used is the number recommended in the publication for the parameters to be
used in this work. Each sequence is generated from a randomly chosen seed, and in the
case of generators that require additional parameters, they are also randomly generated. In
the case of the random excursion test and its variant, due to the construction of both tests,
only 63 of the 100 sequences generated are used.

Finally, the parameters used in the applications of the tests suite, following the recom-
mendations of [11], are:

• Significance level (α): 0.01;
• Size of the block in the frequency test within a block: 128;
• Size of the length in bits of each template in the non-overlapping template matching

test: 9;
• Length in bits of the template in the overlapping template matching test: 9;
• The length of each block in the approximate entropy test: 10;
• The length in bits of each block in the serial test: 16;
• The length in bits of a block in the linear complexity test: 500;
• Maximum number of templates: 40.

The results obtained with the different generators are analyzed next.

5.2. Results

We will begin by describing how each of the generators described in Section 4 was
implemented and indicating the computational time involved in generating the sequences.

The R program and the Linux system were used to program the codes. In particular,
the R language was used for the implementation of the BBS, Shrinkage, Self-Shrinkage,
ASG, AES, and Trifork generators and the Linux system for the implementation of the
/dev/random, Sober-128, Yarrow, and Fortuna generators. The codes can be found in
Appendix A.

In particular, for the implementation of the BBS generator, we used the function
auxiliary to obtain the value of the parameters and the seed necessary for this algorithm,
and the function bbs, which is in charge of the generation of the pseudo-random numbers.
To perform each of the 100 simulations, both functions were executed, obtaining different
and independent values in each simulation. The average computation time for a simulation
of one million bits was 37.15 s.

For the Shrinkage generator, the function lfsr was implemented to obtain the sequences
that feed the generator, and subsequently, the function shrinkage was used for the generation
of the binary sequence. In order to obtain each sequence, each of the components necessary

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
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for the execution of the functions was chosen randomly. In the polynomials, a size of 16 has
been chosen, with the elements of these being random. With this size, we tried to have as
much variability as possible in the polynomials without using a lot of computing time. The
average computation time for the generation of a sequence of one million bits was 88.7 s.

In the case of the Self-Shrinkage generator, the function lfsr was implemented to obtain
the sequence to be used in the generator, and subsequently the function sel f _shrinkage
was used for the generation of the binary sequence. To obtain each sequence, each of the
components necessary for the execution of the functions was chosen randomly; in the case
of the polynomial, size 16 was chosen with its random components. An average time of
85.62 s was used to generate a sequence of one million bits.

For the ASG generator, the lfsr function was used to obtain the three sequences to be
used in the generator, and then the asg function was used for the generation of the binary
sequence. In order to obtain each sequence, each of the components necessary for the
execution of the functions was chosen randomly. As in the two previous generators, the
size of the polynomials was 16. An average time of 61.42 s was used to generate a sequence
of one million bits.

In the case of the AES generator, the function AES was implemented. The generation
mode used was the counter due to its greater security against attacks. Between each
sequence of one million bits, the counter and the key used are updated, so that the sequences
obtained are independent. The average time used for the generation of each of the one
million bit sequences is 5.03 s.

The generation of the sequences with the Trifork algorithm was carried out by means
of the code of the functions fibonacci for obtaining the sequences of the delayed Fibonacci
algorithm and the function trifork for the generation of the binary sequences. Different
random parameters were used in each sequence, as these are independent. It should be
noted that a power of 2 was used as a modulus, and the recommendations of the original
paper were followed for the d parameter. An average time of 58.42 s was used to generate a
sequence of one million bits.

As for the generators programmed in Linux, in the case of /dev/random, it was not
necessary to load any package since it is the generator of this operating system. The binary
sequences were obtained directly without any additional transformation of the data. The
sequences were simulated independently in such a way that between each sequence, the
entropy resource of the generator is updated. The average computation time to obtain a
sequence of one million bits was 2.88 s.

In the case of the Sober-128 generator, the CryptX package was used, which can be down-
loaded free of charge from the Ubuntu repository (http://manpages.ubuntu.com/manpages/
impish/man3/CryptX.3pm.html, accessed on 1 January 2022) Between the simulation of each
million bit sequence, the seed is updated and the entropy is renewed. When using this package,
the output is in hexadecimal format, so it is necessary to make the transformation to binary to
apply the tests. The average computation time to obtain each of these sequences is 3.84 s.

