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Abstract: This research article addresses a nonclassical initial boundary value problem characterized
by a non-local constraint within the framework of a pseudo-hyperbolic equation. Employing rigorous
analytical techniques, the paper establishes the existence, uniqueness, and continuous dependence
of a strong solution to the problem at hand. With respect to the associated linear problem, the
uniqueness of its solution is ascertained through an energy inequality, which provides an a priori
bound for the solution. Moreover, the solvability of this linear problem is verified by proving that the
operator range engendered by the problem is indeed dense. Extending the analysis to the nonlinear
problem, an iterative methodology is utilized. This approach is predicated on the insights gained
from the linear problem and facilitates the demonstration of both the existence and uniqueness of
a solution for the nonlinear problem under study. Consequently, the paper contributes a robust
mathematical framework for solving both linear and nonlinear variants of complex initial boundary
value problems with non-local constraints.

Keywords: pseudo-hyperbolic equation; existence and uniqueness; iterative process; non local
constraint
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1. Introduction

Over the past several decades, mixed non-local problems encompassing parabolic,
hyperbolic, and pseudo-hyperbolic partial differential equations have attracted significant
scholarly attention. These investigations are primarily motivated by advancements in
modern physics and technological sciences, serving as foundational models for a diverse
range of physical and biological phenomena. Traditional boundary value problems, charac-
terized by classical conditions such as Dirichlet and Neumann, are adept at describing a
multitude of physical situations. However, certain complex phenomena necessitate the use
of non-classical boundary value problems, which employ non-local conditions like integral
constraints. In these non-classical scenarios, data are not directly measurable on the bound-
ary; rather, one is confined to understanding the average value of the solution over the
domain. The applicability of non-local mixed problems is extensive, ranging from medical
sciences to thermoelasticity and control theory, as illustrated by seminal works in the field
(Cannon [1], Shi [2], Capasso–Kunisch [3], Cannon-Van der Hoek [4], and Day [5]). The
landscape of research on different types of partial differential equations with non-local con-
ditions has been well-documented. For instance, the treatment of second-order parabolic
equations with non-local constraints has been elaborated by Kartynnik [6], Friedman [7],
Mesloub and Mansour [8], and Lin [9], among others. Similarly, the study of hyperbolic
and pseudo-parabolic equations with one integral condition or with purely integral con-
ditions has been systematically addressed (Mesloub and Bouziani [10,11], Ciegis [12],
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Fairweather [13], Goolin-Ionkin [14]). Further advancements in both one-dimensional and
multi-dimensional spaces have been discussed in the works of Wei et al. [15], Madsen
and Schaffer [16], Duruk et al. [17], Guido Schneider [18], Wayne and Wright [19] and
Nwogu [20], to name a few. In the present study, the focus is on one-dimensional longi-
tudinal vibrations of a rigid rod characterized by a non-uniform cross-section. The rod is
anchored at one end while the other is subject to a non-local integral constraint. Generally,
longitudinal vibrations of bars are described in the realm of mathematical physics via clas-
sical models based on the wave equation, under the assumption of a slender and elongated
bar. However, more generalized theories have emerged to incorporate the effects of lateral
motion in thicker bars. Such models necessitate higher-order derivatives in the equations
of motion. Notable among these is Rayleigh’s 1894 generalization, which considered the
effects of lateral motion while disregarding shear stress. Bishop further expanded this the-
ory in 1952, resulting in the Rayleigh–Bishop model characterized by a fourth-order partial
differential equation devoid of a fourth-order time derivative. The remainder of this paper
is structured as follows: Section 2 delineates the problem under investigation; Section 3
provides proof for the uniqueness of the solution corresponding to the associated linear
problem; Section 4 discusses the existence of such a solution; and Section 5 is dedicated to
establishing the solvability of the nonlinear problem at hand.

2. Problem Statement

In the domain D = (0, µ)× (0, T), with µ < ∞ and T < ∞, we consider the following
non local initial boundary value problem for a pseudo-hyperbolic nonlinear equation

Lu = ∂2u/∂t2 − ∂/∂x(R(x, t)∂u/∂x)− δ∂2/∂t2(∂2u/∂x2)
= g(x, t, u), ∀(x, t) ∈ D

`1u = u(x, 0) = H1(x), x ∈ (0, µ),
`2u = ut(x, 0) = H2(x), x ∈ (0, µ),

u(0, t) = 0,
∫ µ

0 xu(x, t)dx = 0, t ∈ (0, T).

(1)

where δ is a strictly positive constant and the function R(x, t) and its derivatives satisfy
the conditions:

T1 : R0 ≤ R(x, t) ≤ R1, 0 < Rt(x, t) ≤ R2, Rx(x, t) ≤ R3, for any (x, t) ∈ D,

T2 : Rtt(x, t) ≤ R4, Rxt(x, t) ≤ R5, for any (x, t) ∈ D.

