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Abstract: Healthcare cost is an issue of concern right now. While many complex machine learning
algorithms have been proposed to analyze healthcare cost and address the shortcomings of linear
regression and reliance on expert analyses, these algorithms do not take into account whether each
characteristic variable contained in the healthcare data has a positive effect on predicting healthcare
cost. This paper uses hybrid machine learning algorithms to predict healthcare cost. First, network
structure learning algorithms (a score-based algorithm, constraint-based algorithm, and hybrid
algorithm) for a Conditional Gaussian Bayesian Network (CGBN) are used to learn the isolated
characteristic variables in healthcare data without changing the data properties (i.e., discrete or
continuous). Then, the isolated characteristic variables are removed from the original data and the
remaining data used to train regression algorithms. Two public healthcare datasets are used to test
the performance of the proposed hybrid machine learning algorithm model. Experiments show that
when compared to popular single machine learning algorithms (Long Short Term Memory, Random
Forest, etc.) the proposed scheme can obtain similar or higher prediction accuracy with a reduced
amount of data.

Keywords: healthcare costs; CGBN; regression algorithm; hybrid algorithm

MSC: 68T09

1. Introduction

With the birth of various advanced medical technologies, the safety of human life
has been greatly guaranteed; however, this brings with it larger medical expenses, which
represent a great challenge for many patients [1]. Data collected by the Centers for Medicare
and Medicaid Services shows that the U.S. spent a larger share of its gross domestic product
on healthcare in 2018, increasing by 4.6% from the previous year [2]. Nonetheless, even
very large healthcare expenditures may not provide appropriate and affordable healthcare
for patients [3]. If the healthcare expenditures can be foreseen in advance, more precise
services and treatments can be provided to patients. Thus, predicting healthcare costs
can provide protection for patients while assisting healthcare organizations, e.g., drug
manufacturers.

Currently, the study of healthcare costs is receiving attention from many researchers.
For example, Kharat [4] used descriptive statistics to study the trend of chronic kidney
disease in diabetic and non-diabetic patients from 2002 to 2016 and combined it with the
associated quality of life to derive the healthcare expenditure of the patients. Yassine [5]
used a cross-sectional study to analyze the healthcare expenditures of Moroccan basic
health insurers from 2009 to 2014. Zhang studied data on the medical expenditures of lung
cancer patients in thirteen provinces in China from 2002 to 2011, deducing that medical and
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chemotherapy fees were the main factors that increased patients’ healthcare cost [6]. Ma [7]
collected data on the healthcare expenditures of selected middle-aged and elderly people in
Beijing and analyzed the collected data using chi-square tests, t-tests, multivariate analysis,
and linear regressions. Gong collected data on the healthcare expenditures of hemophiliacs
from China’s national insurance database from 2014 to 2016, compared the healthcare cost of
employees and residents using the Kolmogorov–Smirnov test, and finally speculated on the
factors affecting the healthcare expenditures of hemophiliacs using quantile regression [8].
Yang [9] collected data on medical expenditures of strabismus patients in the First Affiliated
Hospital of Harbin Medical University, China and analyzed anesthesia as a major factor
influencing medical expenditure of strabismus patients. Wang used Markov and two-part
models to analyze healthcare expenditure for the elderly in China from 2011 to 2015 and
make predictions about healthcare expenditures for the elderly in China from 2020 to
2060 [10]. Han [11] collected data from the 2018 Peking University Chinese Household
Panel Study, used a Heckman sample selection model to analyze the data, and speculated
on the extent to which the internet influences personal healthcare expenditures.

