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Abstract: Foundation models trained on vast quantities of data have demonstrated impressive per-
formance in capturing complex nonlinear relationships and accurately predicting neuronal responses.
Due to the fact that deep learning neural networks depend on massive amounts of data samples and
high energy consumption, foundation models based on spiking neural networks (SNNs) have the
potential to significantly reduce calculation costs by training on neuromorphic hardware. In this
paper, a visually inspired computational model composed of an SNN and echo state network (ESN)
is proposed for the recognition of optic flow. The visually inspired SNN model serves as a foundation
model that is trained using spike-timing-dependent plasticity (STDP) for extracting core features.
The ESN model makes readout decisions for recognition tasks using the linear regression method.
The results show that STDP can perform similar functions as non-negative matrix decomposition
(NMF), i.e., generating sparse and linear superimposed readouts based on basis flow fields. Once
the foundation model is fully trained from enough input samples, it can considerably reduce the
training samples required for ESN readout learning. Our proposed SNN-based foundation model
facilitates efficient and cost-effective task learning and could also be adapted to new stimuli that are
not included in the training of the foundation model. Moreover, compared with the NMF algorithm,
the foundation model trained using STDP does not need to be retrained during the testing procedure,
contributing to a more efficient computational performance.

Keywords: foundation model; MT-MSTd; STDP; SNN; optic flow
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1. Introduction

Recently, foundation models based on deep artificial neural networks have shown
robust representations of their modeling domain and achieved breakthroughs for accurately
predicting neuronal responses to arbitrary natural images in a visual cortex [1–6]. However,
despite the appearance of deep learning artificial neural networks, which have recently
shown remarkable capability on a broad range of computational tasks, these models require
high energy consumption and need to run on graphics processors that consume many
kilowatts of power [7]. Therefore, brain-inspired algorithmic models and neuromorphic
hardware processors are increasingly emerging and can potentially lead to low-power
intelligent systems for large-scale real-world applications.

Spiking neural networks (SNNs) have attracted significant attention from researchers
across various domains due to their brain-like information processing mechanism. How-
ever, training SNNs directly on neuromorphic hardware remains a significant challenge due
to the non-differentiable nature of the spike-generation function. Amirhossein T. proposed
a method called BP-STDP, which uses the difference between the desired output sequence
and the actual firing sequence for backpropagation [8]. Converting the well-trained rate-
based ANNs to SNNs by directly mapping the connection weights has also been broadly
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studied [9,10]. Zhang et al. demonstrate that both the learning speed and the robustness of
computation accuracy can be significantly improved by applying the biologically inspired
intrinsic plasticity learning scheme into spiking feed-forward neural networks [11,12]. Kim
S. from Seoul National University proposed Spiking-YOLO, which was the first application
of SNNs in object detection, achieving a performance comparable to CNNs with extremely
low power consumption [13]. However, these efforts to improve learning algorithms based
on gradient descent iterations are far from the mechanism of real visual processing in the
brain cortex, with the limitations of single network structure, high computational cost, and
lack of biological plausibility.

It has been known that sparse coding, also known as sparse representation, uses a
small number of elements to represent most or all of the original signals and explains
how the visual cortex achieves efficient encoding and processing of information using a
small number of neurons in an iterative manner. Therefore, modeling SNNs based on visu-
ally inspired information processing is of great significance for improving computational
performance. In 1999, Professor Daniel D. proposed non-negative matrix factorization
(NMF), which enables neural networks to achieve modular recognition of images and has
significant implications for visual cognitive computational models [14]. Some evidence
suggests that its dimensionality reduction and sparsity constraints are an effective form
of population coding [15]. Beyeler M. proposed a hypothesis that the medial superior
temporal region (MSTd) effectively encodes various visual flow patterns from neurons in
the middle temporal region (MT) [16], and the sparse coding process is similar to NMF [17].
Further, an SNN model based on evolved and homomorphic synaptic scaling (STDP-H)
learning rules was proposed and confirmed this hypothesis [18]. This model learns a
compressed and efficient representation of input patterns similar to NMF, thus generating
a receptive field similar to what is observed in the MSTd of monkeys. This suggests that
the observed STDP-H in the neural system may have similar functionality to NMF with
sparse constraints, providing an experimental platform for theoretical mechanisms on how
MSTd efficiently encodes complex visual motion patterns to support robust self-motion
perception.