We shall assume that the function g is Lipschitzian in D, that is, there exists a positive
constant d > 0, such that

|g(x, t, u1)− g(x, t, u2)| ≤ d(|u1 − u2|), (2)

for all (x, t) ∈ D.
We use the simple notations: ux for ∂u/∂x, and uxx for ∂2u/∂x2, . . . .
The following function spaces are needed for the study of the posed problem.
Let L2(0, T; L2(0, µ)) = L2(D), be the usual Hilbert space of square integrable

functions on D, and H1(0, T; L2(0, µ)) be the standard Hilbert space of functions
u ∈ L2(0, T; L2(0, µ)) such that ∂u/∂t ∈ L2(0, T; L2(0, µ)). To problem (1), we assign the
operator ℘ = (L, `1, `2) with domain of definition

D(℘) =

{
u ∈ L2(D), ut, ux, utx, utt, uttx ∈ L2(D)

u(0, t) = 0,
∫ µ

0 xu(x, t)dx = 0, t ∈ (0, T).

The operator ℘ acts on a Banach space B into a Hilbert space H, where B is the set of

functions u ∈ L2(D) verifying boundary conditions in (1) and having the norm
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‖u‖2
B = ‖u‖2

H1(0,T;L2(0,µ))

= sup
0≤τ≤T

(
‖u(., τ)‖2

L2(0,µ) + ‖ut(., τ)‖2
L2(0,µ)

)
.

and H is the Hilbert space of vector valued functionsH = (g, H1, H2) ∈ L2(D)× L2(0, µ)×
L2(0, µ) with finite norm

‖H‖2
H = ‖g‖2

L2(D) + ‖H1‖2
L2(0,µ) + ‖H2‖2

L2(0,µ).

We first consider the linear problem associated to problem (1), that is when g(x, t, u) is
replaced by g(x, t).

3. Uniqueness of Solution for the Associated Linear Problem

Theorem 1. If the assumption T1 is satisfied, then for any function u ∈ D(℘) there exists a
constant c > 0 independent of u such that we have the a priori estimate

‖u‖B ≤ c‖℘u‖H . (3)

Proof. Consider the identity

(Lu,N u)L2(Dτ)

=

(
utt, x

∫ µ

x
ut(ξ, t)dξ

)
L2(Dτ)

−
(
(R(x, t)ux)x, x

∫ µ

x
ut(ξ, t)dξ

)
L2(Dτ)

− δ

(
uttxx, x

∫ µ

x
ut(ξ, t)dξ

)
L2(Dτ)

−
(

utt,
∫ µ

x
ξut(ξ, t)dξ

)
L2(Dτ)

+

(
(R(x, t)ux)x,

∫ µ

x
ξut(ξ, t)dξ

)
L2(Dτ)

+ δ

(
uttxx,

∫ µ

x
ξut(ξ, t)dξ

)
L2(Dτ)

. (4)

where Dτ = (0, µ)× (0, τ), 0 ≤ τ ≤ T, and

N u =
∫ µ

x
(x− ξ)ut(ξ, t)dξ.

By using the notations Jxv =
∫ µ

x v(ξ, t)dξ, and Jx(ξv) =
∫ µ

x ξv(ξ, t)dξ, and boundary
and initial conditions, successive integration by parts of the terms on the right hand side
of (4) give ∥∥∥R

1
2 u(., τ)

∥∥∥2

L2(0,µ)
+ ‖Jxut(., τ)‖2

L2(0,µ) + δ‖ut(., τ)‖2
L2(0,µ)

=
∥∥∥R

1
2 H1

∥∥∥2

L2(0,µ)
+ ‖Jx H2‖2

L2(0,µ)

+δ‖ϕ2‖2
L2(0,µ) +

∥∥∥√Rtu
∥∥∥2

L2(Dτ)
+ 2(Lu, xJxut)L2(Dτ)

−2(Lu,Jx(ξut))L2(Dτ) + 2(Rx(x, t)u,Jxut)L2(Dτ). (5)

By evoking conditions T1 and Cauchy-ε inequality AB ≤ ε
2 A2 + 1

2ε B2 which holds for
positive ε and for arbitrary constants A and B, in Equation (5) and then applying Gronwall’s
lemma (See Lemma 3.3, [21]) to the resulted inequality, we obtain

‖u(., τ)‖2
L2(0,µ) + ‖ut(., τ)‖2

L2(0,µ) + ‖Jxut(., τ)‖2
L2(0,µ)

≤ k1 exp(k2τ)
(
‖g‖2

L2(Dτ) + ‖H1‖2
L2(0,µ) + ‖H2‖2

L2(0,µ)

)
k1 exp(k2T)

(
‖g‖2

L2(D) + ‖H1‖2
L2(0,µ) + ‖H2‖2

L2(0,µ)

)
, (6)
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where

k1 =
max

(
R1
2 , µ2+2δ

4

)
min(1, R0, δ)

, k2 =

max
(

R2+R2
3

2 , µ2+1
2 , µ4

4

)
min(1, R0, δ)

.

By discarding the last term on the left-hand side of (6), and taking the upper bound with
respect to τ over [0, T], we obtain the desired estimate (3) with c =

√
2k1 exp(k2

T
2 ).

4. Existence of Solution for the Associated Linear Problem

Since we only know that the range (of the operator ℘), R(℘) ⊂ H, we extend ℘ in a
way that the a priori estimate (3) holds for the extension ℘ and its range R(℘) coincides
with the whole space H. It is straightforward to show that the operator ℘ has a closure,
hence the following lemma.

Lemma 1. The operator ℘ : B→ H is closable and admits a closure ℘.