In the case of the Yarrow generator, it was also simulated through the CryptX package
in the Linux console. Between the simulation of each bit sequence an update of the seed is
performed and the entropy of the generator is renewed. The output of the function used is
again in hexadecimal format, with the transformation to binary being necessary to apply
the battery tests. The average computation time for the generation of a sequence of one
million bits was 3.56 s.

Like the Yarrow generator, of which it is an improved version, for the Fortuna genera-
tor, the simulation was performed through the Linux console with the CryptX package. An
update of the seed and entropy was also performed after each binary sequence. As with
the two previous generators, hexadecimal sequences were obtained, so it was necessary to
transform them to binary in order to apply the different tests. The average computation
time was 3.16 s for a sequence of one million bits.

As for the results obtained after the application of the NIST tests on the sequences
generated from each and every one of the generators, these were satisfactory in general and

http://manpages.ubuntu.com/manpages/impish/man3/CryptX.3pm.html
http://manpages.ubuntu.com/manpages/impish/man3/CryptX.3pm.html
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allow us to affirm that the generators passed the requirements of the NIST STS. Next, we
will detail the results broken down by generator and we will show, for illustrative purposes
and without loss of generality, some graphic examples of the histograms of the p-values
resulting from some tests.

The results obtained with the BBS generator were satisfactory. The lowest acceptance
rate for the tests, except for the random excursion test and its variant, is 97 out of 100 binary
sequences. In the case of the random excursion test and its variant, this minimum rate was
61 out of 63 binary sequences.

Analyzing uniformity, the null hypothesis of uniformity is not rejected for a signifi-
cance level of 1%. As an illustration, Figure 1 shows the distribution of these p-values for
the case of the linear complexity test.

Figure 1. Histogram of the p-values of the linear complexity test (BBS case).

With these results, it can be concluded that since the proportions of sequences passing
the test are within the confidence interval previously defined, the BBS generator passes the
NIST test battery, and therefore, random sequences are obtained with this algorithm that
can be used in cryptography. Furthermore, through the distribution of the p-values, it can
also be determined that the sequences are uniformly distributed.

The Shrinkage generator passes all the tests with solvency except for a non-overlapping
template matching test, which was passed for 95 out of 100 sequences; however, this
acceptance rate is not included within the confidence interval defined above. Removing
this test, the lowest number of sequences passing a test is 96 out of 100 sequences for all but
the random excursion test and its variant, where the lowest number of binary sequences
passing the test is 61 out of 63.

As for uniformity, there is no evidence of the rejection of the null hypothesis of
uniformity at 1% in any of the tests performed. In Figure 2, the distribution of the p-values
for the case of the discrete Fourier transform test is shown.

Figure 2. Histogram of the p-values of the discrete Fourier transform test (Shrinkage generator case).

According to the obtained results, it can be concluded that since the proportions
of sequences passing the test are within the confidence interval previously defined, the
Shrinkage generator passes the NIST test battery, and therefore, random sequences are
obtained with this algorithm. Although a non-overlapping template matching test is not
passed, since there are several such tests with acceptance ratios within the confidence
interval, it is considered that this test will not cause the randomness of the generator
to be lost. It is possible that with other sequences and with a greater number of bits in
them, it is obtained that this generator passes all the tests with solvency. In addition,
through the distribution of the p-values it can also be determined that the sequences are
uniformly distributed.
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Regarding the results obtained by using the Self-Shrinkage generator, it should be
noted that there are two non-overlapping template matching tests in which the proportion
of sequences passing these tests is not within the defined confidence interval; in both cases,
94 out of 100 binary sequences pass the test. Except for these two situations, the other tests
are passed with confidence, with the minimum acceptance rate being 61 out of 63 sequences
for the random excursion test and its variant and 96 out of 100 for the rest of the tests.

In relation to the distribution of the p-values, it should be noted that there is one
non-overlapping template matching test that rejects the null hypothesis of uniformity; in
the rest of the cases, there is no evidence to reject this hypothesis and therefore uniformity in
the sequences. Figure 3 shows the distribution of the p-values of one of the non-overlapping
template matching tests, showing the uniform distribution of the p-values.

Figure 3. Histogram of the p-values of the non-overlapping template test (Self-Shrinkage genera-
tor case).

After analyzing the performed tests, the Self-Shrinkage generator passes the NIST
STS, since most of the tests have an acceptance ratio within the defined confidence interval.
Despite the failure of two non-overlapping template matching tests, since there are several
such tests with acceptance ratios within the confidence interval, it is considered that these
tests will not cause the randomness of the generator to be lost. Furthermore, through the
distribution of the p-values, it can also be determined that the sequences are uniformly
distributed, except for a non-overlapping template matching test. It is possible that with
other sequences and with a larger number of bits in the sequences, this generator may pass
all tests with flying colors, both for the sequences and for the distribution of the p-values.