Neurons in the visual cortex receive optic flow-like input and inherit their speed and
direction preferences to process video sequences of realistic visual scenes. Optic flow can be
used to avoid obstacles and approach goals in novel cluttered environments for animals by
perceiving the heading direction of self-motion and guiding locomotion. Therefore, accurate
recognition of optic flow is crucial for the development of visually based navigation models,
such as the ViSTARS neural model, which was developed to describe neuronal information
processing of the V1, MT, and MSTd areas in the primate visual dorsal pathway [19,20].
In [21], a biologically inspired neural network that learns patterns in optic flow is proposed
based on fuzzy adaptive resonance theory. The paper [22] presented an artificial neural
network that accurately estimates the parameters describing the observer’s self-motion
from MSTd-like optic flow templates. However, how to efficiently recognize the patterns of
optic flow based on spiking neural networks and spike-based learning rules has not been
fully studied yet.

Based on the above-mentioned literature, a visually inspired computational model
inspired by the image processing mechanisms of the primary visual cortex for the recogni-
tion of optic flow is proposed in this paper. The visually inspired SNN model serves as a
foundation model that is trained using spike-timing-dependent plasticity (STDP) on large
amounts of optic flows for extracting core features. The ESN model trained using the linear
regression method makes readout decisions for recognition tasks of optic flow. The results
show that STDP can perform similar functions as non-negative matrix decomposition
(NMF), i.e., generating sparse and linear superimposed readout based on local features,
which is an ideal core/foundation model to accurately reconstruct input stimuli for image
reconstruction. Based on the well-trained core network, ESN can accurately recognize
not only optical flows but also new stimuli such as the grating stimulus. Moreover, ESN
requires significantly less training data than the one without a fully trained core SNN
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model. Compared with the NMF algorithm, the foundation model trained with STDP does
not need to be retrained during the testing procedure for new stimuli, contributing to more
efficient computational performance.

In summary, our main contributions are: (1) a foundation model for the recognition of
optic flow is established based on biologically realistic spiking neural networks and trained
with a neurophysiologically observed learning rule (STDP); (2) the efficiency and necessity
of feature extraction from the foundation model is confirmed from our simulation results.
That is, the computational performance mainly depends on feature extraction instead of
readout training, indicating that learning is a multi-stage feature-extraction process instead
of end-to-end training, as commonly used in neural networks.

2. Materials and Methods

The overall architecture of the model is depicted in Figure 1. There are two sub-
networks: the foundational model of SNN and the decision model of ESN, which are
trained separately. Since it is known that neurons in the MSTd region of the visual cortex
can efficiently recognize firing patterns from neurons in the MT region, here the SNN
model consists of two visual cortical layers, i.e., the MT layer and the MSTd layer. The
input optic flow stimuli are initially processed by a group of MT neurons, which encode the
information into Poisson spike trains. These spike trains are then transmitted to a group of
excitatory spiking neurons representing MSTd. The connection weights from MT to MSTd
are updated using spike-timing-dependent plasticity (STDP) based on large amounts of
optic flow with different patterns to extract the core features of the training dataset. After
training, all core features are saved in the form of MT-MSTd synaptic weights. Then, the
firing rate of the MSTd layer encoding the relative importance of the core’s features to the
current visual input is transformed into an ESN model trained using the linear regression
method, which makes readout decisions to recognize which patterns the input stimuli
belong to. Detailed models are described in the below subsections.

Figure 1. Model architecture. This model consists of three aspects: visual input, foundation model of
the visual cortex, and decision network. The input stimuli to the network are computer-generated
15× 15 pixel arrays representing optic flow. Inputs encode information into Poisson spike trains,
which are then transmitted to the MT layer. The architecture of the MT group is 15× 15× 8, that
of the MSTd group is 8 × 8 × 1, and the Inh group is 8 × 8 × 8. Both MSTd-to-Inh and Inh-to-
MSTd connections follow uniform random connectivity with a 0.1 probability. STDP learning rule is
employed to adjust the network weights from MT to MSTd. ESN consisting of a random reservoir
network and readout layer is trained for making decisions for recognition tasks.