Proof. The proof can be carried out in the same manner as in Ref. [11].
We define the strong solution of problem (1) as the solution of the operator equa-

tion ℘u = H = (g, H1, H2) for all u in the domain D(℘) of the unbounded operator
℘. By passing to the limit, the estimate (3) can be extended to strong solutions, that is
‖u‖B ≤ c‖℘u‖H for all u in D(℘), and hence we have the following Corollary.

Corollary 1. The set R(℘) is closed in H and R(℘) = R(℘).

Theorem 2. Problem (1) admits a unique strong solution u = ℘−1(g, H1, H2) = ℘−1(g, H1, H2)
depending continuously on g ∈ L2(D), H1 ∈ L2(0, µ), and H2 ∈ L2(0, µ), satisfying the a priori
bound ‖u‖B ≤ c‖℘u‖H , where c is a positive constant independent of u.

Proof. We must show that ℘ is one to one (injective), since it follows from Corollary 1
that to prove the existence of the strong solution, it suffices to show that R(℘) = H. (R(℘)
is dense in H). Let us first prove this density in the special case given by the following
theorem.

Theorem 3. Let D0(℘) be the set of all functions u in D(℘) such that u(x, 0) and ut(x, 0) vanish
in the neighborhood of t = 0. If for G ∈ L2(D) and for all u in D0(℘), we have

(Lu, G)L2(D) = 0, (7)

then G vanishes almost everywhere in D.

Proof of Theorem 3. Define the function: h(x, t) =
∫ T

t G(x, τ)dτ, and let ytt be the
solution of

R(σ, t)
∫ µ

x
(x− ξ)ytt(ξ, t)dξ = h(x, t), (8)

where σ ∈ (0, µ). Let y = 0, if 0 ≤ t ≤ s, and y =
∫ t

s (t− τ)yττdτ, if s ≤ t ≤ T, where s is
any arbitrary fixed number in [0, T]. It is obvious that y ∈ Ds(℘) = {y ∈ D(℘)/y = 0 for
t ≤ s} ⊆ D0(℘), and has a high order of smoothness. We can infer from above that

G(x, t) = ∂/∂t
(

R(σ, t)
∫ µ

x
(ξ − x)ytt(ξ, t)dξ

)
. (9)

Hence the following lemma which can be proved as in Ref. [11].

Lemma 2. The function G defined by (9) is in L2(D).
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Upon substitution of (9) into (7) and then carrying out all integrations by parts and
using the poincare type inequality

‖y‖2
L2(Ds)

≤4T2‖yt‖2
L2(Ds)

,

we obtain ∥∥∥∥∫ µ

x
ytt(ξ, s)dξ

∥∥∥∥2

L2(0,µ)
+ ‖ytt(., s)‖2

L2(0,µ) + ‖yt(., T)‖2
L2(0,µ)

≤ K∗
(∥∥∥∥∫ µ

x
ytt(ξ, t)dξ

∥∥∥∥2

L2(Ds)
+ ‖ytt‖2

L2(Ds)
+ ‖yt‖2

L2(Ds)

)
, (10)

where

K∗ = 2
max(δR2, (R1 + R2), R0 A∗B∗)

R0 min(1, δ, R0)
,

and

A∗ =
4R1R2

2
R3

0
+

R2
1 + R2

2 + R2
3 + 4R1R2

R0
+

4T2[(R2
2 + R2

4 + R2
5
)]

R0
,

B∗ = max{k1, k2}.

Now if we introduce the function w(x, t) =
∫ T

t yττdτ, then yt(x, t) = w(x, s)− w(x, t) and
yt(x, T) = w(x, s).

Thus (10) becomes ∥∥∥∥∫ µ

x
ytt(ξ, s)dξ

∥∥∥∥2

L2(0,µ)
+ ‖ytt(., s)‖2

L2(0,µ)+

+(1− 2K∗(T − s))‖w(., s)‖2
L2(0,µ)

≤ 2K∗
(∥∥∥∥∫ µ

x
ytt(ξ, t)dξ

∥∥∥∥2

L2(Ds)
+ ‖ytt‖2

L2(Ds)
+ ‖w‖2

L2(Ds)

)
. (11)

If we let 0 ≤ (1− 2K∗(T − s0)) ≤ 1
2 , it follows then from (11) that∥∥∥∥∫ µ

x
ytt(ξ, s)dξ

∥∥∥∥2

L2(0,µ)
+ ‖ytt(., s)‖2

L2(0,µ) + ‖w(., s)‖2
L2(0,µ)

≤ 4K∗
(∥∥∥∥∫ µ

x
ytt(ξ, t)dξ

∥∥∥∥2

L2(Ds)
+ ‖ytt‖2

L2(Ds)
+ ‖w‖2

L2(Ds)

)
, (12)

which holds for all s ∈ [T − s0, T], where s0 = 1/4K∗.
Application of Gronwall’s lemma to (12) leads to∥∥∥∥∫ µ

x
ytt(ξ, s)dξ

∥∥∥∥2

L2(0,µ)
+ ‖ytt(., s)‖2

L2(0,µ) + ‖w(., s)‖2
L2(0,µ) ≤ 0, for all s ∈ [T − s0, T],

from which it follows that G = 0, a.e in DT−s0 = (0, µ)× [T − s0, T]. Proceeding in this
way step by step along rectangles of length s0, we shall exhaust the whole rectangle
D = (0, µ)× (0, T), hence, we prove that G = 0 almost everywhere in D. To finish the
proof of Theorem 2, we let H = (g, H1, H2) ∈ H to be orthogonal to any element of the
range R(℘) of ℘, that is, such that