In the case of the ASG generator, the proportion of sequences that passed each of the
tests was found to be within the confidence interval. The minimum proportion for the tests
with 100 sequences was 96 out of 100, while for the random excursion tests and its variant,
this proportion was 61 out of 63 binary sequences.

Regarding the distribution of the p-values, it was obtained that none of the tests has
evidence to reject the null hypothesis of uniformity in the χ2 test for a significance level of
1%. Figure 4 shows the histogram of the p-values of the linear complexity test, showing
their uniform distribution.

Figure 4. Histogram of the p-values of the linear complexity test (ASG generator case).

With these results, it can be concluded that since the proportions of sequences passing
the test are within the confidence interval previously defined, the Alternating Step generator
(ASG) passes the NIST test battery, and therefore random sequences are obtained with
this algorithm. Furthermore, through the distribution of the p-values, it could also be
determined that the sequences are uniformly distributed. Concluding that this generator is
suitable for the field of cryptography.
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The /dev/random generator passes all the tests since the proportion of sequences
that pass each test are within the defined confidence interval. For the case of the random
excursion test and its variant, the minimum number of sequences passing the test is 61 out
of 63 binary sequences, while for the rest of the tests, it is 96 out of 100 binary sequences.

Observing the uniformity of the p-values, it is obtained that they all pass the χ2 test at
1%. Figure 5 shows the distribution of the p-values for the cumulative sums test.

Figure 5. Histogram of the p-values of the cumulative sums test (/dev/random generator case).

Once the different tests were performed, it could be concluded that the /dev/random
generator produces random bit sequences, also being uniform, so this algorithm can be
used in the generation of random numbers for cryptography.

The results obtained by using the AES generator are also satisfactory. It can be seen
that the generated sequences pass the tests with flying colors. For the random excursion
test and its variant, the lowest acceptance rate is 61 out of 63 sequences, while for the rest
of the tests, this proportion is 96 out of 100 binary sequences, both values being within the
confidence interval.

In terms of uniformity, it can also be seen that the different tests pass the χ2 test. This
can be seen in Figure 6, which represents the distribution of the p-values for the case of the
non-overlapping template matching test.

Figure 6. Histogram of the p-values of the non-overlapping template test (AES generator case).

Once the obtained results were analyzed, it could be concluded that since the pro-
portions of sequences that pass each of the tests are within the confidence interval previ-
ously defined, the AES generator passes the NIST STS, and therefore random sequences
are obtained that can be used in the field of cryptography. Furthermore, through the
distribution of the p-values, it has been determined that the generated sequences are
uniformly distributed.

The results of the test battery show that the Sober-128 generator passes the tests
successfully. In the random excursion tests and its variant, the minimum acceptance rate
is 62 out of 63 binary sequences, while for the rest of the tests this proportion is 96 out of
100 sequences. In both cases, they are within the confidence interval.

Regarding the distribution of the p-values, it can be observed that none of them finds
evidence to reject the null hypothesis of uniformity in the χ2 test. Figure 7 shows the
distribution of the p-values of one of the random excursion tests to exemplify uniformity.
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Figure 7. Histogram of the p-values of the random excursions test (Sober-128 generator case).

In view of the obtained results, it can be concluded that the Sober-128 generator passes
the NIST STS, and therefore random sequences are obtained with this algorithm that can
be used in the field of cryptography. This is because the acceptance rates of the tests are
within the confidence interval that has been defined to accept the generator or reject it.
Furthermore, through the distribution of the p-values, it was determined that the sequences
are uniformly distributed.

Analyzing the results obtained by using the Yarrow generator, it can be observed that
this generator passes all the tests with solvency except for the non-overlapping template
coincidence test, in which 94 sequences pass it; however, this acceptance rate is not included
within the confidence interval defined above. Removing this test, the lowest proportion of
sequences passing the random excursion test and its variant is 61 out of 63 binary sequences.
While for the rest of the tests, this proportion is 96 out of 100.

As for the uniformity of the p-values, it can be seen that it is obtained in all tests. As
an example, the graph for the frequency test, whose values pass the uniformity test for a
confidence level of 1%, is shown in Figure 8.

Figure 8. Histogram of the p-values of the frequency test (Yarrow generator case).

