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Abstract: This work considers fractional operators (derivatives and integrals) as surfaces f (x, α)

subject to the function constraints defined by integer operators, which is a mandatory requirement
of any fractional operator definition. In this respect, the problem can be seen as the problem of
generating a surface constrained at some positive integer values of α for fractional derivatives and at
some negative integer values for fractional integrals. This paper shows that by using the Theory of
Functional Connections, all (past, present, and future) fractional operators can be approximated at
a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach
provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined
by infinite series and/or complicated integrals.
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1. Introduction and Motivations

Since a few centuries ago, many distinct definitions of fractional operators have been
introduced [1]. Following the initial Riemann–Liouville definition in 1645 [2,3], several
other definitions appeared. To mention a few different definitions, we have: Weyl [4],
Caputo [5], Caputo–Fabrizio [6], Canavati [7], Riesz [8], Hilfer [9], Erdélyi–Kober [10],
Jumarie [11], Atangana–Baleanu [12], Davidson–Essex [13], Yang [14], Miller—Ross [15],
Marchaud [16], Hadamard [17], Osler [18], Cossar [19], Sonin—Letnikov [1], Coimbra [20],
Katugampola [21], Hilfer–Katugampola [22], and Grünwald–Letnikov [23]. The number of
distinct fractional operators is becoming so large that the need to classify them on subsets
has been studied [24].

Integer operators acting on a function f (x) are local operators (the value can be
computed using only knowledge of the values of f (x) in an arbitrarily small neighborhood
around x), while fractional operators are typically introduced as non-local operators (the
value provided depends on the domain definition or on the definition of an initial point).
The fractional operators so-far introduced are derived as the extension of some specific
mathematical definition with the hope that it is supposed valid also for fractional operators
of any order. For example, the definition of the Riemann–Liouville fractional operators
comes from the Cauchy formula for repeated integration, while the definition of the
Grünwald–Letnikov comes from the limit of finite differences. Unfortunately, the existing
fractional operators also depend on the selection of an initial point, and this generates
continuity issues at that point. How can this loss of continuity be justified?

Calculus is mainly based on the concepts of two operators: the derivative and its
inverse, the anti-derivative. Based on the anti-derivative, definite, indefinite integrals
can be derived. The integer operators have a clear and known geometrical meaning.
By contrast, the geometrical meaning of all fractional operators so-far introduced is still
questionable. To give some examples, ref. [25] has provided the geometrical interpretation
using a new specific definition of fractional derivatives; ref. [26] has shown that for the
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Riemann–Liouville derivatives, a connection with infinite jet bundles, the interpretation
given by [27] is restricted to polynomial functions only; meanwhile the interpretation
for [28] is based on the four concepts of fractal geometry, linear filters, construction of a
Cantor set, and physical realization of fractional operators.

The proliferation of fractional operator definitions has generated confusion, ambiguity,
and uncertainty among users, with consequent delayed research and disinterest in the
subject. The main reason is: the user should know which one suits the problem he wants to
solve. An answer to this question requires knowing all existing formulations, their ranges
of definition, and their assumptions. What if the user’s domain of application does not
match with any of the fractional operators’ existing domains? Or what if the problem
under analysis does not suggest the selection of an initial point, which is often required
by the various formulations? In addition, to implement the existing fractional operators,
the computation of complicated integrals and/or infinite series, such as the Mittag–Leffler
function [29,30], is needed. Closed-form expressions of fractional operators do exist but
just for a very small subset of basic functions and for some specific formulations only [31].

However, despite these difficulties, the number of applications of fractional calculus
is slowly increasing and is touching many science and engineering problems [32]. On
the other hand, no specific reason exists to support that the equations governing physical
problems must involve integer operators only. This article is based on the fundamental
constraint of any fractional operator: it must provide the expression given by the integer
operator when the fractional operator variable becomes an integer. Therefore, due to the
flourishing of applications involving fractional operators, this article aims to provide an
approximate, flexible, and easy mathematical tool that can be used for any function with no
mathematical and/or computational issues for users. This is done by facing the problem of
fractional operators from an interpolation point of view. Specifically, the interpolation tool
used is the one provided by the Theory of Functional Connections (TFC) [33–36].