(℘u,H)H = (Lu, g)L2(D) + (`1u, H1)L2(0,µ) + (`2u, H2)L2(0,µ) = 0, (13)
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for all u ∈ D(℘). That is, we must show that H = (g, H1, H2) = 0. If we put u ∈ D0(℘)
into (13), we have

(Lu, g)L2(D) = 0, u ∈ D0(℘). (14)

Applying Theorem 5 to (14), it follows that g = 0. Here, (13) then takes the form

(`1u, H1)L2(0,µ) + (`2u, H2)L2(0,µ) = 0, for all u ∈ D(℘). (15)

However, since the sets R(`1) and R(`2) are dense in the space L2(0, µ), then the relation
(15) implies that H1 = 0 and H2 = 0. HenceH = (g, H1, H2) = 0 and thus R(℘) = H. This
completes the proof of Theorem 2.

5. Solvability of the Nonlinear Problem

To establish the existence and uniqueness of the weak solution of the nonlinear prob-
lem (1), we need to use the above results concerning the associated linear problem. For the
nonlinear problem (1), we apply an iterative process based on the obtained results of the
linear problem, we establish the existence and uniqueness of its weak solution.

Let us now consider the following auxiliary problem with homogeneous equation
LZ = Ztt − (R(x, t)Zx)x − δZttxx = 0,
`1Z = Z(x, 0) = H1(x), x ∈ (0, µ),
`2Z = Zt(x, 0) = H2(x), x ∈ (0, µ),

Z(0, t) = 0, t ∈ (0, T),∫ µ
0 xZ(x, t)dx = 0, t ∈ (0, T)

(16)

If u is a solution of problem (1) and Z is a solution of problem (16), then θ = u− Z satisfies
the problem 

Lθ = θtt − (R(x, t)θx)x − δθttxx = F(x, t, θ),
θ(x, 0) = 0, θt(x, 0) = 0, x ∈ (0, µ),∫ µ

0 xθ(x, t)dx = 0, θ(0, t) = 0, t ∈ (0, T),
(17)

where F(x, t, θ) = g(x, t, θ + Z). The function F satisfies the condition

|F(x, t, u1)− F(x, t, u2)| ≤ d(|u1 − u2|), (18)

for all (x, t) ∈ D.
According to Theorem 2, problem (16) has a unique solution that depends continu-

ously on H1, H2 ∈ L2(0, µ). We turn back to solve the problem (17). We shall prove that
problem (17) has a unique weak solution.

First let
Σ(D) =

{
v ∈ C1(D) : vtx, vtxx, vttx, vttxx ∈ C(D)

}
.

Assume that v, θ ∈ Σ(D), v(x, T) = 0, v(x, 0) = 0, vt(x, 0) = 0, vt(x, T) = 0, v(µ, t) = 0,
θ(x, 0) = θt(x, 0) = 0 and

∫ µ
0 xv(x, t)dx = 0,

∫ µ
0 xθ(x, t)dx = 0. For v ∈ Σ(D), we

observe that

−(Lθ,Jx(ρv))L2(D) = −(θtt − (R(x, t)θx)x − δθttxx,Jx(ρv))L2(D)

= −(θtt,Jx(ρv))L2(D) + ((R(x, t)θx)x,Jx(ρv))L2(D)

+(δθttxx,Jx(ρv))L2(D)

= −(F,Jx(ρv))L2(D), (19)

where Jx(ρz) =
∫ µ

x ξz(ξ, t)dξ.
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By using the above conditions on v and θ, a quick computation of each term on the
right and left-hand sides of (19), gives

−(θtt,Jx(ρv))L2(D) =
∫
D

θtJx(ρvt)dtdx

= −(vt,Jxθt)L2
ρ(D), (20)

((R(x, t)θx)x,Jx(ρv))L2(D)

= (R(x, t)v, θx)L2
ρ(D), (21)

(δθttxx,Jx(ρv))L2(D) = δ
∫ T

0

∫ µ

0
θttxxvdxdt = −δ

∫ µ

0

∫ T

0
θtxxvtdxdt

= δ
∫ µ

0
θtx(x, T)xv(x, T)dx− δ

∫ µ

0
θtx(x, 0)xv(x, 0)dx− δ(vt, θtx)L2

ρ(D)

= −δ(vt, θtx)L2
ρ(D), (22)

−(F,Jx(ρv))L2(D) =
∫ T

0
[(Jx(F(ξ, t, θ).Jx(ρv)]µ0 dt +

∫ T

0

∫ µ

0
Jx(F(ξ, t, θ)xvdxdt

= (Jx(F), v)L2
ρ(D). (23)

Insertion of (20)–(23) into (19) yields

−(vt,Jxθt)L2
ρ(D) + (R(x, t)v, θx)L2

ρ(D) − δ(vt, θtx)L2
ρ(D)

= (v,Jx(F))L2
ρ(D). (24)

If we make the notation

H(v, θ) = −(vt,Jxθt)L2
ρ(D) + (R(x, t)v, θx)L2

ρ(D) − δ(vt, θtx)L2
ρ(D),

then we have

H(v, θ) = (v,Jx(F))L2
ρ(D). (25)

Hence, we have the definition

Definition 1. A function θ ∈ L2(D) is called a weak solution of problem (17) if (25) holds and
θ(0, t) = 0.

