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Abstract: Let m and n be fixed positive integers. Suppose that .4 is a von Neumann algebra with no
central summands of type I, and Ly, : A — A is a Lie-type higher derivation. In continuation of
the rigorous and versatile framework for investigating the structure and properties of operators on
Hilbert spaces, more facts are needed to characterize Lie-type higher derivations of von Neumann
algebras with local actions. In the present paper, our main aim is to characterize Lie-type higher
derivations on von Neumann algebras and prove that in cases of zero products, there exists an
additive higher derivation ¢, : A — A and an additive higher map {;, : A — Z(A), which
annihilates every (n — 1)”1 commutator p, (&1, Sy, -+ ,6,) with 616, = 0 such that L,,(&) =
¢m(S) + m(S) forall & € A. We also demonstrate that the result holds true for the case of the
projection product. Further, we discuss some more related results.

Keywords: Lie derivation; multiplicative Lie-type derivation; multiplicative Lie-type higher deriva-
tion; von Neumann algebra

MSC: 47B47; 16W25; 46K15

1. Introduction

One of the mathematical disciplines called von Neumann algebras, pioneered by
John von Neumann, not only plays a pivotal role in advancing pure mathematics but also
finds crucial applications in quantum mechanics, functional analysis and other areas of
theoretical physics, underscoring its enduring relevance and impact on diverse scientific
domains. Let R be a commutative ring with unity, .4 be an algebra over R and Z(.A) be
the center of A. Recall that an R-linear map L : A — A is called a derivation on A if
forall 6, € A, L(6%) = L(6)T + SL(%). An R-linear map L : A — A is called a Lie
derivation (resp. Lie triple derivation) on A if forall §,%, W € A, L([&,%]) = [L(6), %] +
(6, L(T))(resp.L([[6, %], W]) = [[L(&),3], W] + [[6, L(T)], W] + [[6,%], L(V)]), where
[6,%] = 6% — TG is the usual Lie product. Let N be the set of non-negative integers and
D = {du}men be a family of additive mappings d;; : A — A such that dy = id 4, the
identity map on A. Then, D is called

(i) a higher derivation of A if for every m € N, d,,(6%) = ¥ d,(6)ds(%) for all

r+s=m
6,Te A
(ii) a Lie higher derivation of A if for everym € N, d,,([6,%]) = ¥ [d;(6),ds(T)] for all
r+s=m
6,Tec A
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(iii) a triple-higher derivation of A if for every m € N, d,,([[S, ], W]) = ¥ [[d/(6),
r+s+k=m
ds(%)],dy(W)] forall 5, %, W € A.

Abdullaev [1] initiated the study of Lie n-derivations on von Neumann algebras. Define
the sequence of polynomials: p1 (&) = Sand p,(S1,62,- -+ ,6y) = [pr-1(61,62,- -+ ,&,1),
Syl for all n € Z, with n > 2. Here, py(S1,6,,- -+ ,6,) is known as the (n — 1)”’—
commutator. For a fixed positive integer m, an additive (linear) map L;, : A — A s called
a Lie n-higher derivation if

Lin(pn(61, 62, ,6y)) = Z Pn(Lll(Gl)rle(GZ): Tty Ll,z(Gn))
4D+l =m

for all 1,6, ---,6, € A. In particular, by giving different values to n, we obtain
Lie higher derivation, Lie triple-higher derivation and Lie n-higher derivations. These
derivations collectedly are referred to as Lie-type higher derivations. Since the last few
decades, examining the various properties of derivations defined through the well-known
rule given by Leibniz under the influence of various algebraic structures is a vast topic
of study among the algebraists. Bresar [2] characterized an additive Lie derivation as the
sum of a derivation and an additive map on a prime ring R with ch(R) # 2, where ch(R)
denotes the characteristic of R. Johnson [3] worked on Lie derivations on C*-algebras
and proved that every continuous linear Lie derivation from a C*-algebra A into a Banach
A-bimodule M can be written as T + & (i.e., every continuous linear Lie derivation from a
C*-algebra A into a Banach A-bimodule M is standard), where T : A — M is a derivation
and h : A — Z(M) (here, Z(M) denotes the center of M), vanishing at each commutator.
Mathieu and Villena [4] proved that on C*-algebra, every linear Lie derivation is standard.
Qi and Hou [5] worked on nest algebras and proved that the additive Lie derivation of nest
algebras on Banach spaces is standard.

Recent questions involving finding the condition under which a linear map becomes a
Lie derivation or simply a derivation influenced the observations of so many researchers
(see Ashraf et al. [6], Liu [7], Ashraf et al. [8], Ji et al. [9], Qi [10], Qi et al. [11] and the
references therein). The purpose of the above studies in most of cases was to obtain the
restrictions under which Lie derivations or derivations can be completely determined by
the action on some subsets of the algebras. There are several articles on the study of local
actions of the Lie derivations of operator algebras. Lu and Jing [12] proved that for a Banach
space X of dimensions greater than two and a linear map L : B(X') — B(X) such that
L([6,%]) = [L(6),%] + [6,L(%)] forall §,F € B(X) with 6T = 0 (resp. 5T = P, where
1 is a fixed nontrivial idempotent), then there exists an operator 7 € B(X') and a linear
map ¢ : B(X) — CI vanishing at all the commutators [S, ¥] with T = 0( resp. 5% = P)
such that L(&) = TS + ¢(6) for all & € B(X). Ji and Qi [13] proved that if 7 is a
triangular algebra over a commutative ring R, then under certain restrictions on 7, if
L:7T — T is an R-linear map satisfying L([S,%]) = [L(&), V] + [6,L(V)] forall &,% €
T with 6% = 0( resp. 6T = 9, where 9 is the standard idempotent of 7" ), then L = d + ¢,
whered : T — T is a derivation and ¢ : 7 — Z(7T) is an R-linear map vanishing at all
the commutators [S, T] with 6T = 0( resp. 6% = Q). Qi and Hou [11] characterized
Lie derivations on von Neumann algebras .4 without central summands of type I;. Qi
and Ji [14] proved the same result for 5% = Q, where Q is a core-free projection. Qi [10]
characterized Lie derivations on [J-subspace lattice algebras and proved the same result
due to Lu and Jing [12] on J -subspace lattice algebra AlgL, where L is a J-subspace lattice
on a Banach space &’ over the real or complex field with a dimension greater than two.
Liu [15] studied the characterization of Lie triple derivations on von Neumann algebras
with no central abelian projections. For further references see Bruno et al. [16], Wang [17],
Wang et al. [18] and references therein. Recently, Ashraf and Jabeen [19] characterized
the Lie-type derivations on von Neumann algebras with no central summands of type
I;, where they showed that every Lie-type derivation on von Neumann algebras has a
standard form at zero products as well as at projection products.
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The objective of this paper is to investigate Lie-type higher derivations on von Neu-
mann algebras with no central summands of type I; and to prove that on a von Neumann
algebra, every Lie-type higher derivation has standard form at zero products as well as at
projection products. Precisely, we prove that every additive map L, : A — A satisfying

Lin(pn(61,62,--+,64)) = Yy 4t ly=m Pn (Lh (&1), le(Gz), Ll3(63)/ e, Ly, (671)) for
all 61,6,,---,6, € A with 616, = 0 is of the form L, (S) = ¢u(S) + {m(S) for all
S € A, where ¢, : A — A is an additive higher derivation and {,; : A — Z(.A) is an
additive higher map whose range is in Z(.A). Further, we discuss some more related results.