With these results, it can be concluded that since the proportions of sequences passing
the tests are within the confidence interval previously defined, the Yarrow generator passes
the NIST test suite, and therefore, random sequences are obtained with this algorithm.
Although a non-overlapping template matching test is not passed, since there are several
such tests with acceptance ratios within the confidence interval, it is considered that this
test will not cause the randomness of the generator to be lost. It is possible that with other
sequences and in greater number, it is obtained that this generator passes all the tests with
solvency. In addition, through the distribution of the p-values, it can also be determined
that the sequences are uniformly distributed.

The results obtained by using the Fortuna generator show that this generator passes
all the tests since the lowest number of sequences passing a test is 97 out of 100, while for
the random excursion test and its variant, this proportion is 62 sequences out of 63. In both
cases, the proportions of sequences passing the test are within the confidence interval.

As with the other generators, there is uniformity in the p-values. Figure 9 shows the
distribution for the case of Maurer’s universal test. The different tests pass the χ2 test for a
significance level of 1%.
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Figure 9. Histogram of the p-values of the Maurer’s universal test (Fortuna generator case).

In view of the results obtained with the different tests, it can be concluded that random
sequences are obtained with the Fortuna generator, since it has been verified that the
proportion of sequences that passed the tests is within the confidence interval that has been
defined to consider that a test has been passed. It was also possible to verify the uniformity
of the sequences through the distribution of the p-values, so this generator is suitable to be
applied in cryptography.

In relation to the results obtained by using the Trifork generator, it can be seen that the
binary sequences pass the tests with solvency, since, as can be seen, the lowest proportion
in the acceptance rate of the tests is within the defined confidence interval. Specifically, in
the case of the random excursion tests and its variant, this minimum proportion is 61 out
of 63 sequences, while for the rest of the tests it is 96 out of 100.

As for the distribution of the p-values, in no case is there evidence to reject the null
hypothesis of uniformity, from which it is inferred that the sequences are going to be
uniform. The Figure 10 shows the distribution of the streak test, exemplifying the uniform
distribution of the p-values.

Figure 10. Histogram of the p-values of the runs test (Trifork generator case).

With these results, it can be concluded that, as the proportions of sequences pass-
ing each test are within the confidence interval previously defined, the Trifork genera-
tor passes the NIST STS, and therefore, random sequences are obtained with this algo-
rithm. Furthermore, through the distribution of the p-values, it has also been determined
that the sequences are uniformly distributed, making this generator suitable for the field
of cryptography.

6. Conclusions

The applications of cryptography are diverse, as highlighted in the Introduction,
so it is necessary that the elements that compose it, in particular the pseudo-random
numbers, are as secure as possible. For this reason, in this work we have analyzed different
generators of these numbers, paying special attention to those that verify a series of special
properties for the field of cryptography, such as randomness and unpredictability. In
addition, we have tried to find the generator that, fulfilling the necessary conditions, has
a lower computational cost. The analysis of these generators has been carried out in two
parts, in the first one, each generator has been exposed examining the algorithm used,
emphasizing the possible security flaws that may occur in the process of obtaining the
sequences. In the second part, a simulation of binary sequences has been carried out using
the generators previously analyzed. Once these bit strings were obtained, the NIST STS
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was applied to analyze their randomness and uniformity, and the computational cost of
obtaining the sequences with each generator was also calculated.

In the simulation of the sequences, both the R code package and the packages already
implemented in the Linux console were used, obtaining better results in computational
cost in the latter as they are better optimized.

A number of relevant conclusions can be drawn from the study of the different
generators:

• The Blum–Blum–Shub generator passed the NIST test suite with solvency, both in
randomness and in the uniform distribution. In computational terms, it performed
well, being a good pseudo-random number generator for cryptographic applications.

• Generators based on linear feedback shift register (LFSR), such as the Shrinkage
generator, Self-Shrinkage generator and Alternating Step generator (ASG) were the
slowest in computational terms among the generators analyzed. As for the application
of the test battery, they have managed to pass the tests, although in the case of
the Shrinkage and Self-Shrinkage generators, some tests were not passed due to the
proportion of sequences necessary to be considered acceptable. Even so, it is concluded
that with these generators, random sequences with uniform distribution are obtained,
and these generators are suitable for the field of cryptography.

• The /dev/random generator, the one used in the Linux system, is the fastest in
computational terms. This may be due to a higher optimization in its processes. In
the test results, it was able to pass all of them with flying colors, both in terms of
randomness and in terms of the uniform distribution. All this makes this generator
suitable for the generation of cryptographically secure pseudo-random numbers.