The above literature shows good results obtained in the study of healthcare expendi-
ture; however, research in this area requires a large amount of data and extensive expert
experience, and the algorithms used encounter difficulty when learning the information
contained in the data [2]. With the rapid development of computer technology, researchers
have begun to use complex machine learning algorithms to analyze healthcare expenditures.
For example, Morid [12] used multiple supervised learning algorithms to learn from a large
amount of healthcare cost data and make cost predictions, concluding that artificial neural
networks can realize superior performance in the prediction of healthcare costs. Kaushik
analyzed time-series healthcare cost data using LSTM (Long Short-Term Memory), CNN
(Convolutional Neural Network), and Ensemble Learning to predict the average weekly
spending of patients on two pain medications [13–15]. Yang [16] used machine learning
algorithms to predict future healthcare expenditures and analyze the temporal correlation
of patients’ healthcare expenditures, concluding that more historical data leads to better
predictive performance on the part of machine learning algorithms. Kuo [17] used machine
learning algorithms such as Support Vector Machine, Logistic Regression, Decision Tree,
and Random Forest to analyze the healthcare expenditure data of spinal fusion patients in
Taiwan from 2021 to 2023 and predict the healthcare expenditures of patients, with Random
Forest showing optimal predictive performance. Zeng [18] built a multi-layer self-attention
model to learn the relationship between medical codes and medical visits in order to pre-
dict future medical expenditures and diseases. The above studies have obtained better
results in predicting healthcare cost; however, most of them focus on time-series healthcare
expenditure data and require a large amount of data and expertly selected characteristic
variables. Meanwhile, many researchers are using advanced single algorithms and expert
experience to obtain high prediction accuracy with little consideration of the need to reduce
data dimensionality. Irrelevant characteristic variables may represent a kind of “noise”
in the dataset that can affect the prediction accuracy of the prediction model. This paper
studies non-temporal and small amounts of data that contain partial information (age,
gender, previous disease history, etc.) about each individual. More importantly, it focuses
on identifying irrelevant characteristic variables in healthcare cost data as a way to reduce
the amount of data and the amount of time required by the regression model to analyze the
data while improving the prediction accuracy of regression models, an approach that has
received little attention from researchers.

2. Related Work

Currently, researchers are using CGBN to study healthcare expenditures. For example,
Wang [19] used CGBN to analyze data on the healthcare expenditures of lung cancer
patients in Taiwan and predict healthcare expenditures based on different disease levels of
lung cancer patients. In addition, researchers have used CGBN in other fields of research;
for example, Hu [20] used CGBN to process seismic data with a mixture of discrete and
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continuous variables, then applied CGBN to the prediction of earthquakes in Canterbury
from 2010 to 2011; the experimental results showed that the prediction performance of
CGBN was better than that of algorithms such as neural networks and support vector
machine. Liu in [21] used CGBN to mine gene loci for carotenoid components of maize,
finding that CGBN exhibited better performance than other algorithms in the experiment.
In this paper, CGBN is used to learn isolated feature variables (variables that do not affect
the target variable) from healthcare expenditure data, then regression algorithms are used
to learn the data with the isolated variables removed. CGBN plays a key role in filtering
data (reducing the amount of data) in the research presented in this paper.

3. Prediction Model

In this paper, CGBN is combined with regression algorithms to form hybrid machine
learning models used to predict healthcare cost. First, the multiple structural learning
algorithms of CGBN are used to learn the information in the dataset in order to build
multiple network structures. Then, the number of occurrences of each isolated node in all
network structures is counted and the feature variables corresponding to the isolated nodes
with the highest number of occurrences are removed from the original dataset. Finally,
the regression algorithms are used to learn the processed data and make predictions.
The workflow block diagram of the proposed prediction model is shown in Figure 1. The
modules in the dotted box in Figure 1 are the steps in which the hybrid machine learning
model analyses and processes the data. The processing of the Analysis Module in Figure 1
is shown in Figure 2. The dots in the left three boxes of Figure 2 represent isolated nodes
learned by network structure algorithms. Next, the structure learning algorithms used to
construct the CGBN are presented.

Figure 1. Block diagram of the workflow of the hybrid algorithm model.

Figure 2. Block diagram of the workflow of the analysis module.
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3.1. Network Structure Learning Algorithm

The attributes of the feature variables (continuous or discrete) are not changed when
constructing the CGBN, which does not result in the loss of information in the dataset.
In addition, the network structure of the CGBN has the following rules:

1. The nodes corresponding to discrete variables can only have nodes constructed by
discrete variables as their parents.

2. The nodes corresponding to continuous variables can have either nodes constructed
by discrete variables or nodes constructed by continuous variables as their parents.