Using TFC, the set of constraints defined by integer derivatives and/or integrals are
(1) analytically satisfied and (2) all possible functions interpolating the constraints can
be obtained. This implies that the proposed method can be used to simulate all possible
fractional operators. Specifically, these approximations are obtained using the flexibility of
orthogonal polynomials and the power of least-squares. However, different minimization
techniques and different ways to expand the free function by, for instance, using neural
networks [37,38], can also be successfully used. Basically, the purpose of this article is to
provide a simple and practical approach for anyone interested in exploring the infinite
possibilities offered by morphing integer operators between consecutive values: that is, by
the infinite continuous transitions between the well-known integer operators—transitions
that are explored using a tool, the TFC [33–36], able to provide all of these infinite transitions.

To summarize: the main contribution of this article consists of providing a functional
interpolation tool (TFC) to derive all possible continuous variations between continuous
integer derivatives and/or integrals. This includes the continuous variations provided by
the existing fractional operators. Using the same mathematical tool, this article provides
all continuous functions fitting discrete series and all continuous surfaces fitting series
of functions.

1.1. Notations

In this article, F α[ f (x)] indicates a generic fractional derivative (if α > 0) or an-
tiderivative (if α < 0) applied to the function f (x). The approximated function obtained
by TFC is indicated by the surface f (x, α) where the additional variable (α) retains the

meaning of the fractional operator variable. This means that f (x, 0) ≡ f (x), f (x, 3) ≡ d3 f
dx3 ,

f (x,−1) ≡
∫

f (x, 0) dx is the anti-derivative of f (x), and f x
a (x,−1) ≡

∫
a

f (τ, 0) dτ is the

indefinite integral of f (x) with the initial point a.
Function f (x, α) identifies a surface constrained by the boundary conditions f (x, k),

where k ∈ Z, indicating the integer derivatives and/or anti-derivatives in the range of
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interest. Note that additional boundary conditions can be easily added to the problem
under analysis. For example, for trigonometric functions, the integer derivative periodicity
is described by the relative constraint f (x, k) = f (x, k + 4), where k ∈ Z. One can even
propose extending this periodicity to f (x, α) = f (x, α+ 4), where α ∈ R (a false relationship
for the existing fractional operators), to obtain a periodicity for any α.

This proposed approach is not a new mathematical definition of fractional operators
but just an interpretation of the fractional operators from the interpolation point of view.
The proposed approach has the advantage of providing a continuous, simple, and practical
tool to explore the infinite surfaces connecting integer operators.

The resulting surface f (x, α) provided by TFC is called the constrained expression and
should actually be indicated as f

(
x, α, g(x, α)

)
because it is a functional: i.e., a function of

the free function, g(x, α). By spanning all possible free functions g(x, α), this functional
describes all possible surfaces analytically satisfying the assigned boundary constraints.
The resulting consequence is: in theory, any possible distinct fractional operator can
be analytically replaced by a constrained expression using a specific free function. To
numerically implement this proposed method, the specific free function is estimated by
fitting the data provided by the fractional operator under consideration, F α[ f (x)], by least-
squares using the constrained expression. For example, the last section of this article shows
the highly accurate approximation of the Mittag–Leffler function, which is extensively used
to compute fractional operators [39,40].

In addition, this article includes the following mathematical tools:

• Switching functions for integers: Since fractional operators have all constraints spec-
ified for α ∈ Z, a closed-form of switching functions analytically satisfying the switch-
ing function property φi(j) = δij is developed for integers. These switching functions
are computed by avoiding matrix inversion and are valid for any series of real numbers.
This set of switching functions is called “Lagrangian switching functions” because
their expressions coincide with the multiplicative terms of Lagrange polynomials [41].

• Continuous description of integer and function sequences: The capability of gener-
ating closed-form switching functions for integers provides us the capability to use
TFC to generate all functions interpolating any numbers sequence and all surfaces
interpolating any function sequence. The example of interpolating the Γ(α) function
in the α ∈ [0, 6] range is provided.

Finally, the accuracy of the proposed approach is validated by estimating (by least-
squares) the constrained expression of the Mittag–Leffler function [29,30]. The reasons
for this selection are (1) the boundary continuity issues affecting the existing fractional
operators are in conflict with any fitting method using smooth functions, (2) the Mittag–
Leffler function has no discontinuities and is a key function to compute closed-form
expressions of fractional operators [31,42], (3) the Mittag–Leffler function has a variety of
other applications [30], and (4) because it is a complicate function to evaluate, expressed by
infinite series of a Γ(·) function.