• The AES generator obtained good results in both tests and computational cost. In the
latter, it is the fastest of the algorithms implemented in R. Randomness and uniform
distribution have been verified, making this generator suitable for cryptography.

• In the case of the Sober-128 generator, the execution time was reduced. Even so,
the results of the test battery were satisfactory in both randomness and uniform
distribution of the generated sequences. This makes this algorithm suitable for the
generation of cryptographically secure pseudo-random numbers.

• Both the Yarrow generator and its predecessor, Fortuna, performed well in computa-
tional terms, the latter being slightly better. As for the results of the battery of tests,
both algorithms managed to pass them with solvency; however, in the case of the
Yarrow generator, it is the case that in a comparison test of non-overlapping templates,
the proportion of accepted sequences was not sufficient. In spite of this, it is concluded
that both generators yield random sequences with uniform distribution. In view of the
results, it would be better to use the Fortuna generator for the generation of random
numbers in cryptography.

• The Trifork generator, based on the delayed Fibonacci generators, obtained good
results in the battery of tests, having in all of them an acceptance rate within the
defined confidence interval. In computational terms, the result is satisfactory, so it can
be concluded that this generator is suitable for the generation of secure pseudo-random
numbers for cryptography.

Generally speaking, the generators analyzed have been found to be suitable for pro-
ducing pseudo-random numbers that can be used in cryptography. However, some have
shown better performance both in computation time and in passing the tests. The LFSR-
based generators were the worst performers in both situations, making them less suitable
for pseudo-random number generation in cryptography. The rest of the generators showed
similar behavior in terms of test acceptance rates, but there are differences in computation
time, making some of them better for the generation task.

In order to compare the different generators, Table 2 shows the computation times
used in the simulation of a sequence of one million bits, and, on the other hand, Table 3
shows the advantages and disadvantages of each generator.
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Table 2. Average time in seconds taken to generate a sequence of one million bits.

Generator Time (In Seconds)

BBS 37.15
Shrinkage 88.7

Self-Shrinkage 85.62
ASG 61.42

/dev/random 2.88
AES 5.03

Sober-128 3.84
Yarrow 3.56
Fortuna 3.16
Trifork 58.42

Table 3. Pros and cons of each generator.

Generator Pros Cons

Conceptually simple Special conditions are required for the parameters
BBS Easy implementation in any environment Slow running

If the seed is guessed, all the outputs are known

Simple and easy to understand design High computational cost

LFSR Fast implementation in computational terms Weak linear algorithm against initial state recovery
attacks

Easy to include in other generators Vulnerable to some attacks if not combined with other
generators

Computationally efficient Slow in low entropy contexts
/dev/random Optimally implemented in Linux Dependent on entropy quality

Secure against various cryptographic attacks

AES

Simple implementation if the necessary packages are
available in the programming language Complex design

Fast execution Weak if internal condition is compromised
Secure against several cryptographic attacks

Implemented in Linux Conceptually complex
Sober-128 Fixes shortcomings of LFSR generators Vulnerable to attack if LFSR generator is known

Not vulnerable to algebraic attacks and key attacks

Yarrow Secure against iterative and backtracking attacks Complex design
Implemented in Linux Entropy estimators need to be defined

Implemented in Linux Complex implementation depending on the
programming environment

Fortuna Solves the problem of entropy estimators The seed control file can cause memory problems
Computationally efficient

Fast and easy implementation Conceptually complicated if no previous knowledge is
present

Trifork Corrects deficiencies of delayed Fibonacci generators Slow running
Can be used in other generators

The aim of this work was the analysis of different cryptographically secure pseudo-
random number generators, looking for those that passed the NIST Statistical Test Suite
and had the lowest possible computational cost. In this sense, it can be concluded that
the Fortuna, /dev/random, Sober-128, and AES generators are the most suitable for
obtaining these numbers due to their performance in the tests performed and their low
computational cost.
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Appendix A. Codes

library(primes)
library(digest)
library(dplyr)

###BBS

auxiliar<-function (){

aux=c()
p=sample(primes ,1)
q=sample(primes ,1)
while(p %% 4 !=3){

p=sample(primes ,1)
}
while(q %% 4 !=3 & q!=p){

q=sample(primes ,1)
}
n=p*q
s=sample(n,1)
while (gcd(s,n)!=1){

s=sample(n,1)
}
aux=append(aux ,c(p,q,s))
return(aux)