Based on the properties of CGBN, in this paper we select two commonly used algo-
rithms from each network structure algorithm to learn the network structure. Next, all
network structure learning algorithms used in this paper are introduced in turn.

3.1.1. Score-Based Algorithms

In this paper, two score-based algorithms (the Hill Climbing and Tabu algorithms) for
learning network structures are used. The BIC (Bayesian Information Criterion) algorithm
for evaluating the structure of the network constructed by the Hill Climbing algorithm and
the Tabu algorithm is

Score(G, D) =
kD

∑
i=1

(logP(vi|pa(vi))−
dvi

2
logN) +

kC

∑
j=1

(log f (vj|pa(vj))−
dvj

2
logN) (1)

where D is the dataset, G is the directed acyclic graph, N is the number of data, P(·) is the
conditional probability, f (·) is the probability density function, dvi and dvj are the number of
network node parameters, kD is the number of discrete network nodes, kC is the number of
continuous network nodes, pa(vi) and pa(vj) are the parents of vi and vj, respectively, and
vi and vj are network nodes, where vi, vj ∈ V = {v1, v2, . . . , vn}, kD + kC = n (with n being
the total number of nodes or the number of feature variables), and V is the set of network
nodes. The first term on the right side of the equation represents the formula for calculating
the scores of the nodes corresponding to discrete variables, while the second term represents
the formula for calculating the scores of the nodes corresponding to continuous variables.
It is worth noting that when there are nodes of discrete variables in the parent nodes of
continuous variables, the expression for the second term on the right side of the equation
can be further expressed as follows:

kC

∑
j=1

(log f (vj|pa(vj))−
dvj

2
logN) =

kC

∑
j=1

( ∑
c∈vd

log f (vj|vd = c, pa(vj 6=d))−
dvj ,c

2
logN) (2)

where vd (discrete variable) represents the parent of node vj, c is the value of node vd,
and dvj ,c is the number of network node parameters. Next, the fundamentals of the Hill
Climbing algorithm and Tabu algorithm are introduced.

The basic principle of both the Tabu and Hill Climbing (HC) algorithms is to start the
search from the network structure (usually an empty graph), then add, delete, or reverse
arcs on the network structure until Score(G, D) cannot be improved any more. The Tabu
algorithm overcomes the shortcomings of the HC algorithm to a certain extent, and has a
better ability to learn the network structure [22].

3.1.2. Constraint-Based Algorithms

Two constraint-based network structure learning algorithms (the PC algorithm and
Grow–Shrink algorithm) are used as well. The basic principle of the PC and the Grow–
Shrink (GS) algorithms is to construct a Bayesian network structure using conditional
independent testing. The GS algorithm differs from the PC algorithm in that the GS
algorithm learns the Markov blanket of each node. The conditional independence test is
based on the principle that, given any two nodes vp, vq ∈ V(p 6= q), finding the subset
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VS ⊂ V(vp, vq 6∈ VS) enables the nodes vp, vq to be independent given a subset VS or an arc
that exists between the nodes vp, vq if no subset VS exists. Because CGBNs are established in
this paper, mutual information is used to test the conditional independence between nodes.

3.1.3. Hybrid Algorithms

Two hybrid algorithms (the Max– Min Hill-Climbing (MMHC) and Restricted Maxi-
mization (rsmax2) algorithms) are used to learn the network structure of CGBN. These hy-
brid algorithms combine the benefits of constraint algorithms and score algorithms to learn
the network structure of the CGBN. The MMHC algorithm combines Max–Min Parents
and Children (the MMPC constraint algorithm) and HC score algorithm. First, the MMPC
algorithm learns the candidate parent nodes for each node vm ∈ V to form the set Cm, then
searches for the network structure that maximises the BIC score under the constraints of
the set of parent nodes Cm. In this paper, the combination of rsmax2 is set to be the same
as that of MMHC, with the difference that the rsmax2 algorithm can repeat the network
structure learning process of the MMHC algorithm until convergence.

With all of the network structure learning algorithms for CGBN used in this paper
described above, we next turn to the regression algorithms.