Theorem 4. Suppose that condition (18) holds, and that d < η1√
η2T

e−
η2
η1

T
2 , then problem (17), has

a weak solution belonging to L2(D).

Proof. We first consider the iterated problems
θ
(n)
tt − (R(x, t)θ(n)x )x − δθ

(n)
ttxx = F(x, t, θ(n−1)),

θ(n)(x, 0) = 0, θ
(n)
t (x, 0) = 0,

θ(n)(0, t) = 0,
∫ µ

0 xθ(n)(x, t)dx = 0,

(26)

where
(

θ(n)
)

n∈N
is the constructed iteration sequence starting with first element θ(0) = 0.

Given the elements θ(n−1), for n = 1, 2, . . . , then solve problems (26). Theorem 2 asserts
that for fixed n, each problem (26) has a unique solution θ(n)(x, t).
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Theorem 5. Now, consider the new problem
U(n)

tt − (R(x, t)U(n)
x )x − δU(n)

ttxx = σ(n−1)(x, t),
U(n)(x, 0) = 0, U(n)

t (x, 0) = 0,
U(n)(0, t) = 0,

∫ µ
0 xU(n)(x, t)dx = 0,

(27)

with
U(n)(x, t) = θ(n+1)(x, t)− θ(n)(x, t),

and where

σ(n−1)(x, t) = F(x, t, θ(n))− F(x, t, θ(n−1)).

Lemma 3. Assume that condition (18) holds, then for the linearized problem (27), we have the a
priori estimate

Proof of Lemma 3. ∥∥∥U(n)
∥∥∥

H1(0,T;L2(0,µ))
≤ η

∥∥∥U(n−1)
∥∥∥

H1(0,T;L2(0,µ))
, (28)

where η is a positive constant given by

η =
d
√

η2T
η1

e
η2
η1

T
2 , (29)

with

η1 = min
{

R0

2
,

δ

2

}
,

and

η2 = max
{

R2 + R3

2
,

R3µ2

4
+

5µ4

24

}
.

Taking the inner product in L2(Dτ), with 0 ≤ τ ≤ T, of the differential equation in (27) and
the integro-differential operator

NU =
∫ µ

x
(x− ζ)U(n)

t (ξ, t)dξ,

we have

(U(n)
tt − (R(x, t)U(n)

x )x − δU(n)
ttxx, xJxU(n)

t −Jx(ζU(n)
t ))L2(Dτ)

= (σ(n−1)(x, t), xJxU(n)
t −Jx(ζU(n)

t ))L2(Dτ)
.

Then

(U(n)
tt , xJxU(n)

t )L2(Dτ)
− ((R(x, t)U(n)

x )x, xJxU(n)
t )L2(Dτ)

− δ(U(n)
ttxx, xJxU(n)

t )L2(Dτ)

−(U(n)
tt ,Jx(ζU(n)

t ))L2(Dτ)
+ ((R(x, t)U(n)

x )x,Jx(ζU(n)
t ))L2(Dτ)

+ δ(U(n)
ttxx,Jx(ζU(n)

t ))L2(Dτ)

= (σ(n−1)(x, t), xJxU(n)
t )L2(Dτ)

− (σ(n−1)(x, t),Jx(ζU(n)
t ))L2(Dτ)

. (30)

In light of the boundary conditions in (27), successive integrations by parts of each term
of (30) lead to
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(U(n)
tt , xJxU(n)

t )L2(Dτ)

=
∫ τ

0

∫ µ

0
Jx

(
U(n)

tt

)
JxU(n)

t dxdt−
∫ τ

0

∫ µ

0
Jx

(
U(n)

tt

)
xU(n)

t dxdt

=
1
2

∥∥∥Jx

(
U(n)

t (x, τ)
)∥∥∥2

L2(0,µ)
− (Jx

(
U(n)

tt

)
, U(n)

t )L2
ρ(Dτ)

, (31)

−((R(x, t)U(n)
x )x, xJxU(n)

t )L2(Dτ)

=
1
2

∥∥∥∥√R(., τ)U(n)(., τ)

∥∥∥∥2

L2(0,µ)
− 1

2

∥∥∥∥√Rt(., t)U(n)
∥∥∥∥2

L2(Dτ)

−(Rx(x, t)U(n),JxU(n)
t )

L2(Dτ )
− (R(x, t)U(n)

x , U(n)
t )

L2ρ(Dτ )
, (32)

−δ(U(n)
ttxx, xJxU(n)

t )L2(Dτ)
=

δ

2

∥∥∥U(n)
t (., τ)

∥∥∥2

L2(0,µ)
− δ(U(n)

ttx , U(n)
t )Lρ

2(Dτ)
, (33)

−(U(n)
tt ,Jx(ζU(n)

t ))L2(Dτ)
=
(
JxU(n)

tt , U(n)
t

)
Lρ

2(Dτ)
, (34)