2.1. Visual Input

The input stimuli to the network are computer-generated 15× 15 pixel arrays rep-
resenting optic flow. To simulate the visual motion on the retina caused by an observer
moving in a 3D environment, a motion field model is utilized to generate the optic flow
stimuli. Please refer to the papers [17,23] for details. Using computer-generated data,
we created 6000 samples of optic flow data. Each sample contains input information for
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different directions and velocities, where the values represent the length of the optic flow
vectors. Therefore, when plotting, the information of the 8 directions and velocity is su-
perimposed within a 15× 15 grid. This means that the vectors are converted into values
on the x and y coordinates and added together to obtain the coordinates of the vector
endpoints. The MATLAB function “quiver” can be used to plot the optic flow vector map.
Figure 2 depicts optic flow maps with different patterns that simulate the projection of
three-dimensional coordinates onto the retina as the observer moves in a three-dimensional
world. From the figures, it can be observed how the projection of the three-dimensional
points on the retina changes when the observer moves backward, rotates, and translates in
the three-dimensional world. Input stimuli encode information into Poisson spike trains,
which are then transmitted to a group of excitatory spiking neurons in the MT layer.

Figure 2. Sample plots of visual optic flow to simulate the projection of three-dimensional coordinates
on the retina as the observer moves in the three-dimensional world [17].

2.2. Foundation Model of Spiking Neural Networks

This SNN model focuses on extracting core features of optic flow patterns result-
ing from self-movement. Each optic flow field is processed by MT units that resem-
ble the orientation selectivity of MT neurons, which selectively respond to optic flows
with specific positions, directions, and velocities. Here, the MT layer is composed of
15× 15× 8 = 1800 units, representing the responses to the specified eight directions (45◦,
90◦, 135◦,180◦, 225◦, 270◦, 315◦, 360◦) and one velocity. The population code of local direc-
tion and speed of motion acts as the activity pattern of these 8 units/pixel. All neurons
within the MT layer are isolated and the neural activity is modeled using Izhikevich neu-
rons [24] exhibiting excitatory regular spiking behavior. The input optic flow stimuli are
initially processed by a group of MT neurons, which encode the information into Poisson
spike trains. The average pixel value of input determines the mean firing rate of spike
trains. These spike trains are then transmitted to the MSTd layer. The MSTd group contains
64 isolated Izhikevich neurons corresponding to 64 core features. The weight connections
from MT to MSTd follow a Gaussian distribution, in which close neurons have a higher
probability of connectivity and higher initial connection weights. Additionally, the MSTd
group projects to a set of inhibitory neurons (Inh), providing feedback inhibition to regulate
network activity. The inhibitory group has 512 neurons. The population size of MT is
15× 15× 8, that of MST is 8× 8× 1, and that of the inhibitory group is 8× 8× 8. Both
MSTd-to-Inh and Inh-to-MSTd connections follow uniform random connectivity with a
0.1 probability [25]. The detailed models for the Izhikevich neuron and synapses are as
follows:

dV(t)
dt

= 0.04V(t)2 + 5V(t) + 140−U(t) + Isyn(t) (1)

dU(t)
dt

= a(bV(t)−U(t)) (2)

if V > Vcuto f f , then
{

V = c
U = U + d

(3)

where V and U represent membrane potential and membrane recovery variables, respec-
tively. Isyn is the external synaptic current, the membrane potential V has an mv scale,
and time has a ms scale. The parameters a, b, c, d in (2) and (3) are set as a = 0.02, b = 0.2,
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c = −65, d = 8 or a = 0.1, b = 0.2, c = −65, d = 2, representing regular-spiking (RS)
neurons (excitatory neurons) or fast-spiking (FS) neurons (inhibitory neurons). Here, we
use the conductance-based description for synaptic models, which calculates the synaptic
current using complex conductance equations for each synaptic receptor type. AMPA
and NMDA are excitatory synaptic connection types. GABAA and GABAB are inhibitory
synaptic connection types.

ie = iNMDA + iAMPA
ii = iGABAA + iGABAB

(4)

The total current Isyn can be expanded to:

isyn =− gAMPA(v− vrev
AMPA)− gNMDA

[ v+80
60
]2

1 +
[ v+80

60
]2 (v− vrev

NMDA)

− gGABAa(v− vrev
GABAA

)− gGABAB(v− vrev
GABAB

)

(5)

where g and vrev are specific to a particular ion channel or receptor. The synaptic con-
ductance g obeys the exponential decay and changes when presynaptic spikes arrive.

dgr(t)
dt

= − 1
τr

gr(t) + w ∑
i

δ(t− ti) (6)

where δ is the Dirac delta function, and r is the receptor type (AMPA, NMDA, GABAa,
GABAb). ti is the presynaptic spikes arrival time [24].