3.2. Regression Algorithms
3.2.1. Linear Regression (LR)

The multiple linear regression algorithm used in the paper is a simple and practical
machine learning algorithm that plays an important role in regression research. LR algo-
rithms continue to occupy an important place in practical research. Taking the i-th instance
as an example, the expression for the LR is

yl,i = w1xi,1 + w2xi,2 + · · ·+ wnxi,n + w0, (3)

where wi 6=0 is the partial regression coefficient, w0 is the constant term, yl,i is the predicted
value, xi,n is the value of the n-th feature variable for the i-th instance, and n is the number
of feature variables.

3.2.2. Support Vector Regression (SVR)

Support Vector Machine algorithms are classical machine learning algorithm that use
appropriate kernel functions (linear kernel function, Gaussian kernel function, sigmoid
kernel function, polynomial kernel function, etc.) and parameters for the analysis of
classification or regression. SVR is a part of Support Vector Machine algorithms, and can
be used for the prediction of continuous data. SVR builds a hyperplane that tries to keep
all sample points from the hyperplane as small as possible. Taking the i-th instance as an
example, the objective function for finding the hyperplane can be described as follows:

min
b,W

||W||2
2

+ B
n

∑
i=1

(ξi + ξi) (4)

ξi =

{
yi − ys,i − ε , yi > ys,i + ε

0 , other
(5)

ξi =

{
ys,i − ε− yi , yi < ys,i − ε

0 , other
(6)

s.t.


yi − ys,i ≤ ε + ξi
ys,i − yi ≤ ε + ξi

ξi, ξi ≥ 0
(7)

ys,i = ws,1xi,1 + ws,2xi,2 + · · ·+ ws,nxi,n + b (8)
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where W = (ws,1, ws,2, . . . , ws,n) is the vector of coefficients, ys,i is the predicted value of the
i-th instance, yi is the true value of the i-th instance. ξi, ξi are the slack variables, B is the
regularisation constant, ε is the tolerance deviation, and b is a constant term. The correlation
algorithm is used to solve the parameters of the above objective function to obtain the
hyperplane of the SVR.

3.2.3. Backpropagation Neural Networks (BPnet)

Based on the superior performance of neural networks and improvements in comput-
ing power, neural networks can approximate the complex nonlinear relationships between
variables. Therefore, neural networks provide better results in regression analysis. The sim-
plest neural network architecture consists of three layers: an input layer, a hidden layer,
and an output layer. In healthcare cost prediction, BPnet first learns the feature information
of patients in the training dataset, then assigns appropriate weights to each feature variable
and establishes the relationship between the feature variables and healthcare cost. Based
on this, information about the characteristics of the patients in the test dataset can be input
into the neural network to predict patients’ healthcare costs.

3.2.4. Random Forest (RF)

RF consists of multiple decision trees, and belongs to he class of ensemble learning in
machine learning. Because RF has better anti-interference ability, many researchers use RF
to perform regression analysis research. The basic principle of RF for regression analysis is
that the subset of data and the subset of features are randomly selected from the healthcare
cost data to build each decision tree of the RF. The test set is input to the trained RF, which
averages all the decision tree outputs to output a prediction.

3.2.5. Long Short-Term Memory (LSTM)

LSTM is a neural network with good ability to handle sequential data. It is an opti-
mization of the RNN (Recursion Neural Network) model, and has the quality features of
RNN. The LSTM structure contains input gates, forgetting gates, and output gates that
determine the loss or preservation of information in the data to achieve forgetting and
remembering, which overcomes the drawbacks of the single memory overlay approach
of RNNs. LSTM currently plays an important role in many research areas, and many
researchers have achieved good results using LSTM to predict healthcare costs.

4. Dataset

The datasets studied in the paper are all mixed datasets containing both discrete
and continuous variables. In order to show the superior performance of the predictive
model, two datasets are used to test the predictive ability of the hybrid model. Both datasets
collected in this paper are from Kaggle. The first dataset is from a health insurance company
and gas 986 instances, each containing ten feature variables and one healthcare cost variable.
A specific description of the first dataset is shown in Table 1. The second dataset has a total
of 1338 instances, each containing six feature variables and one healthcare cost variable.
A specific description of the second dataset is shown in Table 2. There are no missing values
in either dataset. Before analyzing the data, characters in the dataset are replaced with
numerical values (e.g., 1 for male and 0 for female).
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Table 1. Description of the first dataset. × represents that the variable does not have the rele-
vant attribute.