((R(x, t)U(n)
x )x,Jx(ζU(n)

t ))L2(Dτ)
= (R(x, t)U(n)

x , U(n)
t )L2

ρ(Dτ)
, (35)

δ(U(n)
ttxx,Jx(ζU(n)

t ))L2(Dτ)
= δ(U(n)

ttx , U(n)
t )L2

ρ(Dτ)
, (36)

The right-hand side of (30) can be estimated as

(σ(n−1)(x, t), xJxU(n)
t )L2(Dτ)

=
∫ τ

0

∫ µ

0
σ(n−1)xJxU(n)

t dxdt

≤ 1
2

∫ τ

0

∫ µ

0

∣∣∣σ(n−1)
∣∣∣2dxdt +

µ

2

∫ τ

0

∫ µ

0

∣∣∣√xJxU(n)
t

∣∣∣2dxdt

≤ 1
2

∫ τ

0

∫ µ

0

∣∣∣F(x, t, θ(n))− F(x, t, θ(n−1))
∣∣∣2dxdt +

µ

2

∫ τ

0

∥∥∥JxU(n)
t

∥∥∥2

L2
ρ(0,µ)

dt

≤ d2

2

∫ τ

0

∫ µ

0

∣∣∣θ(n) − θ(n−1)
∣∣∣2dxdt +

µ

2

∫ τ

0

∥∥∥JxU(n)
t

∥∥∥2

L2
ρ(0,µ)

dt

≤ d2

2

∫ τ

0

∥∥∥U(n−1)
∥∥∥2

L2(0,µ)
dt +

µ3

6
.

µ

2

∫ τ

0

∥∥∥U(n)
t

∥∥∥2

L2(0,µ)
dt

=
d2

2

∥∥∥U(n−1)
∥∥∥2

L2(Dτ)
+

µ4

12

∥∥∥U(n)
t

∥∥∥2

L2(Dτ)
, (37)

−(σ(n−1)(x, t),Jx(ζU(n)
t ))L2(Dτ)

≤
∣∣∣−(σ(n−1)(x, t),Jx(ζU(n)

t ))L2(Dτ)

∣∣∣
≤ 1

2

∥∥∥σ(n−1)
∥∥∥2

L2(Dτ)
+

1
2

∥∥∥Jx(ζU(n)
t )

∥∥∥2

L2(Dτ)

≤ d2

2

∥∥∥U(n−1)
∥∥∥2

L2(Dτ)
+

µ4

8

∫ τ

0

∥∥∥U(n)
t

∥∥∥2

L2(0,µ)
dt

=
d2

2

∥∥∥U(n−1)
∥∥∥2

L2(Dτ)
+

µ4

8

∥∥∥U(n)
t

∥∥∥2

L2(Dτ)
. (38)
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A combination of (31)–(38) and (30), yields

1
2

∥∥∥Jx

(
U(n)

t (x, τ)
)∥∥∥2

L2(0,µ)
+

1
2

∥∥∥∥√R(., τ)U(n)(., τ)

∥∥∥∥2

L2(0,µ)

+
δ

2

∥∥∥U(n)
t (., τ)

∥∥∥2

L2(0,µ)

≤ 1
2

∥∥∥∥√Rt(., t)U(n)
∥∥∥∥2

L2(Dτ)
+ (Rx(x, t)U(n),JxU(n)

t )
L2(Dτ )

+d2
∥∥∥U(n−1)

∥∥∥2

L2(Dτ)
+

5µ4

24

∥∥∥U(n)
t

∥∥∥2

L2(Dτ)
. (39)

By using conditions T1 and T2, Cauchy-ε inequality and the inequality of Poincare type

‖Jx H‖2
L2(Dτ)

≤ µ2

2 ‖H‖2
L2(Dτ)

(See Ref. [11]), inequality (39) reduces to

1
2

∥∥∥Jx

(
U(n)

t (x, τ)
)∥∥∥2

L2(0,µ)
+ η1

(∥∥∥U(n)(., τ)
∥∥∥2

L2(0,µ)
+
∥∥∥U(n)

t (., τ)
∥∥∥2

L2(0,µ)

)
≤ d2

∥∥∥U(n−1)
∥∥∥2

L2(Dτ)
+ η2

(∥∥∥U(n)
∥∥∥2

L2(Dτ)
+
∥∥∥U(n)

t

∥∥∥2

L2(Dτ)

)
, (40)

where {
η1 = min{ R0

2 , δ
2}

η2 = max{ R2+R3
2 , ( R3µ2

4 + 5µ4

24 )}.
(41)

If we discard the first term on the left-hand side of (40), we obtain∥∥∥U(n)(., τ)
∥∥∥2

L2(0,µ)
+
∥∥∥U(n)

t (., τ)
∥∥∥2

L2(0,µ)

≤ d2

η1

∥∥∥U(n−1)
∥∥∥2

L2(Dτ)
+

η2

η1

(∥∥∥U(n)
∥∥∥2

L2(Dτ)
+
∥∥∥U(n)

t

∥∥∥2

L2(Dτ)

)
. (42)