2. Main Results

In this section, we discuss the characterization of Lie-type higher derivation on von
Neumann algebras having no central summands of type I; at zero products.

Remark 1. Let A be a von Neumann algebra with center Z(.A). For each self-adjoint operator
T € A, we define the core of T, denoted by T, to be LUB[S € Z(.A)| S is sel f — adjoint, S < A].
Onehas T — T 2 0. Further,if S € Z(A)and T —T =2 S 2 0, then S = 0. If P is a projection,
then P is the largest central projection < P. We call a such projection core-free if P = 0 and P is the
central carrier of P.

In proving our main results, we use the following known lemmas. Lemma 1 gives
a sufficient condition for a fixed projection T of von Neumann algebra A to be a central
element of A if it commutes with PXQ and QXP for all X € A.

Lemma 1 (Miers [20], Lemma 5). For projections P,Q € AwithP = Q # 0,if T € A
commutes with PXQ and QXP for all X € A, then T commutes with PXP and QXQ for all
XeA

Lemma 2 (Bresar and Miers [21], Lemma 5). Let A be a von Neumann algebra with no central
summands of type I. If t € Z(.A) such that t A C Z(A), then t = 0.

Lemma 3 (Miers [20], Lemma 14). Let A be a von Neumann algebra such that P € Aisa
core-free projection in A. Then, PAPNZ(.A) = 0.

Lemma 4 (Ashraf and Jabeen [19], Lemma 2.5). Let &;; € Aj,i = 1,2. If 6118, =
T12611 forall Tp € A1y, then G117+ Gy € Z(.A)

Lemma 5 (Miers [20], Lemma 4). If A is a von Neumann algebra with no central summands of
type I, then each nonzero central projection of A is the central carrier of a core-free projection of A.

The first main result of this paper is the following theorem:

Theorem 1. Let A be a von Neumann algebra with no central summands of type I and an additive

map Ly, : A — A satisfying

Lm(Pn(61/62r' e an)) = 2 Pn (Lh(61)rle(62)/L13(63)/' e ’Lln (671))
L+l 4l =m
forall 61,6,,---,6, € A with 616, = 0. Then, there exists an additive higher deriva-
tion ¢, : A — A and an additive higher map {,, : A — Z(A), which annihilates every
(n — 1)"-commutator p,(S1,&y,---,6,) with &6, = 0 such that Ly (&) = ¢u(S) +
{m(6) forall G € A.

Henceforward, let A be a von Neumann algebra with no central summands of type I
and an additive map Ly, : A — A satisfying the hypotheses of Theorem 1. For projections
0y, Q5 € A let Qo = QpLin(Qp)Qy — QyLin(Qp)Qp = 0and let us define a map 7y, : A —
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A as an inner higher derivation 77, (&) = [&, Qo] for all & € A. Clearly, L,, = L/m — Ty is
a Lie n-higher derivation. Since

= Dme(Qp)Qp + Qqu (Dp)ﬂq

One easily obtains DPL;ﬂ (Qp)Qy = DqL:n (Qp)Qp = 0. Accordingly, it suffices to consider
only those Lie n-higher derivations, which satisfy QL (Qp)Qq = Q4Ln(Qp)Qp = 0.

We give proof of Theorem 1 in a series of lemmas. We begin with the following
lemmas:

Lemma 6. For projections Qp, Q; € A, Ly(Qp) and Ly (Qq) € Z(A).

Proof. To prove this lemma, we use the principle of mathematical induction on m, for m =
1, and the result was shown to be true by Ashraf and Jabeen [19]. Assume that the result
holds for all k < m — 1. Then, we want to prove that it also holds for k = m. Since
612Qp = QpGQqu = 0 for all &1, € Ajp, we have

L (pn (612/Qper/' e /Qp)>
= Pn (Lm(Glz)/Qp/Qp/ te ,Qp) + Pn(612, Lm(ﬂp)err ce er)
+ Pn (612err Lm(Qp>/ to /Qp) +oeee A+ Pn(612/Qp/Qp/' . /Lm(Qp)>

+ Z Pn (Lll (612)1 le (DP)I Ll3 (Dp)l R Lln (Dp)) .
L+bL+AFly=m
0<Iy,ln+- Iy <m—1

This implies

Lin((—1)" " '&12) = (—1)" ' QpLin(S12)Qy + QgL (S12)Qp
+(=1)"2(n = 1)[S12, Lu(Qp)]. @

Premultiplying by 9, to the above equation, we obtain

()" ' QpLin(S12) = (=1)" ' QpLin(S12)Qy + (—1)" (1 — 1) (S12Li(Qp) — QpLn(Qp)S12)

and by postmultiplying 9, to the same equation, we obtain &5 L (Qp)Qy = QpLin(Qp)S12.
Then, by using Lemma 4, we have L, (Qp) € Z(A). Knowing the fact that Q;,Q, = 0, one
can write

0=1L ( 1 (Qq Qp,Qp, -+, 02 )
_ Pn( (), Qp, Qp, - ,Qp) Pn (Dq,Lm Qp),Qp, - ,Qp>

+pn (Qq,ﬂp, Lm Qp ,Dp +pn (Qq,gp,gp, , (Qp))
+ L pa(Ln Q) (@) L (), L, ()
Lh+b+Fly=m

0<ly b, Iy <m—1
= pu (L (90), 25, Qp, -+, )
== (—1)n_1Qme (Qq)gq + Dqu (Qq)ﬂp;
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which implies QL (Q4)Q = Q4L (Q4)Qp = 0. Now, using p,(Qq, S12,Qp, - -+, Qp) =
0 and applying similar calculations as above, we obtain that L,,(Q,) € Z(.A). Hence,
Ln(Qp) and Ly (Qy) € Z(\A) holds forall m € N. [

Lemma7. Ly (A;) CA;, (1<i#j<2).