Since topological structure enhances temporal-spatial processing ability and biological
plausibility, the training of the synaptic matrix W from MT to MSTd directly affects the
effectiveness of feature extraction of the foundation model. In this paper, all connections
in SNN are plastic, whose weight values are modulated by the heterosynaptic STDP
(STDP-H) to optimize the learning rule parameters based on an evolutionary algorithm, as
proposed in [18]. Simulations were conducted using the CARLSim SNN simulator platform
https://github.com/UCI-CARL/CARLsim6 (accessed on 1 March 2022) [26,27].

The model of STDP-H can be described as follows [18]:

dwi,j

dt
= [

hom eostasis︷ ︸︸ ︷
α · wi,j(1− R/Rt arg et) +

STDP︷ ︸︸ ︷
β(LTPi,j + LTDi,j)] · K (7)

Equation (7) describes the cumulative impact of STDP-H on a specific synapse wi,j that
connects the presynaptic neuron i and the postsynaptic neuron j. Equation (7) consists
of two key components. The first component pertains to homeostatic scaling, which is
determined by the ratio of the average firing rate R to the target firing rate Rt arg et of neuron
j. Homeostatic scaling modulates the rate of synaptic weight changes, reducing it when the
neuron is excessively active and increasing it when the neuron is too inactive. The second
component in Equation (7) deals with spike-timing-dependent plasticity (STDP [28], encom-
passing both long-term potentiation (LTP) and long-term depression (LTD). STDP adjusts
the strength of synaptic connections based on the timing of spikes between presynaptic
and postsynaptic neurons. Specific details can be found in reference [18].

For STDP learning, parameter optimization was performed with the Parameter Tuning
Interface in CARLsim 6, which used the Evolutionary Computations in JAVA library
(ECJ) [29]. By leveraging the parallel execution capabilities provided by CARLsim, the
computations were distributed among GPU and CPU cores, resulting in a significant
acceleration of the simulation process. ECJ was used to evolve suitable parameters for
STDP learning. It automatically constructs multiple independent individuals based on
the network structure and selects the best-adapted parameters according to evaluation
rules. During learning, the input data were shuffled. A portion of the samples was used for
training to adjust the MT-to-MST connection weights. The remaining samples were used
for testing and parameter evaluation. Each sample ran for 0.5 s before stopping the Poisson

https://github.com/UCI-CARL/CARLsim6
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process for spike generation. An additional 0.5 s of idle time was added between samples
to allow neuronal voltages to decay without affecting subsequent inputs. The evaluation
metric was the correlation coefficient between the input and reconstructed samples.

f itness =
∑
m

∑
n
(Amn − Ā)(Bmn − B̄)√

∑
m

∑
n
(Amn − Ā)∑

m
∑
n
(Bmn − B̄)

(8)

The correlation coefficient is calculated as: Ā and B̄ are the column-wise mean values of
matrices A and B, respectively. A is the test samples from the input data, and B is the
product of the MT-to-MST connection weight matrix W and the MST neuronal firing rate
matrix H. The ECJ parameters were configured with adjustment ranges as mentioned
in [25]. Each iteration evaluated 15 network individuals, and after 100 iterations the best
fitness of 72.66% was achieved. The 18 parameters corresponding to the highest fitness
network were selected as the adapted parameters.

2.3. Decision Model of Echo State Network

Based on the above well-trained foundation SNN model, all core features are saved in
the form of MT-MSTd synaptic weights. Then, the firing rates of MSTd neurons encoding
the relative importance of the core features to the current visual input are transferred
to the readout decision model. In this paper, an echo state network (ESN) proposed by
Jaeger [30–32] is utilized as the decision model. It consists of a random sparse network
(reservoir) and one readout layer. The reservoir acts as an information processing medium,
which maps the low-dimensional input signal to the high-dimensional state space.