Application of Gronwall’s lemma (Lemma 3.3 [21]) to (42) gives∥∥∥U(n)(., τ)
∥∥∥2

L2(0,µ)
+
∥∥∥U(n)

t (., τ)
∥∥∥2

L2(0,µ)

≤ d2η2

η1
2 e

η2T
η1

∥∥∥U(n−1)
∥∥∥2

L2(D)

d2η2

η1
2 e

η2T
η1

(∥∥∥U(n−1)
∥∥∥2

L2(D)
+
∥∥∥U(n−1)

∥∥∥2

L2(D)

)
. (43)

Integration of both sides of (43) with respect to τ over the interval (0, T), gives the esti-
mate (28), that is ∥∥∥U(n)

∥∥∥
H1(0,T;L2(0,µ))

≤ η
∥∥∥U(n−1)

∥∥∥
H1(0,T;L2(0,µ))

,

where the constant η is given by (29). We continue the proof of Theorem 4. From the criteria

of convergence of series, we see that the series ∑∞
n=1 U(n) converges if

d
√

η2T
η1

e
η2
η1

. T
2 < 1,

that is if d < η1√
η2T

e−
η2
η1

. T
2 .

The sequence (θ(n))n∈N defined by

θ(n)(x, t) =
n−1

∑
k=0

U(k) + θ(0)(x, t)

=
n−1

∑
k=0

θ(k+1)(x, t)− θ(k)(x, t) + θ(0)(x, t), n = 1, 2, . . .
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is convergent to an element θ ∈ H1(0, T; L2(0, µ)), where U(n)(x, t) = θ(n+1)(x, t) −
θ(n)(x, t).

Now to prove that the limit function θ is a solution of the problem under consid-
eration (17), we should show that θ satisfies (25) and that θ(0, t) = 0 as mentioned in
Definition 1.

For problem (26), we have

H(θ(n), v) = (v,JxF(ξ, t, θ(n−1)))L2
ρ(D). (44)

From (44), we have

H(θ(n) − θ, v) + H(θ, v)

= (v,Jx(F(ξ, t, θ(n−1))− F(ξ, t, θ)))L2
ρ(D) + (v,JxF(ξ, t, θ))L2

ρ(D)

= (v,JxF(ξ, t, θ(n−1))−JxF(ξ, t, θ))L2
ρ(D)

+(v,JxF(ξ, t, θ))L2
ρ(D). (45)

From the partial differential equation in (26), we have

(v,
∂2

∂t2Jx(θ
(n) − θ))L2

ρ(D) − (v,Jx(
∂

∂ξ
(R(ξ, t)

∂

∂ξ
(θ(n) − θ)))L2

ρ(D)

−δ(v,
∂2

∂t2Jx(
∂2

∂ξ2 (θ
(n) − θ)))L2

ρ(D)

= H(θ(n) − θ, v). (46)

Integration by parts of each term on the left-hand side of (46), and use of conditions on the
functions v and θ, gives

(v,
∂2

∂t2Jx(θ
(n) − θ))L2

ρ(D)

= −
∫ T

0

∫ µ

0
Jx(ξv)

∂2

∂t2 (θ
(n) − θ)dxdt

=
∫ T

0

∫ µ

0
Jx(ξvt)

∂

∂t
(θ(n) − θ)dxdt

=
∫ µ

0

[
Jx(ξvt)(θ

(n) − θ)
]T

0
dx−

∫ T

0

∫ µ

0
Jx(ξvtt) (θ

(n) − θ)dxdt

= −(Jx(ξvtt), (θ(n) − θ))
L2(D)

, (47)

−(v,Jx(
∂

∂ξ
(R(ξ, t)

∂

∂ξ
(θ(n) − θ)))L2

ρ(D)

=
∫ T

0

∫ µ

0
Jx(ξv)(

∂

∂x
(R(x, t)

∂

∂x
(θ(n) − θ)))dxdt

=
∫ T

0

[
xvR(x, t)(θ(n) − θ))

]x=µ

x=0
dt−

∫ T

0

∫ µ

0
(vR(x, t) + xvxR(x, t) + xvRx(x, t))(θ(n) − θ)dxdt

= −(v, R(x, t))(θ(n) − θ))L2(D) − (xvx, R(x, t))(θ(n) − θ))L2(D) − (xv, Rx(x, t)(θ(n) − θ))L2(D), (48)
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−δ(v,
∂2

∂t2Jx(
∂2

∂ξ2 (θ
(n) − θ)))L2

ρ(D)

= δ
∫ T

0

∫ µ

0
xvt

∂

∂t
Jx(

∂2

∂ξ2 (θ
(n) − θ))dxdt

= δ
∫ T

0

∫ µ

0

(
−
∫ µ

x
ξvttdξ

)
(− ∂2

∂x2 (θ
(n) − θ))dxdt

= −δ
∫ T

0

∫ µ

0
(xvtt)(

∂

∂x
(θ(n) − θ))dxdt

= δ
∫ T

0

[
xvtt(θ

(n) − θ)
]x=µ

x=0
dt− δ

∫ T

0

∫ µ

0
(vtt + xvxtt)(θ

(n) − θ)dxdt

= −δ(vtt, (θ(n) − θ))L2(D) − δ(xvxtt, (θ(n) − θ))L2(D). (49)