1.2. Brief Background on the Theory of Functional Connections

The Theory of Functional Connections (TFC), introduced in the seminal paper [33],
performs analytical functional interpolation, which is a generalization of interpolation. The
TFC derives analytical expressions with embedded constraints; these expressions describe
all possible functions satisfying a set of constraints. This new mathematical framework
has been extended to multivariate domains and to a wide class of constraints, including
points, functions, integer and fractional derivatives/integrals, limits, components, and any
linear combination of these. Applications are found in constrained optimization problems,
as these functionals collapse the whole function space to just the subspace fully satisfying
the constraints where the solution is located. By transforming a constrained optimiza-
tion problem into an unconstrained one, the solution can be then obtained with simpler,
faster, more robust, and more accurate methods. The application areas of TFC optimiza-
tion include differential equations [35,36,43], homotopy continuation [44], quadratic and
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nonlinear programming [45], boundary geodesic problems [46], machine learning [37,38],
vector spaces [47], space object monitoring [48], optimal control [49,50], and fractional
operators [51–53], just to mention the most relevant.

The univariate version of TFC can be obtained by either one of these two functionals,
called ‘constrained expressions’ [54]:

f
(
x, g(x)

)
= g(x) +

n

∑
j=1

ηj
(
x, g(x)

)
sj(x)

f
(
x, g(x)

)
= g(x) +

n

∑
j=1

φj
(
x, s(x)

)
ρj
(
x, g(x)

)
,

where n is the number of constraints, g(x) is the free function, sj(x) is a set of n user-
defined linearly independent support functions, ηj

(
x, g(x)

)
are coefficient functionals, φj(x)

are switching functions (they are 1 when evaluated at the constraint’s coordinate they are
referring to and 0 when any other constraint is satisfied), and ρj

(
x, g(x)

)
are projection

functionals representing the constraints written in terms of the free function. The complete
explanation and the properties of the support, switching, and free functions as well as of
the coefficient and projection functionals can be found in [43,54].

This article highlights the flexibility of these functionals not only to perform inter-
polation in the context of fractional operators but also to obtain continuous functions
interpolating integer sequences and continuous surfaces interpolating function sequences.

2. Examples of Applications

In this section, three examples are given to show how to derive the constrained
expressions to obtain continuous surfaces subject to integer derivatives and integrals. Three
important features of these functionals are:

1. They are local operators;
2. They can be expressed in terms of orthogonal polynomials (rather than infinite series

or nasty integrals);
3. The approximation accuracy they usually provide is close to machine error.

The first example considers the functional interpolation problem of an assigned func-
tion with its first derivative and anti-derivative.

2.1. Function, First Derivative, and Anti-Derivative Example

Let us consider the function f (x, 0) = sin x + x cos x, its first derivative f (x,+1), and
its anti-derivative f (x,−1). Using the surface notation f (x, α), these three constraints are

f (x, 0) = f (x) = sin x + x cos x
f (x,+1) = 2 cos x− x sin x
f (x,−1) = x sin x.

(1)

TFC has shown that all surfaces interpolating the constraint functions given in Equation (1)
can be represented by the functional

f
(

x, α, g(x, α)
)
= g(x, α) +

+1

∑
k=−1

φk(α) ρk(x), (2)

where g(x, α) is the free function and where the expressions of the projection functionals are
ρ−1(x) = f (x,−1)− g(x,−1)
ρ0(x) = f (x, 0)− g(x, 0)
ρ+1(x) = f (x, 1)− g(x, 1).
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To derive the switching functions φk(α), three linearly independent support functions must
be selected. Using monomials as support functions, {1, α, α2}, the switching functions can
be expressed as φk(α) = c1k + c2k α + c3k α2. The resulting expressions are (see [33–36])

φ−1(α) =
1
2
(α− 1)α

φ0(α) = 1− α2

φ+1(α) =
1
2
(α + 1)α,

satisfying the switching functions property φi(j) = δij.
The two surfaces shown in Figure 1 are two examples of how Equation (2) interpolates

these constraint functions (shown in red): the function f (x, 0), its derivative f (x,+1), and
its anti-derivative f (x,−1).

Figure 1. Two distinct surfaces obtained using two distinct expressions of the g(x, α) free function
and interpolating the function with its derivative and anti-derivative provided in Equation (1).

These two surfaces are obtained using the two distinct free functions g(x, α) = 0 (left
figure) and g(x, α) = sin(2x) sin(2πα) (right figure). This example shows that distinct free
functions provide distinct surfaces while analytically satisfying the constraint functions.
By spanning all possible free functions, all possible surfaces fully satisfying the three
constraints can be obtained.