}

bbs<-function(m){

pri=auxiliar ()
p=pri[1]
q=pri[2]
x=pri[3]

N=p*q
secuencia=c()
for (i in 1:m){

x=x **2 %% N
secuencia=append(secuencia ,x %% 2)

}
return (secuencia)

}
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###LFSR

lfsr<-function(seed ,pol ,m){

x=seed
secuencia=c()
for (i in 1:m){

secuencia=append(secuencia ,tail(x,1))
nuevo=(sum(x[pol])%% 2)
x=head(x,-1)
x=append(nuevo ,x)

}

return(list(sec=secuencia ,seed=x))
}

##Shrinkage

shrinkage<-function(pol_1 ,pol_2 ,m,n){

secuencia=c()

z=c(0,1)
seed_1=sample(z,n,replace=TRUE)
seed_2=sample(z,n,replace=TRUE)

sec_1=lfsr(seed_1 ,pol_1 ,3*m)$sec
sec_2=lfsr(seed_2 ,pol_2 ,3*m)$sec

for (i in 1:(3*m)){
if (sec_2[i]==1 & length(secuencia)<m) {

secuencia=append(secuencia ,sec_1[i])}

}
return (secuencia)

}

##Self -shrinkage

self_shrinkage<-function(pol ,m,n){

secuencia=c()

z=c(0,1)
seed=sample(z,n,replace=TRUE)

sec=lfsr(seed ,pol ,4*m)$sec

for(i in 1:(2*m)){
if (sec[2*i-1]==1 & sec[2*i]==0 & length(secuencia)<m){
secuencia=append(secuencia ,0)}
else if (sec[2*i-1]==1 & sec[2*i]==1 & length(secuencia)<m){

secuencia=append(secuencia ,1)}
}

return(secuencia)
}

##Alternating Step Generator
asg<-function(pol_1 ,pol_2 ,pol_3 ,m,n){

secuencia=c()
z=c(0,1)
seed_1=sample(z,n,replace=TRUE)
seed_2=sample(z,n,replace=TRUE)
seed_3=sample(z,n,replace=TRUE)
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sec_1=lfsr(seed_1 ,pol_1 ,m+1)
sec_2=lfsr(seed_2 ,pol_2 ,1)
sec_3=lfsr(seed_3 ,pol_3 ,1)

for(i in 1:m+1){
if (sec_1$sec[i]==1){

sec_2=lfsr(sec_2$seed ,pol_2 ,1)
secuencia=append(secuencia ,as.integer(xor(sec_2$sec ,sec_3$sec)))

}
else if (sec_1$sec[i]==0){

sec_3=lfsr(sec_3$seed ,pol_3 ,1)
secuencia=append(secuencia ,as.integer(xor(sec_2$sec ,sec_3$sec)))

}
}

return(secuencia)
}

##Lagged Fibonacci

fibonacci<-function(lag_1 ,lag_2 ,m,n,mod){

secuencia=c()

z=c(0,1)
q=max(lag_1 ,lag_2)
seed=sample(z,n,replace=TRUE)

if (n+1>q){
while(length(secuencia)<m){

valor=(seed[(n+1)-lag_1]+seed[(n+1)-lag_2])%% mod
secuencia=append(secuencia ,valor)

seed=append(seed ,valor)
seed=seed[-1]

}
}
else print(‘‘La semilla tiene que ser mas grande ’’)

return(secuencia)
}

##Trifork
trifork<-function(r1,s1,r2 ,s2,r3,s3,m,n,mod ,d){

secuencia=c()

fib_1=fibonacci(r1,s1,m,n,mod)
fib_2=fibonacci(r2,s2,m,n,mod)
fib_3=fibonacci(r3,s3,m,n,mod)

x_prima=floor(fib_1*2^(-d))
y_prima=floor(fib_2*2^(-d))
z_prima=floor(fib_3*2^(-d))

x=as.integer(xor(fib_1 ,z_prima))
y=as.integer(xor(fib_2 ,x_prima))
z=as.integer(xor(fib_3 ,y_prima))

secuencia=as.integer(x,z)

return(secuencia)
}
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##AES
AES_128<-function(v,K){

cont=as.raw(c(v:(v+15))%%2 ** 128)
key=as.raw(K)

aes <- AES(key , mode=‘‘CTR’’,IV=01)
bloq<-aes$encrypt(cont)

out<-bloq%>%
rawToBits ()%>%
as.integer ()%>%
paste(collapse =’’)

return(out)
}
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