Combination of equalities (46)–(49) yields

H(θ(n) − θ, v) = −(Jx(ξvtt), (θ(n) − θ))
L2(D)

−(v, R(x, t))(θ(n) − θ))L2(D) − (xvx, R(x, t))(θ(n) − θ))L2(D)

−(xv, Rx(x, t)(θ(n) − θ))L2(D)

−δ(vtt, (θ(n) − θ))L2(D) − δ(xvxtt, (θ(n) − θ))L2(D). (50)

We apply Cauchy–Schwarz inequality to the terms on the right-hand side of (50) as follows

−(Jx(ξvtt), (θ(n) − θ))
L2(D)

≤ ‖Jx(ξvtt)‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)

≤ µ2

2
‖vtt‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)
, (51)

−(v, R(x, t))(θ(n) − θ))L2(D) − (xvx, R(x, t))(θ(n) − θ))L2(D) − (xv, Rx(x, t)(θ(n) − θ))L2(D)

≤ (R1 + µR3)‖v‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)
+ µR1‖vx‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)
, (52)

−δ(vtt, (θ(n) − θ))L2(D) − δ(xvxtt, (θ(n) − θ))L2(D)

≤ δ‖vtt‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)
+ δµ ‖vxtt‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)
, (53)

Substitution of (51)–(53) into (50) gives the inequality

H(θ(n) − θ, v)

≤ (R1 + µR3)‖v‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)

+µR1‖vx‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)

+(
µ2

2
+ δ)‖vtt‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)

+δµ‖vxtt‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)

≤ c(‖v‖L2(D) + ‖vx‖L2(D) + ‖vtt‖L2(D) + ‖vxtt‖L2(D))
∥∥∥θ(n) − θ

∥∥∥
L2(D)

. (54)
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On the other hand, we have

(v,JxF(ξ, t, θ(n−1))−JxF(ξ, t, θ))L2
ρ(D)

≤ µ ‖v‖L2(D)

∥∥∥JxF(ξ, t, θ(n−1))−JxF(ξ, t, θ)
∥∥∥

L2(D)

≤ µ2
√

2
‖v‖L2(D)

∥∥∥F(ξ, t, θ(n−1))− F(ξ, t, θ)
∥∥∥

L2(D)

≤ dµ2
√

2
‖v‖L2(D)

∥∥∥θ(n) − θ
∥∥∥

L2(D)
. (55)

Taking into account (54) and (55), and passing to the limit in (45) as n→ ∞, we obtain

H(θ, v) = (v,JxF)L2
ρ(D).

Now since θ ∈ H1(0, T; L2(0, µ)), then
∫ t

0 θ(x, ν)dν ∈ C(D), and we conclude that
θ(0, t) = 0.

6. Uniqueness of Solution for the Nonlinear Case

Theorem 6. If condition (18) is satisfied, then the solution of problem (17) is unique.

Proof. Suppose that θ1, θ2 ∈ H1(0, T; L2(0, µ)) are two solutions of (17), then U = θ1 − θ2
satisfies 

Utt − (R(x, t)Ux)x − δUttxx = σ(x, t)
U(x, 0) = 0, Ut(x, 0) = 0,

U(0, t) = 0,
∫ µ

0 xU(x, t)dx = 0.
(56)

where
σ(x, t) = F(x, t, θ1)− F(x, t, θ2).

Taking the inner product in L2(D) of the differential operator

NU = Utt − (R(x, t)Ux)x − δUttxx

and the integro-differential operator

JU = xJxUt −J ∗x (ζUt),

and following the same procedure done in establishing the proof of Lemma 3, we have

‖U‖H1(0,T;L2(0,µ)) ≤ η‖U‖H1(0,T;L2(0,µ)), (57)

where

η =
d
√

η2T
η1

e
η2
η1

. T
2 ,

with

η1 = min{R0

2
,

δ

2
}, η2 = max{R2 + R3

2
, (

R3µ2

4
+

5µ4

24
)}.

Since η < 1, it follows from (57) that

(1− η)‖U‖H1(0,T;L2(0,µ)) = 0. (58)

From the last inequality (58), we deduce that U = θ1 − θ2 = 0, which implies that
θ1 = θ2 ∈ H1(0, T; L2(0, µ)). Hence the uniqueness of the solution of problem (17).
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7. Conclusions

The primary focus of this paper lies in the investigation and solvability of an initial
boundary value problem for a semi-linear pseudo-hyperbolic equation. The problem is
subject to both a Dirichlet condition and an integral condition. Through rigorous analysis,
the existence, uniqueness, and continuous dependence of a strong solution for the spec-
ified initial boundary problem have been ascertained. In terms of the associated linear
problem, the uniqueness of its generalized solution has been substantiated based on an
a priori energy inequality and the application of the Gronwall–Bellman Lemma. Further,
it is demonstrated that the operator range generated by the considered problem is dense,
thereby confirming the problem’s solvability. For the nonlinear counterpart of the prob-
lem, an iterative process is employed. This iterative methodology leverages the results
previously obtained for the associated linear problem to affirm both the existence and
uniqueness of the solution for the nonlinear problem under consideration. Thus, this paper
contributes to the mathematical framework for solving complex initial boundary value
problems with non-local constraints, offering robust solutions that are both unique and
continuously dependent on the initial conditions.
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