In theory, there is a specific expression of the free function g(x, α) that makes the
constrained expression analytically equivalent to a given fractional operator. In practice,
however, this equivalency can be obtained at an approximated level of accuracy only,
especially because fractional operators are affected by continuity problems at the bound of
their definition domains.

2.2. Quadratic Polynomial Example

An n-degree polynomial has all its integer derivatives greater than n identically zeros.
A trivial example is a quadratic polynomial:

f (x, 0) = ax2 + bx + c
f (x, 1) = 2ax + b
f (x, 2) = 2a
f (x, k) = 0 for k ≥ 3.
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These four functions represent four constraints. However, the f (x, α) surface interpolating
this quadratic polynomial can also include the constraint

∂ f (x, α)

∂α

∣∣∣∣
α=3

= 0,

imposing reaching the third derivative with zero slope. Using monomials as support
functions,

{
1, α, α2, α3, α4}, the corresponding switching functions for these five con-

straints are 

φ0(α) = 1− 13
6

α +
29
18

α2 − 1
2

α3 +
1

18
α4

φ1(α) =
9
2

α− 21
4

α2 + 2 α3 − 1
4

α4

φ2(α) = −
9
2

α +
15
2

α2 − 7
2

α3 +
1
2

α4

φ3(α) =
13
6

α− 139
36

α2 + 2 α3 − 11
36

α4

φ4(α) = −α +
11
6

α2 − α3 +
1
6

α4,

and the constrained expression is

f0
(

x, α, g(x, α)
)
= g(x, α) +

2

∑
k=0

φk(α)
[

f (x, k)− g(x, k)
]
− φ3(α) g(x, 3)− φ4(α) gα(x, 3),

which is a functional valid for α ∈ [0, 3] and where gα(x, 3) =
∂g(x, α)

∂α

∣∣∣∣
α=3

= 0. To extend

this constrained expression to α > 3, this equation can be multiplied by H(3− α), where
H(·) is the Heaviside function:

f
(
x, α, g(x, α)

)
= H(3− α) f0

(
x, α, g(x, α)

)
.

2.3. Trigonometric Function Example

If a function has periodic integer derivatives, f (x, k) = f (x, k + p), where p ∈ Z is the
derivative periodicity, then it is possible to simulate an α fractional derivatives periodic
with the same period. For example, for the “sin x” function, the constraints are

f (x, 0) = f (x, 4) = − f (x, 2) = sin x and f (x, 1) = − f (x, 3) = cos x. (3)

In addition, the C1 continuity in the α coordinate can be obtained by adding the relative constraint

fα(x, 0) = fα(x, 4). (4)

Using the support functions {1, α, α2, α3, α4, sin α}, the switching functions shown in
Figure 2 are obtained. This figure highlights the mechanism of the switching functions: at
the coordinate of a constraint, one switching function is one, while all the others are zero.

The constrained expression, satisfying the constraints given in Equations (3) and (4), is

f
(

x, α, g(x, α)
)
= g(x, α) +φ0(α)

[
sin x− g(x, 0)

]
+ φ1(α)

[
cos x− g(x, 1)

]
+

+φ2(α)
[
− sin x− g(x, 2)

]
+ φ3(α)

[
− cos x− g(x, 3)

]
+

+φ4(α)
[

sin x− g(x, 4)
]
+ φ5(α)

[
gα(x, 4)− gα(x, 0)

]
.

(5)

The left plot of Figure 3 shows the resulting surface obtained using this constrained expression
using g(x, α) = 0, while the right plot is the surface obtained using g(x, α) = sin(απ/2) cos x.
Again, both surfaces analytically satisfy the constraints given in Equations (3) and (4), high-
lighted in Figure 3 in red.
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Figure 2. Switching functions for f (x) = sin x.

Figure 3. Surfaces interpolating the integer derivatives of sin x using g(x, α) = 0 (left) and using
g(x, α) = sin(απ/2) cos x (right).

The contour difference between these two surfaces is shown in Figure 4. This contour
difference is perfectly zero at the constraint coordinates, where the constrained expression
analytically matches the constraint functions.