Specifically, we have the following weight matrices: Win, Wres, Wback, and Wout. Win
signifies the weight matrix governing connections from the input layer to the reservoir,
Wres represents the internal weight matrix regulating connections within the reservoir, and
Wback is responsible for feedback connections from the output layer to the reservoir. Lastly,
Wout corresponds to the weight matrix that manages connections from the reservoir to the
output layer. In terms of variables, we use u(n) to denote the network input at time n,
x(n) signifies the state vector representing the network’s reservoir, and y(n) represents the
network’s output.

The updated reservoir status is calculated according to Formula (9) and the network
output is calculated according to the following Formula (10) :

x(n + 1) = f (Winu(n + 1) + Wresx(n) + Wbacky(n)) (9)

y(n + 1) = fout(Wout[x(n + 1)|u(n + 1)] (10)

where f (•) is the activation function of the neuron of the network reservoir. f (•) can be
typically defined as a sigmoid or tanh function [33], and f out(•) represents the output
function of the output layer neurons. In ESN, Win, Wres, and Wback are randomly generated
before training and no longer adjusted. Wout is the only matrix that needs to be learned.
Algorithms such as the ridge regression algorithm are used to learn Wout.

There are 500 units in the reservoir network. Only synaptic weights from the readout
layer to the reservoir are updated using the linear regression method and connections
within the reservoir are randomly generated. Furthermore, the connection weights in the
foundation model of SNN are also frozen and unchanged during the readout training
process. This ESN model for recognition tasks makes readout decisions to recognize
which patterns of the input stimuli belong. The ESN network structure parameters for this
experiment are shown in Table 1.
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Table 1. Key parameters of ESN model.

ESN Parameters Values

Reservoir Sparsity (SP) 0.5

Displacement Scale (IS) 1

Input Unit Scale (IC) 1

Spectral Radius (SR) 0.85

Reservoir Activation Function (f) Tanh

Output Unit Activation Function ( fout) 1

Regularization Coefficient (λ) 1 × 10−3

3. Results

The proposed model framework, as shown in Figure 1, consists of three aspects: input
layer, feature extraction in the foundation model of the visual cortex, and decision layer.
First, optic flow data V are encoded as spike sequences using Poisson frequency encoding,
serving as the input to the MT-group neurons in the SNN model. Synaptic weights from
MT to MSTd are saved in the W matrix, and the firing frequency of the MSTd group is
represented as the H matrix. The STDP learning rule is employed to adjust the network
parameters, aiming to reconstruct the original optic flow data V with the W × H matrix
and automatically optimize the network by evaluating the reconstruction performance at
each iteration. Finally, the effectiveness of the foundation SNN model is validated through
image recognition of the optic flow and grating stimulus by training the ESN model. The
pseudo-code is as follows (Algorithm 1):

Algorithm 1: A visually inspired computational model for recognition of optic flow

1 Step 1: Foundation model of SNN
2 for each optic flow data do
3 Encode input optic flow into Poisson spike trains
4 Adjust MT-MSTd weight connections W with STDP-H learning
5 Compute MSTd firing rates H
6 Reconstruct input data V to verify the efficiency of feature extraction using

V ≈W × H
7 Step 2: Decision model of ESN
8 for each Hi do
9 Initialize synaptic weights randomly

10 Use ridge regression algorithm to obtain Wout while keeping the other weights
fixed

11 Achieve recognition for optic flow

3.1. Feature Extraction of SNN Model

Non-negative matrix factorization (NMF) is known for its key feature of feature
extraction by decomposing data into linear combinations of different local features [14,34].
This algorithm is a sparse decomposition processing with dimensional reduction, which
has been previously shown to be capable of mimicking a wide range of monkey MSTd
visual response properties [15,17]. The input stimuli can be accurately reconstructed from a
linear superposition of the sparse, parts-based features regarded as basis flow fields (see
Figure 3a). Considering the columns of an input matrix V with a set of samples, these data
can be linearly decomposed as V ≈ W × H, where the columns of the matrix W contain
the basis feature vectors of the decomposition and the rows of H contain the corresponding
coefficients that give the contribution of each basis vector. In NMF, the basis functions W
and the corresponding coefficient vector H are obtained simultaneously in one calculation.
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Although the basis matrix W obtained in NMF can be considered the synaptic weights of a
population of simulated neurons in a neural network, both the W and H matrices need to
be retrained every time a new sample is added to the input matrix V, that is, all of the data
must be re-decomposed.