Proof. We show that Ly, (A1) C Ajqp. The other case, ie., Ly (A1) C Ay can be shown
similarly. For m = 1, it was shown to be true by Ashraf and Jabeen [19]. Now suppose that
it holds for all k < m — 1. We want to show that it also holds for k = m. Using Lemma 6

and Equation (1), we have Ly, (612) = QpLu(612)Q4 + (—1)" 194 L (S12)Qy. From this
equation, one can easily obtain QL (S12)Qp = Q4L (S12)Qy = 0, and if n is even, then
29,Lu(S12)Qp = 0. But when # is odd, then for all G5, 1, € Ajp, as 61,12 = 0, one can
easily see that
0=Ln <Pn (612, T12, Wiz, —=Qp, -+ -, —Qp))
= Pn (Lm(Glz),Tu, Wi, —Qp, -+, —Dp) + Pn (612, Lin(%T12), W12, —Qp, -+, —Qp>
+ Pn (612,312/ Lm(Wr2), —Qp, -+, *Qp) + +pn (612, T2, Wia, —Qp, -+, Lm(*ﬁp))

+ y Pn <L11(612),le (%12), L (Wh2), Ly, (=9Qp), -+, Ly, (—Qp))
h4lA4-+1=m
0<Iy, by, 1y <m—1

= Pn (Lm(glz),Tu, Wiz, —Qp, -, *Qp) + pn (612, Lin(%T12), W12, —Qp, -+ -, *Qp>-
which can be written as 0 = [[Li(S12), T12), Wiz| + [[S12, Lin(T12)], Wiz | . From this equa-

tion, we obtain [L,,(S12), T12] + [S12, L (%12)] € Z(A). Now put z = [Ly(S12), T12] +
[612/ Lm (S]z)]. Then,

[Lin(S12), T12] = z — [S12, L (T12)]
=Z—Pn (612, —Qp,-,—Qp, Lm(le))
=2+ Lm (Pn (G12,—Qp, -+, —Dp,le)> = Pn (Lm(612)r =y, —Qp,‘312>
=Z—Pn <Lm(612), —Qp,--, —Qp,‘flz)
=z — [QgLm(612)Qp, T12].

This implies that [Q; L, (S12)Qp, T12] € Z(A) and therefore QgL (S12)Q,%12 = 0. Since
9, = I, we have Q;L,(612)Q, = 0. Therefore, L;;(A12) C Ajp. Hence, for all m €
N, Ln(A12) € App. O

Lemma 8. There exists maps {p, on Ajj such that Ly, (&) — Cm;(Sii)] € Aji for any &;; €
A,i=1,2.

Proof. Using Lemma 6 and knowing the fact that 119, = 0, we have

0=1Ly (Pn (611,94,9q,- - rQq))
= pu (Lm(Gn)/Qq/Qq/“‘ ,Qq) + pPn (611/Lm(9q)r94/“' 'Q'?)
+ (11,0, Ln(Qg), -+, 0g) 4+ + pu(S11, Qg Qg+, Ln(2y) )

(L (S0) Ly (9y), 1y (), 1, (2))
h+lp++ly=m
0<lqy,lp, - Ip<m—1

= Pn (Lm(Gll)rQq/ qu ce /Qq>
= Lm(Gll)Dq + (71)7/’7])3qu(611)
= QpLi(611)Qg + (—1)" QgL (G11) Q).
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From which we obtain Qp L (&11)Q; = QqLu(S11)Qp = 0. To complete the proof of the
lemma, we need to show that Q;L,,(&11)Q, = 0. For this, take any &2, € Az and Ty, €
A1n, and we have

0= Lm (Pn (6111 6221 WlZ/ Qq/ Qq/ e /Qq))
= Pn (Lm(Gll)/ 622/ WlZ/ Qq/ Dq/ e ,Dq) + Pn (Gll/ Lm(GZZ)/ WlZ/ Qq/ qu Tty Qq)
+ pn (611, G2, Liu(Wh2),Qq, Qg+ -+, Qq) + -+ pu (611,622, Wi2,94,++ , Lm (Qq))

+ ) Pn (Lzl (611), L1, (622), L1, (%12), L1, (Qq), L1 (Qq), - -+, L, (Qq))
h+b+-+ly=m
0<ly,lp, - Jy<m—1

= Pn (Lm(Gll)/ 622/ WlZI Qq/ Qq/ T ,Dq) + Pn (6]1/ Lm(GZZ)/ WlZ/ Qq/ qu Tty Qq)

_ “Lm((‘Sn),Gzz]/zlz} + [[Gll,Lm(Gzz)],ilz}.

This implies that [L,,(S11), S2] + [611, Lu(S2)] € Z(A). By pre- and postmultiplying
9, we obtain [Q,L,(S11)Q,, 6] € Z(A)Q,. This implies [Q,Ly,(611)Q4, 6] = 0,
which means there exists some z € Z(.A) such that Q;L,,(S11)Q, = 2z, and therefore

Ln(6&11) = QpLin(S11)Qp + QyLin(611)Qq ()
== Qme(Gll)Qp - ZQp + z. (3)

Since z € Z(A), we have 9,29, = 0,20, = 0. From the above equations, we have z —
Z = (9,29 + Qg Ln(611)9Qy) — (2pz' Qp + QL (S)1)2y). Then, by Lemma 3, 9,49, N
Z(A) = {0} and thus z = Z'. One can also define a map {m, on Ajq by (m, (S11) =
z € Z(A). Then, by comparing it with Equation (3), we obtain Ly, (&11) — {m, (S11) =
QpLin(G11)Qp —QpzQp € Ay for all &1 € Ajp. With the similar steps, there exists a
map (m, on App such that {,,(62) =z € Z(A) and Ly, (62) — (m,(Sxn) € A for all
Gy € Azz. O

Now define two maps ¢y, : A = Aby ¢,,(S) = Ly (S) — {m(S) and g : A — Z(A)
by i (S) = {m, (QpSQp) + T, (2,69,) for all § € A. Then, one can easily observe that
(Pm(Qz) =0, ([Jm(.Al]) - A,‘]‘,‘ i,j =1,2and 4),,1(6,']‘) = Lm(eij)} for all 6,‘]‘ S Ai]',‘ i,j =
12 % ).