Figure 4. Contour plot of the difference obtained using Equation (5) with g(x, α) = 0 and g(x, α) =

sin(απ/2) cos x.
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Figure 5 shows in the top two plots the errors obtained in satisfying the boundary
constraints for g(x, α) = 0 (simple interpolation):

f (x, 0) = f (x, 4) and fα(x, 0) = fα(x, 4),

and the bottom two plots show the boundary constraints for g(x, α) = sin(απ/2) cos x
(functional interpolation):

f
(

x, 0, g(x, 0)
)
= f

(
x, 4, g(x, 4)

)
and fα

(
x, 0, g(x, 0)

)
= fα

(
x, 4, g(x, 4)

)
.

Figure 5. Validation of the errors at bounds using Equation (5) with g(x, α) = 0 and g(x, α) =

sin(απ/2) cos x.

3. Continuous Representations of Any Integer or Function Sequence

In mathematics and computer science, the sequence of integers and functions is an
important subject. While traditional discrete integer sequences have been instrumental for
solving many problems, there exists a class of challenges wherein continuous represen-
tations of them prove to be not only advantageous but often indispensable. This section
shows how to derive these continuous representations by proposing a general method that
enables the transitions from a discrete sequence of integers (or real or complex numbers)
to a set of continuous functions and the transitions from a discrete sequence of functions
to a set of continuous surfaces matching the integer and function sequences, respectively.
By bridging the gap between the discrete and the continuous, a new level of flexibility in
handling a wide spectrum of mathematical and computational problems can be explored.

An existing example is the Γ(x) function: a continuous function interpolating the
sequence of factorials. Since these sequences are often infinite, a closed-form expression of
an infinite set of switching functions is needed to perform functional interpolation.

3.1. Switching Functions for Sequences

Switching functions are derived by selecting n support functions for some n constraints.
In our case, the constraints all occur when α ∈ Z. However, it is possible to derive the
switching functions for a set of n complex values: αi. The property of the switching
functions implies that the function φk(αi) must be zero if αi 6= αk. Therefore, thanks to the
fundamental theorem of algebra,

φk(α) = ck ∏
i 6=k

(α− αi).
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The constant ck can be computed by imposing φk(αk) = 1. Therefore,

φk(α) =

∏
i 6=k

(α− αi)

∏
i 6=k

(αk − αi)
. (6)

These switching functions are nothing else than the coefficient terms of Lagrange polyno-
mials, Ln(α), interpolating the n points, [αk, yk],

Ln(α) =
n

∑
k=1

yk φk(α).

The set of switching functions given by Equation (6) satisfies the following two properties:

Proposition 1. The sum of all switching functions is 1,

n

∑
k=1

φk(α) = 1. (7)

Proof. All φk(α) are polynomials of degree n− 1; therefore, the sum of these polynomials
can be a polynomial of degree n− 1 or lower but not greater. The φk(α) polynomials are

switching functions: therefore, for any i, we have
n

∑
k=1

φk(αi) = 1. Therefore, the polynomial

n

∑
k=1

φk(α)− 1 = 0 has n roots at all the αi 6= αk and at αk. Therefore, the
n

∑
k=1

φk(α) cannot

be a function of α. Since the polynomial
n

∑
k=1

φk(α)− 1 = 0 has n roots, then
n

∑
k=1

φk(α) = 1

must be satisfied for any values of α.

Proposition 2. The switching functions are linearly independent,

n

∑
k=1

ck φk(α) = 0 if and only if all ck = 0,

because the Lagrange coefficients are linearly independent. In addition, it is our conjecture that
the Wronskian of the switching functions matrix is 1: that is, the switching functions matrix
is unimodular.

It is important to outline that the generation of these Lagrange switching functions
does not require any matrix inversion.

3.2. Functional Interpolation of Any Sequence of Numbers and Functions

Using Lagrange switching functions, all continuous functions interpolating any integer
sequence can be obtained. For instance, the functional

f
(
α, g(α)

)
= g(α) +

∞

∑
k=0

φk(α)
[
k!− g(k)

]
, (8)

interpolates the factorials. In theory, by spanning all possible expressions of the free
function g(α), all continuous functions interpolating factorials can be obtained. Specifically,
there exists an expression of the free function that makes this functional approximate the
Γ(α) function. This is done in Section 3.3 at a high accuracy level.
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Similarly, the functional representing all functions interpolating Fibonacci’s sequence is

f
(
α, g(α)

)
= g(α) +

∞

∑
k=1

φk(α)
[
Fk − g(k)

]
, (9)

where the Fibonacci sequence satisfies the recursive relation Fk+1 = Fk + Fk−1. Following
the same logic, this approach can be used to interpolate by continuous functions any
sequence numbers [55]: for instance, the prime numbers [56], the Catalan numbers [57], the
Bell numbers [58], the perfect numbers [59], and the Abundant numbers [60], just to mention
a few. Extensive sequences can be found in the Encyclopedia of Integer Sequences [61] and
are published in the Journal of Integer Sequences [62].