Figure 3. Decomposition and reconstruction of optic flow from NMF (a) and STDP learning (b). Vi

is a single sample. Basis flow fields are shown in an 8× 8 MT-MSTd weight matrix W, which is
visualized using the population vector decoding method. H is a grayscale image containing weight
information of core features. Input optic flow V can be reconstructed from a sparse activation of
model MSTd neurons, i.e., V ≈ W × H. The optic flow of each square in the basis matrix W is
different, indicating that the features are separated and contain the local features of the original data.
By multiplying the coefficient matrix H, the features in W are combined to reconstruct the original
data. Therefore, the coefficient matrix H contains the weight of each local feature and can represent
the original data for classification verification.

Recent studies have shown that the SNN model can learn efficient representations and
reconstructions of the input patterns similar to that emerging from NMF [18]. Therefore,
we adopt SNN with STDP learning to achieve feature extraction of optic flow. Figure 3b
demonstrates that a set of basis flow fields (shown in an 8× 8 MT-MSTd weight matrix W,
which is visualized as basis flow fields using the population vector decoding method) can
emerge from both NMF and STDP learning, indicating that the core features are successfully
extracted from the original input data. Meanwhile, optic flow fields can be reconstructed
from a sparse firing activation of model MSTd neurons that prefer various orientations of
the basis flow fields. That is, the optic flow input samples V can then be approximated by a
linear superposition of basis flow fields, i.e., V ≈ W × H, which means that the original
1800-dimensional input data V are compressed into a 64-dimension coefficient matrix
H. In this way, sparse coding reduces the overall neural activity necessary to represent
the information. This not only reduces the number of nodes in the MSTd layer but also
improves the learning efficiency of the decision layer.
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Unlike the NMF method, once the connection MT-MSTd weight matrix W is well-
trained, it can be frozen and the parts-based features saved in W can be re-used or shared
for new input stimuli. The coefficient vector H that gives the contribution of each basis
feature for the current input stimuli can be directly obtained through the firing responses of
the MSTd layer. Inputs belonging to the same patterns share similar value distributions of
the H vector, while H coefficients are different for different input patterns. To validate the
effectiveness of this feature-extraction method, an ESN model is used to train the readout
decision layer for the recognition task of optic flow.

3.2. Recognition Performance

Image reconstruction based on feature extraction is shown in Figure 3b, which indi-
cates that good image reconstruction means accurate feature representation of the MSTd
neurons. In order to test the effectiveness of the SNN model, eight categories with different
directions ranging from 0◦ to 360◦ in 45◦ increments are selected from a sample of 6000 MT
optic streams that had previously been generated. As shown in Figure 1, the readout
neurons are divided into eight classes corresponding to the superimposed directions. Each
class included 120 samples, resulting in a total of 960 samples. A fully trained foundation
model has the capability to achieve more diverse parts-based features than the partially
trained foundation model (see Figure 4a). The weight visualization of a fully trained model
demonstrates more distinct and concrete feature extraction compared to the incompletely
trained model. Therefore, we can see from Figure 4b that the fully trained base model sig-
nificantly outperforms the incompletely trained counterpart, contributing to the reduction
in training samples for readout learning.

Furthermore, we conducted a comparative analysis of the classification performance
between the fully trained SNN model and a basic CNN model, as depicted in Figure 4c.
The CNN architecture employed in this paper consists of six layers. The initial layer is the
input layer, which receives data of size 15× 15× 8. Following this is the second layer, a
convolutional layer comprising 16 convolutional kernels of size 3× 3 utilized to extract
features from the input. Subsequently, the third layer is the activation function, employing
the rectified linear unit (ReLU) activation function to introduce non-linear characteristics
and enhance the network’s expressive capability. The fourth layer is a pooling layer,
utilizing a 2× 2 max-pooling operation to reduce the dimensions of the feature maps. Next
is the fully connected output layer containing ten nodes. Finally, through the combination of
a Softmax layer and a classification layer, the network completes its output and transforms
it into a probability distribution for executing the ultimate classification task. Since CNN is
trained end-to-end for all layers, pattern recognition is examined with different numbers of
training data.