Lemma9. Let ¢y, : A — Abeamap such that ¢, (S) = Ly (6) — (i (&), where Ly, : A — A
is a Lie-type higher derivation and {, : A — Z(A). Then, ¢y, is an additive map.

Proof. As ¢y = Ly — {w and (= Cmy + (m,, We need to show that {y,, and (, are
additive. For this, take any &11, %11 € A11, and we have

Cmy (611) = Qplmy (611)Qp + QgL (611)Qy,

Ty (Z11) = Qpmy (T11)Qp + QyLin (T11)Qy

and
Cmy (S11 + F11) = Qplmy (G114 F11)Qp + Qg Lin (G171 + F11) Q4

By combining all the above three expressions, one can easily find that {, (S11) + {m, (T11) —
Omy (611 +%11) = Qpéml (611)53]9 + ngml (Tll)ﬂp — Dp€m1 (611 + fll)ﬂp. Since ngml
(611)Qp + Qplm (F11)Qp — Qplm, (611 + T11)Qp € Z(A) and Qplm; (611)Qp + Qplm,
(‘Zn)ﬁp — ngml(Gll + Tn)ﬂp € DP‘AQP' we know that Z(.A) N QpAQp = {0} by
Lemma 3. We have Qpm, (611)Qp + Qplim, (T11)Qp — Qplim, (S11 + T11)Qp = 0. Hence,
Cmy (611 + F11) = Cmy (S11) + iy (%11)- This implies that {y,, is additive. Similarly, we can
show that {y,, is additive. Therefore, ¢, is an additive map. O
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Our next lemma is also important to complete the proof of Theorem 1.

Lemma 10. Forany &;; € Ay, T € Ajj, 6;; € Ajjand Tj; € Ajj; i,j = 1,2,(i # j) and
¢m + A — Abeamap. Then,

(@) Pm(GiiTij) = Lsyrmm Ps(Sii) Pt (Tij),
(b)  Pm(GiiTjj) = Lsrrmm Ps(Sij)Pe(Tj))-

Proof. Here, we give proof of part (a), and the second part can be proved similarly. Lets us
prove the lemma with the help of mathematical induction on m. For m = 1, it was shown
to be true by Ashraf and Jabeen [19]. Suppose it is true for all k < m — 1. Now, we show
that it also holds for k = m. Note that L,, : A — A is a Lie-type higher derivation. Since for
i #j,%i6;; = 0, we have

(61131]) m(Gzz 1])

m pTl 611/3:1]/1)]/1)]/' o /P])>

P (Lin(83), Ty Py By, ) + pu (St L (i), Py, By -+, )
+ Pn (611151]/ ,P],- o /Pj) +e A+ Pn <6111‘IU/P]/ e /Lm(Pj)>

+ Y Pn (Lll(Gii)/le(Tij),Lz3 (Py),--- ,Lz,,(Pj))
h4b+-+1l,=m
0<ly lg, Iy <m—1

= pu (L (8i), Tij, Py Py o Py) + pu (S Ln (%), Py Py )

+ ) Ls(&i)Li(Ty)

s+t=m
0<s, t<m—1
= on(Si)Tij + Siipm(Tij) + Y, Os(Sit)r(Ty))
s+t=m
0<s,t<m—1
Z ‘Ps ii ‘Pt )
s+t=m

Similarly, one can prove ¢m(6;;%jj) = Ygrim ¢s(Gij)pe(Tj5). O
Lemma 11. Forany &;;, T;; € Aj;. We have ¢ (6;i%ii) = Loy ¢s(Sii) P (Tii); i = 1,2.
Proof. Forany &;;,T;; € A;; and Tjj € A;j, and using Lemma 10, we have

om (6% %)

= G;iTiipm(Tij) + o (SiTi)Tij + Y, Or(GiTin) s (Tij)

r+s=m

0<r,s<m—1
= ;i Tiipm(Tij) + o (SiTi)Tij + Y ( Y 0p(Gii)y(T ))(Ps(‘fij)
r4s=m p+g=r

0<rs<m—1 0<pg<r

= &;iTiipm(Tij) + o (SiTi)Tij + Y (Gii%(fii) + ¢r(6;1)Tii

r+s=m

0<r,s<m—1
T SR ACATNCRNINCE
p+q=r
0<pg<r—1
= &;iTiipm(Tij) + o (SiTi)Tij + Y, S (Tit) s (Tij)
0<rsam1
+ Y 0r(G)Tads(TiH)+ Y, p(Sii)dg(Ti)r (Tij).- 4)
r+s=m r+s=m
0<r,s<m—1 pt+q=s
0<r,s<m-—1



Mathematics 2023, 11, 4770

8 of 20

On the other hand, we have

P (SiiTiiTij) = Siipm (TiiTy) + o (Si)TuTij + Y, &r(Sit)s(TiiTi)

r+s=m
0<r,s<m—1
= i (TiiTij) + om(Si)TuTij + Y <Pr(6ii)( ) ‘PP(Tii)‘Pq(Tij))
r+s=m p+q=s
0<r,s<m—1 0<p,q<s

= Gjipm(TiTy) + om(Si)TTij + Y, ¢(Sip) (Tz‘ifPs(Tz‘j) + ¢s(Tii) T

r+s=m
O<r,s<m—1
+ 4»(%)%(2,))
p+q=s
0<p,g<s—1
= Gjipm(TiiTy) + o (Si)TuTij + Y, &r(Si)Tiis(Tij)
0<rs<m—1
+ Y 0(Gaes(T)Tii+ Y, or(Sii)dp(Tii)dg(Tif)
r+s=m r+s=m
0<r,s<m—1 pt+q=s
O<r,s<m—1
0<p,g<s—1
= Gjipm (Tit) Tij + SiiTiiom (Tij) + Y., Siipr (Tit)ps(Tij)
0<rsam—1
T om(Gi)TuTij+ Y, 0 (Si)Tiidhs(Tij)
r+s=m
0<r,s<m—1
+ Y 0TS+ Y. 0r(Sii)dp(Tii)dg(Ti)- @)
r+s=m r+s=m
0<r,s<m—1 p+q=s
0o<r,s<m—1
0<p,g<s—1

From Equations (4) and (5), we obtain (Pm(Giifii)Ti]’ = Gjipm (Sii)iij + (Pm(Gii)TiiTi]’ +
Y rts=m  @r(6i)¢s(Tii)Tjj. Since P; = I, this follows from the fact that { AP;(h) : h € H}
0<r,s<m—1

is dense in H. Hence, ¢ (6;i%ii) = s 1—m ¢s(Sii) e (i) for all 655, %5 € R; i = 1,2. This
completes the proof of the lemma. O

Lemma 12. For any Gij € -’41] and ‘Iji € .A]l We have qu(Gl]‘Iﬂ) =Y ertmm (Ps(Gij)(Pt (‘Ijl)/
ij=1,2,(i # ).