Similarly, this approach can be used to interpolate any function sequences. For instance,
the functional describing all surfaces interpolating Legendre’s orthogonal polynomials is

f
(

x, α, g(x, α)
)
= g(x, α) +

∞

∑
k=0

φk(α)
[
Lk(x)− g(x, k)

]
, (10)

where
Lk+1(x) =

2k + 1
k + 1

x Lk(x)− k
k + 1

Lk−1(x), k = 1, 2, · · ·

is the recursive (Bonnet’s) relation defining the sequence of Legendre’s polynomials, start-
ing with L0(x) = 1 and L1(x) = x.

Since TFC can be applied to any integer and function sequences, the switching func-
tions for natural numbers, φk(α), play an important role for building functionals subject
to integer derivatives and integrals. Note that the set of switching functions adopted for
Equations (8)–(10) is the same.

To quantify the level of accuracy that can be obtained with this TFC approach, the
following subsection provides a least-squares estimate of the free function to approximate
the Γ(α) function using Equation (8).

3.3. Least-Squares Approximation of the Γ(α) Function

The function
Γ(α) =

∫ ∞

0
t α−1 e−t dt, <(α) > 0

is a continuous function interpolating the whole set of factorials Γ(n+ 1) = n!, n ∈ Z+. The
Γ(α) function is not the only function that has this property. There are actually infinitely
many ways to extend the factorials to a continuous function [63], such as the Hadamard
Gamma function H(n) [64], the logarithmic single-inflected factorial function L(n), and
the logarithmic single-inflected hyper-factorial function L∗(n) [65]. However, it has been
proved that the only function satisfying the recurrence relationship

Γ(α + 1) = α Γ(α) (11)

for α ∈ R is the Γ(α) function [66]. For this reason, the Γ(α) function is rightfully considered
the extension to reals of factorials. The recurrence property of Equation (11) makes the Γ(α)
function the building block on which many existing fractional operators have been based.

Restricting the numerical interpolation example to the α ∈ [1, 6] range, a least-squares
optimization problem has been solved using the constrained expression given in Equation (8).
This has been done by expressing g(α) as a linear combination of 19 Legendre orthogonal
polynomials (from L6(α) to L24(α)) since the polynomials from L0(α) to L5(α) are linearly
dependent from the monomials used as support functions to derive the switching functions
given in Equation (6) and used to derive the constrained expression Equation (8).

By discretizing the α range with N = 36 Chebyshev–Gauss–Lobatto points, the results
of this approximation are given in Figure 6. The left figure shows the resulting f (α, g(α))
function, while the right figure shows the L2 errors obtained in approximating the Γ(α + 1)
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function by increasing the number of basic functions adopted to expand the free function.
Using 19 basis functions, the largest absolute error obtained (∼5.6 · 10−14) is close to
the machine-error level with a condition number of the matrix to invert lower than 100,
highlighting the robustness of this least-squares approximation.

It is important to highlight that obtaining a very good approximated expression of the
Γ(α) function using polynomials f (α, g(α)) allows easier further manipulations of it: for
instance, manipulations requiring derivatives and/or integrals.

Figure 6. Error obtained in the least-squares fitting of the Γ(α + 1) function with Equation (8) using
increasing number of basis functions to describe g(α).

4. Least-Squares Approximation with Functional Interpolation

Performing a least-squares fitting of data provided by fractional operators presents
a unique set of challenges. These operators, by their nature, are nonlocal, meaning they
are defined over a specific range and not outside that range. This nonlocality and the
selection of an initial point lead to the generation of boundary discontinuities at the domain
bounds. For example, the Riemann–Liouville fractional operator definition requires the
selection of an initial point, and the function is assumed to be constant before that point.
This assumption generates a C1 discontinuity at the selected point. This problem is partially
solved in the Caputo definition by enforcing that the function is linear before the selected
point. However, this entails a C2 discontinuity at the same location. In the Grünwald–
Letnikov formulation, a discontinuity arises from the truncation of an infinite series. The
presence of discontinuities poses significant hurdles, precluding obtaining high accuracy in
least-squares fitting problems using smooth functions.