Remarkably, we observed that our two-layer SNN model with ESN readout outper-
forms the six-layer CNN throughout the whole experimental process. Note that even when
inputting different pattern samples, retraining for SNN is unnecessary, i.e., the weights
in the SNN model are frozen and only the ESN readout is trained to learn new patterns.
In contrast, the CNN model shows lower classification accuracy, and all layers need to
be end-to-end retrained when new input patterns are added. This result demonstrates
the advantages of our model in terms of low power consumption and high precision of
computation.

Our model not only excels in recognizing visual optic flow (in-domain) but also
accurately recognizes out-of-domain stimuli, such as the sinusoidal grating stimulus [35].
We use the model of the V1 visual cortex proposed in [36] to transfer the stimuli into the
optic flow, as shown in Figure 5a. The left image represents the input grating stimulus,
where v represents the direction of the grating motion. The right image represents the
integrated optic flow. The results demonstrate that the V1 response accurately identifies the
motion direction of the grating stimulus, indicating that the grating stimulus is transformed
into optic flow stimuli and can be used for recognition validation of this model.



Mathematics 2023, 11, 4777 10 of 13

Figure 4. Fully trained foundation model can considerably reduce the training samples required for
recognition tasks during the readout learning. (a) Basis flow fields trained from full or partial input
data. (b) Performance comparison of fully trained or not fully trained foundation models under
different training samples for readout learning. (c) Comparison of classification performance between
a six-layer CNN model and our proposed model on optic flow data.

Based on the above-obtained foundation model trained from the optic flow stimulus,
here the MT-MSTd connection weights in SNN are fixed. Training data from the new
stimulus are only used to fit the readout weights of the ESN model. The recognition
performance for the grating input is shown in Figure 5b. It can be seen that the training
accuracy for the grating stimulus can reach up to 99.85% and the testing accuracy is 99.25%.
This indicates that the foundation SNN model performs exceptionally well in classifying
new stimulus data with no need to retrain the basis features, even when compared to its
performance in recognizing optic flow data. This result reveals that a foundation model
trained from vast quantities of data has remarkable capabilities and generalization in
performing computational tasks.

However, if the grating stimulus is directed and projected to the SNN model without
the processing of the V1 layer, recognition will not succeed. Because the MT layer can
only process orientation-based input, images must be processed with V1 before input to
the MT layer. Preliminary feature extraction for stripe shapes with V1 is also crucial for
image recognition. Therefore, further study considering the V1 and V2 visual cortex as the
foundation model is necessary for expanding its applicability to the recognition of broader
image datasets.
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Figure 5. Recognition performance for grating stimulus. (a) Left: grating motion stimulus sample.
Right: optic flow transformed from the original grating stimuli using V1 visual cortex model proposed
in [36]. (b) Left: Average classification accuracy in each direction. Right: Classification accuracy
with different numbers of grating training samples.

4. Conclusions

We introduce a visually inspired computational model that achieves efficient perfor-
mance in the recognition of optic flow. Here, a foundation model based on SNNs with STDP
learning is shown to be an efficient sparse coding for parts-based representation, where
any flow field could be represented by only a small set of simulated MSTd neurons (H
coefficient) as compared with vast quantities of input samples. The results show that STDP
can perform similar functions as NMF, i.e., generating sparse and linear superimposed
readouts based on basis flow fields. The visually inspired SNN is an ideal core/founda-
tion model to accurately reconstruct input stimuli for image reconstruction. Based on the
well-trained SNN, the readouts can accurately recognize not only optic flow but also new
stimuli such as the grating stimulus. Moreover, the ESN requires significantly less training
data than the one without a fully trained core SNN model.

Our model based on biologically realistic SNNs offers a powerful new approach for the
efficient recognition of visual optic flow, which has the potential to be used in neuromorphic
applications to reduce computations. This study may give insight into the development
of visually based navigation models, brain-inspired robots, and new-generation artificial
intelligence machines.
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