Proof. To prove our lemma, we use the principle of mathematical induction. For m = 1 it
was shown to be true by Ashraf and Jabeen [19]. Suppose it holds for all k < m. We show

that it also holds for k = m. Since for any &1, € Ay, 612Qp = 0and L, (Q,) € Z(A),
we have

Ly (Pn (612/ Qp/ Qp/ T /Qp/ 521))
= pu(Ln (612), Q9 Qp, -+ /2, Fo1 ) + P (S12, L (), Qp 2, 1)
+ Pn (612/Qp/ Lm(Qp)/Qp/' o /szgzl) R 47! (612/917/9;7, o /Qp/ L (521))

Y pa(La(Sw) L) Ly (), L, (S0))
L+l+ly=m
0<Iy,lp, - ly<m—1

= pu (L (812), 9, Qpy -+ 0, Fo1 ) + pn (812,99, Qpy -+, Qp L (T1) )
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+ ) [Ls(&12), Li(Ta)]
st+t=m
0<s,t<m—1

= p?’l (¢m (612>rDPer, e ,Dpr‘z21) + pn (612,Qp,gp, e /Qpl ¢m (:221))
Y [9s(812),9e(T)].

s+t=m
0<s,t<m—1

This implies that Ly (612%21 — $21612) = ¢m(612)T21 — T219m(S12) + S12¢m (F21) —
Pm (321)612 + ZO s+tt<:m ) [QDS(GH), 471}(‘3:21)] . But, we know that forall & € A, 4)771(6) =
<s,t<m—

Lin(&) — {m(&). Therefore, one can easily arrive at

Pm(S12%21 — T0612) + {m(612T21 — T21612)
= ¢n(612)T21 — T01Pm(612) + 120w (T21) — P (T21)G12+ ). ¢s(S12) (1)
0ot Zm1
= )Y $(%a)Ps(612).

s+t=m
0<s,t<m—1

Premultiplying the above equation by &1, and using Lemma 9, we obtain

S120m(%21612) — Cm(612%21 — T21612) 612 = G129 (%21)S12 + S12%21¢0m (S12)
+61 ), o(Tn)s(612) (6)

s+t=m
0<s,t<m—1

and by postmultiplying the same equation by &1, we obtain

Pm(612%21)612 + Tn (612%21 — T21612) 612 = P (612) T21612 + G129 (T21) 12
+ ). ¢s(612)¢t(T21) G2 )

s+t=m
0<s,t<m—1

By comparing Equations (6) and (7), we obtain

S120m(%21612) — {n(S12%21 — T21612) 612 — G12%21Pm (S12)
= P (612%21)612 + T (S12%21 — 21612) 612 — P (612) T S12
— ) 0s(612)¢(T)Gra. (8)

s+t=m
0<s,t<m—1

Then, through the application of Lemma 10, we obtain

S120m(%21612) + P (612)T01 612 = P (612%21612)
= P (612%21)612 + S120m (T21612).

Now, we prove that {,, (6121 — $21612) = 0. For any &1 € Ay, let G = V|G|
be its polar decomposition. This implies that {;, (G121 — £21612)|S12] = 0 and thus
|612|€m(612§21 — 321612)* = 0, which follows that

S120m(612%21 — 21612) = |612|0m(612%21 — F21612)" = 0. )
On the other hand, we similarly can show that
T018m(612%21 — T21612) = 0. (10)

Then, by multiplying {n (S12%21 — T21612)* with Equation (6) and using Equations (9) and (10),
we obtain
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P (61221 — 21612) T (612%21 — T21612)" + T (61221 — 221612) T (612%21 — 21612)" = 0. (11)

Now, by using Lemma 8 and Equations (9) and (10), one can find that

P (612%21)0m(612%21 — T21612)"
= o (S12T01Qplm (612%21 — 21612)*Qp) — S12%21¢0m (Qplim (S12%21 — T21612)*Qp)
= —612%01Pm (Qp (61221 — T1612)*Qy)

and

Om(%21612)0m(612%21 — T21612)"
= P (T12621940m (612%21 — T21612)" Q) — T21612¢m (Qylm (612%21 — T1612)*Qy)
= —T01612¢m (Qy(S12%21 — T21612)*Qy).

Thus, Equation (11) implies that gm(GlZSZl — §21612)*€m(612f21 — 321612)6”1(612521 —
%1612)* = 0, and hence ¢, (61221 — T21612) = 0. Therefore, from Equations (6) and (7)
and using Lemma 11, we obtain ¢, (612%21) = ¢ (S12)%21 + S12¢m(T21) + ZO sti=m s

<s,t<m—1

(612)91(To1) ie, P (S12%21) = L stt=m ¢s(S12)¢:(%21) and ¢ (T21612) = L st=m Ps
0<s,t<m 0<s,t<m
(%21)9:(S12) for all &1, € Ajp, Ty € App. This proves that the lemma is also true for
k = m. Hence, the lemma is true forallm € N. [
We have all the pieces to carry the proof of our first main result of this paper.

Proof of Theorem 1. In view of Lemmas 10-12, one can easily see that ¢, is an additive
higher derivation, and it can be observed that {;,(&;;) € Z(A) forj =1,2and {u(&;;) = 0
for j # i. We now show that (Pn(61,62,63,- .. /671)) =0forallG; e A;1<i<n.

Cm (Pn (61,6,,63,- - ,Gn))

= Ln(pn (61,62, 83, &) ) = g (pu(S1,62,83, -, &)
= Pn(Lm(Gl); Sy,63,--- an) + -+ Pn(61762/ ICEYRRE /Lm(Gn))

+ ) Pn (Lh(611L12(62)/Ll3(63)r‘ . rLl,l(Gn))

L+l 4 tly=m
0<ly o, Iy <m—1

- Pn(qu(@l)rGZ/ 63/’ o 167’1) - pi’l(GerZI 63/’ o /(Pm(Gn))
= L pa(9n(S005(82),41,(83), - 1,(60))

Lhtbh++l=m
0<lylp, - lp<m—1

= pn(Pm(61),62,63,- - ,6y) + -+ pu(61,62,63,- -, Pm(Gn))
+ Y Pn (4’11(61@12(62)/4913(63),' = r‘Pln(Gn))

L+l =m
0<ly,lp, - Ipn<m—1

- pn(¢m(61)r62r 63/' e 1671) - Pn(61162/ 631' o r‘Pm(Gn))
- Y Pn (¢11(61/¢lz(62)/¢13(63)f e /¢1n(6n))

I+ ly+ - ly=m
0<hy,lp, - Ipn<m—1

=0.