Since fractional operators have continuity problems at the edges of the definition
domain, the numerical validation of the proposed functional interpolation method to ap-
proximate fractional operators is numerically applied to the Mittag–Leffler function because
this function is deeply adopted to derive fractional operators [42], because it is a difficult
function to compute (an infinite series expressed in terms of Γ(·) functions), and because it
was used to obtain closed-form expressions of Riemann–Liouville fractional derivatives and
integrals of basic functions [31], such as the exponential and the trigonometry functions.

Functional Approximation of the Mittag–Leffler Function

The Mittag–Leffler function appears in many areas of fractional calculus: for instance,
in the fractional generalization of the heat equation, Lévy flights, superdiffusive transport,
viscoelasticity, and random walks [30]. The two-parameter Mittag–Leffler function [30,42] is
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Ea,b(z) =
∞

∑
k=0

zk

Γ(a k + b)
.

Setting b = 1, z = −x2 and using the surface notation, the one-parameter Mittag–Leffler
function becomes [29,42]

E(a, x) =
∞

∑
k=0

(−x2)k

Γ(a k + 1)
.

One application of this function is to continuously morph between Gaussian and Lorentzian
functions. Specifically, for a = 0 and a = 1, the Mittag–Leffler function converges to

E(x, 0) =
1

1 + x2 and E(x, 1) = e−x2
. (12)

In addition, it is possible to prove that this function also satisfies

E(0, a) = 1 and Ex(0, a) = 0. (13)

Equation (12) represents two constraints at specific values of a, while Equation (13)
represents two constraints at a specific value of x. Using {1, a} as support functions, the
recursive approach of multivariate TFC provides the functional that always satisfies the
constraints given in Equation (12):

f a(x, a, ga(x, a)) = ga(x, a) + (1− a)
[

1
1 + x2 − ga(x, 0)

]
+ a
[
e−x2 − ga(x, 1)

]
, (14)

while when using {1, x} as support functions, the functional always satisfying the con-
straints given in Equation (13) is

f x(x, a, gx(x, a)
)
= gx(x, a) + 1− gx(0, a)− x gx

x(0, a). (15)

The overall constrained expression is obtained by replacing the terms in gx(∗, a) in
Equation (15) with the expressions of the corresponding terms f a(∗, a, ga(∗, a)

)
provided

by Equation (14). Removing all superscripts, the final constrained expression can be written
in a compact way:

f (x, a, g(x, a)) = A(x, a) + B
(
x, a, g(x, a)

)
, (16)

where
A(x, a) =

1− a
1 + x2 + a e−x2

, (17)

represents the surface interpolating the constraints given in Equations (12) and (13) using
the support functions {1, a} and {1, x}, respectively, and

B
(

x, a, g(x, a)
)
= g(x, a)− g(0, a)− xgx(0, a)
−
[
g(x, 0)− g(0, 0)− xgx(0, 0)

]
(1− a)

−
[
g(x, 1)− g(0, 1)− xgx(0, 1)

]
a,

(18)

is the functional representing all surfaces that are not affecting the constraints (already
satisfied by A(x, a)): that is, representing all surfaces that are zeros at the constraints

B
(

x, 0, g(x, 0)
)
= B

(
x, 1, g(x, 1)

)
= B

(
0, a, g(0, a)

)
= Bx

(
0, a, gx(0, a)

)
= 0,

as can be easily verified.
The free function is then estimated by least-squares by expanding it in terms of n

orthogonal surfaces, g(x, α) =
n

∑
k=1

ξk Sk(x, α), where ξk are the unknown coefficients of

the expansion, and the orthogonal surfaces Sk(x, α) = Li(x) Lj(α) are obtained using the
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product of Legendre’s orthogonal polynomials. The results of this optimization are shown
in Figure 7.

The top-left plot of Figure 7 shows the A(x, a) surface: that is, the surface interpolating
the constraints given by Equations (12) and (13) in the (x, a) = [0, 3]× [0, 1] domain. The
difference between A(x, a) and the Mittag–Leffler function (computed using the code
provided in ref. [67]) is given in the top-center figure and shows zero boundary errors
(red lines). This error distribution is also provided by the histogram in the top-right figure,
showing that the function A(x, a) (simple interpolation) is accurate, with a maximum error
lower than 0.03.