Variable Description Attribute Min Max Mean Standard
Deviation

Age Age of the patient Continuous 18 66 41.75 13.96337

Diabetes
Whether the
patient has

diabetes
Discrete × × × ×

Blood
Pressure
Problems

Whether the
patient has blood
pressure disease

Discrete × × × ×

Any
Transplants

Whether the
patient has
undergone

transplant surgery

Discrete × × × ×

Any Chronic
Diseases

Whether the
patient has any
chronic diseases

Discrete × × × ×

Height Patient height Continuous 145 188 168.2 10.09815

Weight Patient weight Continuous 51 132 76.95 14.2651

Known
Allergiess

Whether the
patient has any

allergies
Discrete × × × ×

History of
Cancer in

Family

Whether there is
any history of
cancer in the

patient’s family

Discrete × × × ×

Number of
Major

Surgeries

The number of
major surgeries
the patient has

undergone

Discrete × × × ×

Charges Healthcare cost Continuous 15,000 40,000 24,337 6248.184

Table 2. Description of the second dataset. × represents that the variable does not have the rele-
vant attribute.

Variable Description Attribute Min Max Mean Standard
Deviation

Age Age of the patient Continuous 18 64 39.21 14.04996

Sex Gender of the
patient Discrete × × × ×

BMI Body Mass Index of
patient Continuous 15.96 53.13 30.66 6.098187

Children

The number of
children covered

under the medical
insurance

Discrete × × × ×

Smoker Whether the patient
is a smoker or not Discrete × × × ×

Region The geographic
region of the patient Discrete × × × ×

Charges Healthcare cost Continuous 1122 63,770 13,270 12,110.01
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5. Evaluation Method

To accurately and effectively test the predictive performance of the proposed model,
MRE (Mean Relative Error), MSE (Mean Square Error), RMSE (Root Mean Square Error),
MAE (Mean Absolute Error), and SMAPE (Symmetric Mean Absolute Percentage Error) are
used to test the model performance, all of which play important roles in regression analysis
in many fields. Below, the expressions for these evaluation methods are provided in turn:

MRE =
∑L

i=1
|yi−yi |

yi

L
(9)

MSE =
∑L

i=1(yi − yi)
2

L
(10)

MAE =
∑L

i=1 |yi − yi|
L

(11)

RMSE =

√
∑L

i=1(yi − yi)2

L
(12)

SMAPE =
∑L

i=1
|yi−yi |

(yi+yi)/2

L
(13)

where L is the number of instances in the test set, yi represents the predicted value, and yi
represents the true value.

6. Experimental Analysis

Rstudio was used to build the hybrid models used to predict healthcare cost; 80%
of the number of instances of the healthcare data were used for the training set and 20%
for the test set. The network structure algorithm for CGBN came from Rstudio’s bnlearn
package, and the LSTM was built using Rstudio’s keras package. The dataset with ten
feature variables and one target variable is defined as dataset A and the dataset with
six feature variables and one target variable as dataset B. For simplicity of description,
the hybrid models built by CGBN with the various regression algorithms are abbreviated
as CGBN + RF, CGBN + SVR, CGBN + BPnet, CGBN + LR, and CGBN + LSTM.