We can now conclude from the above observations that if L, : A — A is an additive
Lie n-higher derivation, then there exists an additive higher derivation ¢, of A and a
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map {m : A — Z(A) that vanishes at p,(S1,6,,83,---,6,) with ;6, = 0 for all
61,6,,63,---,6, € A, suchthat Ly, = ¢y + (. O

Note that every additive derivation d : A — B(H) is an inner derivation Semrl [22].
Nowicki [23] proved that if every additive(linear) derivation of A is inner, then every
additive (linear) higher derivation of A is inner (see Wei and Xiao [24] for details). Hence,
by Theorem 1, the following corollaries are immediate:

Corollary 1. Let A be a von Neumann algebra with no central summands of type I and a linear
map Ly, : A — A satisfying

Lm(pn(61/ 62/ e /61’1)) = Z pi’l (Lll (61)1Ll2 (62)/ e /Lln (61’1))
b+t ly=m

forall 6; € A;1<i<n, with &Sy = 0. Then, there exists an operator T € A and a linear
map {2 A — Z(A), which annihilates every (n — 1)"-commutator p,(S1,S,,- -+ , &, with
616, = 0such that Ly (&) = 8T — TS + {u(6) forall G € A.

Corollary 2. Let A be a von Neumann algebra with no central summands of type I and a linear
map Ly, : A — A satisfying

Lm(Pn<61/ Sy, - /Gn)) = Z Pn (Lll (61)1 Ll2 (62)/‘ e /Lln (Gn>)
hLi+b+-+ly=m

forall; € A;1 <i < n.Then, Ly, isan additive Lie higher derivation if and only if there exists an
additive higher derivation ¢y, : A — A and an additive map {, : A — Z(A), which annihilates
every (n — 1)"-commutator p,(&1,Sq,- -+ ,&1) such that Ly (S) = ¢n(S) + Tn(S) for all
Ge A

In the next segment, we study the characterization of Lie derivations on general von
Neumann algebras having no central summands of type I; by taking action at the projection
products. Now, we state and prove the second main result of this paper.

Theorem 2. Let A be a von Neumann algebra with no central summands of type I, and an
additive higher map Ly, = A — A satisfying L (pn(S1,62,- -+ ,6n)) = i 4+ tly=m Pn
(pn(Lll(61),le(62),L13(63),~ . ,Lln(Gn)))for all 61,6y, -, 6, € Awith &6, = P,
where P is a core-free projection with the central carrier 1. Then, there exists an additive higher
derivation ¢, : A — A and an additive higher map (,, : A — Z(A) that annihilates every
(n — 1) -commutator p,(&1,S,,---,6,) with &16, = P, such that Ly (&) = ¢n(S) +
m(6) forall & € A.

Let Qo = QpLm(Qp)Qy — QyLin(Qp)Qp and let us define a map my, : A — A as an
inner higher derivation 71, (&) = [6, Q)] for all & € A. Clearly, L,, = L,, — 7, is also a
Lie n-higher derivation. Since

Lu(9Qp) = Lin(Qp) — [Qp, Qp L ()9 — QgL (2)9)]
one easily obtains Q,L,,(2,)Q; = Q4L,,(2,)9Q, = 0. Accordingly, it suffices to con-

sider only those Lie n-higher derivations L,, : A — A which satisfy Q,L,(Qp)Q; =

Lemma 13. L, (Qp), Ln(Qy) € Z(A).
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Proof. For k = 1, it was shown to be true by Ashraf and Jabeen [19]. Suppose that it holds
for all k < m — 1. We show that it also holds for k = m. Since (&1, + Qp)Q, = Qp for all
Sy € Ajp, we can write

Lo (pa (612 + 9)), 0y, 0, -+, 2y
= Pn <Lm (612 + Dp)/Qp/ Qp, - ,Qp> + Pn (612 + 9y, Lm(Dp),Qp, s ,Qp)
+ Pn (612 +Qprﬂp/Lm(Qp),' b /Qp> + st + Pn (612 +Qp,gp,' A /Lm(Qp)>

Y pe(L (S 9p) Ly (), Ly (), L, ()
h+lA4-+l=m
0<Iy,lp, - ly<m—1

= (—1)n_1Qme(612)Qq + Qqu(Glz)Qp
+(=1)"2(n = 1)[S12, L (Qp)]-

From which we obtain

Lun((=1)"'&12) = (=1)" QL (612)9Q5 + QgL (S12)Qp
+(=1)"2(n = 1)[S12, L (Qp)]. (12)

Now, by premultiplying Q, and postmultiplying 9, to the above equation, one finds that
Qme (QP)GH = G12Llm (QP)DLI

Since QpLmn(Qp)Q; = QiLn(Qp)Qp = 0, by using the above equation and Lemma 4, we
obtain L, (Qp) € Z(A). Now, by using (Q, + Q,)Q;, = Qy, it follows that

0= Ln (Pn(Qq +Qp, Qp, Qp, -+ rﬂﬁ)
= pu(Ln(Qq+9p), Qp, Q) + pu (g + Qp Ln(Q,), Q-+, D)

+"'+Pn(gq+gngpzﬂp/"' ,Lm(Qp)> + . Z . pn(Lll(Qq—FQp),
02 i o Iyt

Ly, (Qp), Liy(Qp), -+, L, (Qp))-

which gives 0 = (=1)" "1, L (Q4)Qq + QqLm(Q4)Qp. It follows that Q,L,(Q,)Q,; =
Q3L (Q4)Qp = 0. On the other hand, by using p, (Qp + 12, Qp +Qp — S12,Qp, - -+, Qp) =
0 and making similar calculations as above, one obtains that L,,(Q,) € Z(A). Hence,
L (Qp), Lm(Qq) € Z(A) forallm e N. O