The bottom-left plot of Figure 7 shows the surface obtained with Equation (16), which
is obtained by a linear least-squares estimation of the free function g(x, a). The fitting
error of the Mittag–Leffler function is given in the bottom-center figure, while the error
histogram is provided in the bottom-right figure. These last two plots outline the high
accuracy obtained using just 35 orthogonal polynomials and discretizing the domain using
100× 100 Chebyshev–Gauss–Lobatto points.

Figure 7. Results obtained interpolating the Mittag–Leffler function: (1) by the A(x, a) function
(interpolation, top three plots) and (2) by the A(x, a) + B

(
g(x, a)

)
function (functional interpolation,

bottom three plots), where g(x, a) is expanded in terms of orthogonal surfaces and estimated by
linear least-squares.

Expanding the free function using monomials (instead of orthogonal polynomials), the
same optimization tests provided a maximum error lower than 10−7 for the same domain
discretization and 20 monomials. This approach can be applied to approximate any other
continuous smooth complicated functions with boundary constraints. This example shows
that these f (x, α) surfaces provide to the user various practical benefits/features: (1) highly
accurate estimates, (2) functions f (x, α) are continuous (no need to interpolate between
points), (3) computational complexity is low (requiring the evaluation of polynomials),
(4) f (x, α) are local operators, and (5) they allow easier further manipulations (computing
derivatives or integrals of polynomials is trivial).

5. Discussion

The geometrical meaning of fractional operators, derivatives, and integrals is still
questionable. The existing proposed definitions are based on complicated integrals or
infinite series that must be truncated to be used. In addition, these existing fractional
operators are nonlocal, valid for specific domains, and/or require the selection of an initial
point which, in turn, creates continuity issues.



Mathematics 2023, 11, 4772 14 of 16

Any proposed (past, present, and future) fractional operator definition has clear
boundary constraints: it must provide the same expressions provided by the integer
operators (whose geometrical meanings are clear). All different fractional operators, which
are sometimes in contradiction with each other, are subject to these constraints. Based
on this mandatory requirement, this article faces the fractional operators problem from
an interpolation point of view by providing functionals representing all surfaces f (x, α)
subject to the integer operator constraints when α ∈ Z.

The interpolation problem is here performed using the theory of functional connec-
tions [33–36], an analytical theory providing functionals f

(
x, α, g(x, α)

)
representing all

functions interpolating the mentioned integer constraints. The optimization is done by
estimating (by least-squares) the expression of the free functions g(x, α). By doing this, the
transitions between integer operators (derivatives and/or integrals) can be obtained as
smooth continuous surfaces expressed in terms of polynomials.

The flexibility of the proposed methodology has been shown by interpolating a
function with its derivative and anti-derivative. This has been done using f (x, α) = 0
and with f (x, α) = sin(2x) sin(2πα) to show how the free function changes the surface
while fully respecting the integer constraints. Another example shows the capability
to derive all surfaces that are periodic in α for the function sin x. This means satisfying
f
(

x, α, g(x, α)
)
= f

(
x, α+ 4, g(x, α+ 4)

)
for any value of α and for any expression of g(x, α).

This article has also shown that functional interpolation can be used to obtain a
continuous representation of any integer sequence (e.g., the Fibonacci sequence) and any
function sequence (e.g., the Chebyshev orthogonal polynomials). For example, the Γ(α)
function has been approximated at almost machine-error level with just a set of 19 Legendre
orthogonal functions in the range α ∈ [1, 6]. The closed-form expressions of the switching
functions set for integer or function sequences have been derived. These expressions
coincide with the fractional terms of the Lagrange polynomials.

The continuity issues affecting fractional operators at the selected initial point cause
the function itself to lose the class of differentiability at that point. Because of this loss
of smoothness, the least-squares fitting of fractional operator requires the adoption of
non-smooth functions. Therefore, the numerical validation of the proposed approximation
method has been tested on the Mittag–Leffler function; this was performed for additional
reasons also [31]. The resulting approximate expression of the Mittag–Leffle function is pro-
vided at almost machine-error level and with a limited number of orthogonal polynomials.

This functional interpolation method is general and can be applied to provide any tran-
sition surfaces between integer derivative and/or integral constraints. Once the optimiza-
tion of the free function g(x, α) is estimated, then the resulting functional f (x, α, g(x, α)) can
be adopted as a smooth and accurate approximated local model of any fractional operator.
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