6.1. Dataset A

The three classes of CGBN structure learning algorithm were first used to learn
dataset A. Then, the multiple network structures learned from the CGBN network structure
algorithm were analyzed to obtain isolated nodes. After analysis, there was one isolated
node with the highest number of occurrences in multiple network structures. The results
obtained by the hybrid algorithms after deleting the isolated node corresponding to the
feature variables in dataset A are shown in Figure 3. The single models (e.g. RF, SVR,
etc.) analyzed the original dataset with no reduction in feature variables. Figure 3 shows
the prediction graphs for CGBN + RF, CGBN + SVR, CGBN + BPnet, CGBN + LR, and
CGBN + LSTM. Each graph contains the results predicted by the hybrid model, the results
predicted by the single model, and the true values in Figure 3. As can be seen from Figure 3,
the trend of the prediction curves of the hybrid and single models in Figure 3a,c are very
close to the trend of the true curves, which indicates that CGBN + RF, RF, CGBN + BPnet,
and BPnet have a better prediction ability on dataset A. The prediction curve of CGBN + LR
in Figure 3d almost overlaps with the prediction curve of LR, which indicates that the
prediction ability of CGBN + LR is the same as that of LR in the case of reduced data.
Moreover, Figure 3b,e exhibit better predictive power than Figure 3d. Overall, the prediction
curves of the hybrid models with reduced data volume are similar to those of the single
models, which reflects the reasonableness of the hybrid models.
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In order to better show the performance advantages of the proposed model, MRE,
MSE, RMSE, MAE, and SMAPE were used to evaluate the prediction results of both the
hybrid and single models. The error analysis between the prediction results and the true
values of the hybrid models and single models is shown in Table 3. As can be seen in Table 3,
the error analyses of the various evaluation methods is not necessarily consistent for the
hybrid models and single models. For example, the MRE of CGBN + RF is lower than that
of RF, while the MRSE of CGBN + RF is slightly higher than that of RF. In general, the MRE
better reflects the predictive power of the models in healthcare cost forecasting. As can be
seen from Table 3, CGBN + RF has the lowest MRE, followed by CGBN + BPnet, which
is in line with the trend of the predicted curves in Figure 3a,b. The MRE of CGBN + LR is
essentially the same as that of LR, which is in line with the trend of the predicted curves
in Figure 3d. More importantly, Table 3 shows that the MREs and SMAPEs of the hybrid
models are lower than the MREs and SMAPEs of the corresponding single models in all
cases where the amount of data is reduced, which fully reflects the superior predictive
performance of the hybrid models. MSE, RMSE, and MAE can be inconsistent in their
evaluation of the hybrid models and single models; however, each evaluation algorithm
calculates similar error values for the hybrid and single models, which further reflects
the validity of the hybrid models.
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Figure 3. Predictive results for hybrid and single models; the horizontal axis represents the number
of instances and the vertical axis represents the healthcare cost.
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Table 3. Evaluation results for hybrid and single models.

Model
Method

MRE MAE MSE RMSE SMAPE

CGBN + RF 0.071 1.79 × 103 1.49 × 107 3.86 × 103 0.072

CGBN + SVR 0.113 2.65 × 103 2.15 × 107 4.64 × 103 0.110

CGBN + BPnet 0.074 2.018 × 103 1.98 × 107 4.45 × 103 0.075

CGBN + LR 0.129 3.0865 × 103 2.28 × 107 4.77 × 103 0.127

CGBN + LSTM 0.118 2.83 × 103 2.11 × 107 4.59 × 103 0.119

RF 0.078 1.92 × 103 1.45 × 107 3.80 × 103 0.077

SVR 0.116 2.70 × 103 2.16 × 107 4.65 × 103 0.112

BPnet 0.077 2.047 × 103 1.82 × 107 4.26 × 103 0.078

LR 0.130 3.0869 × 103 2.28 × 107 4.77 × 103 0.127

LSTM 0.123 2.87 × 103 2.08 × 107 4.56 × 103 0.119

6.2. Dataset B

In order to test the generality of the hybrid models, dataset B was analyzed using
the hybrid models. Similarly to dataset A, the three classes of CGBN structure learning
algorithms were used to learn dataset B, then the multiple network structures learned
from the CGBN network structure algorithm were analyzed to obtain isolated nodes.
After analysis, there were two isolated nodes with the highest number of occurrences in
multiple network structures. The prediction results obtained by the hybrid models after
deleting the feature variables in dataset B corresponding to the isolated nodes are shown
in Figure 4. The single models analyzed the original dataset with no reduction in feature
variables. As can be seen from Figure 4, the trend of the prediction curves of the hybrid
and single models in Figure 4b,e are very close to the trend of the true curves, which
suggests that CGBN + SVR, SVR, CGBN + LSTM, and LSTM have better prediction ability
on dataset B. Compared to the prediction curves shown in the other figures, the trends of
the prediction curves of the hybrid and single models in Figure 4d deviate from the trend
of the true curves more, indicating that the prediction performances of CGBN + LR and LR
on dataset B are poor. Similar to the case of Figure 3, the prediction curves of the hybrid
models with reduced data volumes are demonstrated in Figure 4 to be similar to that of the
single models, further demonstrating the superior performance of the hybrid models.