Proof. We prove the lemma with the help of the principle of mathematical induction. For
m = 1, it was shown to be true by Ashraf and Jabeen [19]. Suppose that the lemma holds
for all k < m — 1. We will prove that it is also true for k = m. First, consider the case for i =
1 and j = 2; the other case i = 2 and j = 1 will be proved in a similar way. By using equation
(12) and L, (Dp) S Z(.A), we have Lm(Gu) = Qme(Glz)Qq + (—1)n_1Dqu(612)Qp. By
pre- and postmultiplying 9, and 9, to the above equation, we obtain QL (612)Q, =
0 and QqLn(S12)Q4 = 0, respectively. Hence, Q, Ly (612)Qp = QqLn(S12)Qq = 0. Since
(Qp + 612)Qp = Qp, we can write
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Lm (pn Dp + 612/Qp/Qpr Tt /Qp/(z‘lZ))

pn (Lm Qp + 612 Dp,gp, M ,Qp, 3:12) + pn (Qp + 612, Lm(Qp),Qp, T ,Qp, ‘Ilz)
+ (Qp + 612, Qp, Qp, - ,Lm(Qp)512> + Pn <Qp + %12, Qp,Qp, -, Qp, Lm(le))

+ )y Pn (Lzl (612), L, (Qp), Liy (Qp), - -+, Lu, 4 (Qp), L, (’512))
h+l+- 4l =m
0<Iy, by, Iy <m—1

= P (L (Qp + 812), 29, Dy, -+, 25, T12) + P (D + F12, 2, Qs+, Qp Ln(Tr2) )

+ Y Li(S12)Li(Tr2).
s+t=m
0<s,t<m—1

+

This follows that
0 = QgLn(612)T12 = TiaLm(612)Qp + (—1)" ' Lin(T12)S12 — (= 1)" ' S12L(T12).-

Then, by multiplying 9, on both sides to the above equation, one obtains ;L (G12)%2 =
0, and by multiplying %1, from the right-hand side and using Q;L(&12)%12 = 0, we find
that T15 Ly, (S12) %12 = 0. Then, by linearizing, we obtain 15 Ly, (S12) T2 + T12Lm(612)%12 =
0 for all 715, T1» € Ajp. Now it can be easily observed that

QgL (612)T12Lm (S12) [leLm(Gu)ﬂz} Lin(612)Qp
+ QgL (S12)F12Lm(S12) [’HZLm(GlZ)le} Lin(612)Qp =0.
which implies
Q4Lm(612)FT12Lm (612) T12Lm (G12) T12Lim (S12)Qp = 0.

As A is semiprime, one can easily see that Q;L;(S12)T12Lm(612)Qp = 0 and therefore
Q4L (612)Qp = 0. Hence, Ly (A1) € Ajp, which shows that the lemma also holds for
k = m. Therefore, L,,(A12) C Ajp holds for all m € N. Similarly, we can easily prove that
Lm(Az1) € Ay. O

Lemma 15. There exists maps {m, on Ajj such that Ly, (Sj;i) — Cm;(Sii) € Aji and Ly, (S;;) C
A + .A]‘]',for any S; € Ajj; 1 =1,2 and i # j.

Proof. We will prove the lemma with the help of the principle of mathematical induction.
For m = 1, it was shown to be true by Ashraf and Jabeen [19]. Suppose that the lemma
holds for all k < m — 1. We will show that it also holds for k = m . Here, we give the proof
for the case i = 1, and the proof for the case i = 2 follows similar steps. Suppose G171 € A1y
is invertible; this implies that there exists 6{11 € Ay, such that &1 6;11 = 6{11611 = Qyp.
Therefore, we can write

0= Lm (Pn (6;11/ GllIDPIDPI e /QP))
- pﬂ (Lm(Gl_ll)/ Glllgplgp/ e /Qp> + pi’l( 11 / (61]) QP/Q]J/ /Qp)
+ Pn (6;11/611/Lm(9p)/ Qp/ o /Dp) +--- Pn (Gﬂl,Gll,Qp,Qp, o /Lm(Dp))

T pa(Ln (S5, Ly (61, Ly (), Ly (2p), -+, 1, (2p)).
i+l 4+ +ly=m
Ogll,lz,---,lﬂgﬂ’lfl

Also, since (&,;' +9,)611 = Q, and by using Lemma 13, we have
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0=Ly (pn (65 + 94, 61,9, 9, - ,Q,,))
= pu (Lo (8! +94), 61,9y, 9y ) + P (S5 + Qg L (611), 2p, Q-+, )
+ P (6;11 + 95,611, Lu(Q),Q,, - ,Q,,) F ot pa (6;11 + 9y, 611,9),Qp, - ,Lm(Qp))
8 pa(Ly (S5 9), Ly (611), Ly (Qp), Ly (), -+, L, () )

l1+lz+---+ln:m
0<ly,lp,+ In<m—1

= Pn (Lm(Gl_ll) + Lm(ﬂq)/ S11, Dpl o /Dp) + Pn (61_11 + Dq/ Lm(Gll)/ Qp/ Qp/ T /Qp)
+ Z pl’l (6;11 + qu 611/Qp/Qp/ ot /Lm(Qp)l/ T ,Qp)
1=3

—+ 2 Pn (Lll (Gﬂl) +L[1 (Dq)/le<611)/Ll3(QP)’Ll4(Qp)’- o ’Lln (Qp)>
Lh+lp+-+ly=m
Ogll,lz,"',lnSWlfl

Upon comparing the above two equations, we have 0 = pj, (Qq, Ly (G11), Qp, Qp, -+, Dp> =

QL (611)Qp + (—1)" 19, Lin(S11) Q4. It can be easily observed from the above equation
that Q4L (611)Qp = QpLm(S11)Qy = 0, from which we obtain L, (&;;) C Aj; + Ajj as

(Gﬁl + 322)611 = Qp and (Gﬁl)Gll = Qp. Then, for any T, € Ay and Wiy € Ajp, it
can be easily seen that

0=Ln <Pn (6, 611, Wi, 9, - - ,Dq))
= pu (L (6571, 811, Who, Q) + pu (S L (611), Who, Qg+, 2y )
+Pn (6;11/ 11, Lm(le)/Qq/' o /Qq> +t P (Sﬁlz S11, WlZ/qu' T Lm(Qq)>

8 (L (S5, L (S1), Ly Vi), L, (), -+ Ly, () ) (13)

h+b+-+ly=m
0<h lg, Iy <m—1

and
0=Ly <pn (&5 + Top, &11, Wi, Q- ,Q,,))
= Pn (Lm(Gﬂl +%22), 611, Wi2,Qq, - - ,Dq> + P (Gﬁl + %22, Lin(S11), W2, 9y, -+ - ,Qq>
+ pn <Gﬁ1 + T2, &11, Lin(Wh2), Qq, - -~ ,Qq> +- +pn <Gﬁ1 + %22, 611, Wi2,Qq, -+, Lm (Qq)>