Again, MRE, MSE, RMSE, MAE, and SMAPE were used to evaluate the prediction
results of hybrid models and single models in order to highlight the prediction performance
of each model. The error analysis between the prediction results and the true values of the
hybrid models and single models is shown in Table 4. As can be seen from Table 4, the MRE
of CGBN + SVR is the lowest among the hybrid models and the MRE of LSTM is the
lowest among the single models, which is in line with the trend of the curves in Figure 4b,e.
The MRE of CGBN + LR is the highest among the hybrid models, while the MRE of LR
is the highest among the single models, which indicates that LR cannot analyze dataset
B as well as the other regression algorithms. Although the prediction performance of
CGBN + LSTM is lower than LSTM, the predictive performance of the other hybrid models
is similar to or better than that of the corresponding single models. Overall, the hybrid
models can obtain better prediction results with reduced data volume.
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Figure 4. Predictive results for hybrid and single models. The horizontal axis represents the number
of instances and the vertical axis represents the healthcare cost.

Table 4. Evaluation results for hybrid and single models.

Model
Method

MRE MAE MSE RMSE SMAPE

CGBN + RF 0.27 3.91 × 103 3.57 × 107 5.97 × 103 0.27

CGBN + SVR 0.21 2.60 × 103 2.79 × 107 5.28 × 103 0.22

CGBN + BPnet 0.24 2.86 × 103 2.62 × 107 5.12 × 103 0.25

CGBN + LR 0.32 4.52 × 103 4.34 × 107 6.58 × 103 0.34

CGBN + LSTM 0.25 3.05 × 103 2.81 × 107 5.30 × 103 0.26

RF 0.24 3.28 × 103 2.93 × 107 5.41 × 103 0.25

SVR 0.25 2.91 × 103 2.77 × 107 5.26 × 103 0.26

BPnet 0.24 3.02 × 103 2.73 × 107 5.23 × 103 0.25

LR 0.32 4.46 × 103 4.29 × 107 6.55 × 103 0.34

LSTM 0.19 2.75 × 103 3.03 × 107 5.51 × 103 0.16

Although the addition of the CGBN algorithm increases the complexity of the overall
prediction model, only the network structure learning algorithms of CGBN are used in the
paper. During the experiment, the proposed model spends little computation and time in
processing the data. Meanwhile, the feature variables filtered out by the proposed model
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can provide a reference for staff and facilitate the collection and processing of data which
cannot be done by a single algorithm.

7. Conclusions

This paper proposes combining CGBN with various regression algorithms to form hy-
brid models to predict healthcare costs. First, CGBN network structure learning algorithms
reduce the amount of data in the dataset by deleting irrelevant information, then regression
algorithms are used to learn the rest of the dataset, and finally regression algorithms make
predictions. The predictive performance of the hybrid models was tested separately on
two healthcare cost datasets, with the hybrid models obtaining better predictive results
than the single models. Therefore, the proposed hybrid models can obtain better prediction
performance with reduced data volumes, which can provide a corresponding reference for
related workers and reduce the workload of data collection and processing. Although the
CGBN structure learning algorithms can accurately identify the irrelevant variables in the
dataset, it is difficult for the current CGBN network structure learning algorithms to inde-
pendently learn the legitimate network structure from medical cost data. In future studies,
we intend to optimise the CGBN network structure algorithm in order to enable them
to learn legitimate network structures without relying on expert experience. In addition,
time-series healthcare cost data will be investigated to further improve the applicability of
the hybrid models.
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