+ Y Pn (Lh (61" +T2), Ly, (611), L, Wha), Ly, (), -+, Ly, (Qq)>

Lh+bL+-+l,=m
0<ly by, Iy <m—1

= Pn (Lm(Gﬂl) + Lm (122)/ G11/ W12/ Qq/ e /Qq) + Pn (Gﬁl + T22; Lm(Gll)r Wer Qq/' c /Qq>
+ P‘Vl (6;11 + TZZ/ 611/ Lm (W12)/QQI tte ;Qq> +---+ Pn <6ﬁ1 + IZZ/ 611/ WlZ/ qu e /Lm(gq))

+ Y pu(n (S5 + Ly (T2), Ly (811), Ly W), Ly, (9g), -+, L, () (14)

Lttt =m
0<ly lg, ln<m—1

Comparing Equations (13) and (14), we obtain
0= pn <Lm (3:22)/611/ WlZ/ Qq/ e /Qq) + Pn <$22/ Lm(Gll)/ WlZ/ Qq/ e /Qq)
= pn—l([LM(TZZ)/Gll]rwlerq/' . ,Dq) + Pn—l([Tzzl Lin(G11)], W2, 94, - - ,Qq>

= [[Lm(‘ZZZ)rGl]]/WH} + [[Tzz, Lm(Gll)]fWu]
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which leads to [Ly(%22),611] + [T2, Lu(S11)] € Z(A). Then, multiplying both sides
of the above equation by 9, one arrives at [Ty, QL (611)Q4] € Z(A)Q, and there-
fore [T, QgLm(S11)Q,] = 0. This implies that there exists some z € Z(A) such that
QL (611)Qq = zQy. If &1 is not invertible in A;, then one can find a sufficiently large
number, say 7, in a way such that rQ, — &1 is invertible in Ay; following the preceding
cases Qme (TQP — 611)Qq + Qqu (TQP — 611)Qp =0and Qqu(T’Qp - 611))3,7 = ZQq.
As Ly (Qp) € Z(A), we have QpL1yu(611)Qq + QL (S11)Qp = 0 and Q4L (611)Qy €
Z(.A)Q,. Without a loss of generality, we denote Q;L (S11)Qy = zL. Therefore, for any
S11 € Ajq1, we have

Ly (&11) = QpLm(611)Qp + QL (611)Q

= Qme(Gll)Qp — ZQp + z.
We define a map, say (u,, on Aj1 by (i, (611) = z, and then by combining it with the
above equation, we obtain Ly (S11) — {m, (611) = QpLn(611)Qp — Qplm, (611)Qp €
A1 for any 617 € Ay;. Hence, the lemma is true for k = m. Therefore, the lemma
is true for all m € N. For the case when i = 2, we take (Qp + T2)Q, = Qp to obtain
QL (T22)Qp + (—1)" 719 Ly (T2)Q, = 0, and then following similar steps as that for
i = 1, we find that

Lin(T22) = Cmy (T22) = QL (%22)Qq — Qg 8y (T22)Qq € A

for any Ty € A, which completes the proof of the lemma. [

We now define maps ¢y, : A — Aand (y : A — Z(A) by ¢S = LS — (S and
CmS = {m (QpSQp) + T, (Q;69Qy) for all S € A. One can easily observe that ¢, (P;) =
0, 47WI(-A1]) - Ai]'r i,j =1,2 and (Pm(Gij) = Lm(Gij) fOV all Gij € .Ai]',l <i# ] < 2.

Lemma 16. ¢y, is an additive map.
Proof. The proof is similar to that of Lemma 9. O

Lemma 17. Forany &;; € Aj;, Sij, % € .A,'j and T € A]‘]‘, i,j=1,2, (i # j), we have,
@ Pn(GiTij) = L stt=m $s(Sii)e(Tij),
0<s,t<m
) In(6iiTj) = L spt=m ¢s(Sij) e (Tji)-
0<s,t<m
Proof. (a) We prove it with the help of the principle of mathematical induction. For m =1,

it was shown to be true by Ashraf and Jabeen [19]. Suppose that it holds for all k < m — 1.
We prove that it is also true for k = m. We take the case fori = 1land j = 2. If 611 € Ayy

is invertible, then for any Wy, € Ajy, we have (61_11 Wi+ 6 1_11)611 = 9. Therefore, we
have

(V1) = Lo (P (S5 Wia + 67, 611,95, 95, -+, 2) )
= Pn (LW(GilWlZ + 6‘;11)/ 611/ Dpr th e /Qq> + Pn (6;11W]2 + 6-;11, LM(GH);
Qp,Qq,- - ,Qq) + Pn (61*11)/\]12 + 6ﬁ1,611,Lm(Qp),Qq, . /Qq> 4.

h+b+-+l=m
Ogll,lz,-“,lngrrlfl

L, (&11), L, (Qp), L, (), -+, 1y, (2y))
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= pu (L (ST Who) + L (611), 611, 2, Qg+, 2y ) + pi (S5 Wa + 6311, L (811), 2,

Qg Q)+ pu (S5 Wi + 631, 611,25, 9, -+ Ln(9))

+ Y Pn (Lll (67 Wi2) + Ly, (6111), Ly, (&11), Ly (Qp), Ly, (Qq), - -+ , Ly, (Qq))/
h+b+-+l=m
0<ly,lp, Iy <m—1
and

0= Pn (Lm(e)l_ll)/ 611/53;7/5311/' te /Qq) + Pn (61_11/ Lm(Gll),Qp,qu e /Qq)
+ P (S5, 611, Ln(Qp), Qg+, D) + -+ pu (S, G112, Q-+ Lun(2y) )

+ Z Pn (Lll(61_11)/le(Gll)/Ll3(Qp)/Ll4(Qq)r' o /Lln (Qq))'

L+l +ly=m
0<ly by, ln<m—1

since Ly (Qp), Lu(Qy) € Z(A) and ¢y, is additive. From the above two equations,
we obtain

Pm(Wh2)
= Pn (Lm(Gl_llWlZ)/ Glllgplgcp T /Qq) + Pn (6;11W12/ Lm(Gll)/Qp/Qq/ e /Qq)

+ Y Pn (Lzl(Gﬁlwlz),L12(611),Ll3 (Qp), L1,(Qq), -+, Ly, (Qq))
hi+b+-+ly=m
0§11,12,~~~ ,l,,gm—l

= Pn (¢m(6ﬁlW12)r S11,9p, g, ,Qq) + Pn (Gﬁqu, ¢m(611)errQq/' - ,Qq)
+ Y 0(G11)¢s (671 Wh2)

s+t=m
0<s,t<m—1
= ¢m((‘511)6ﬁ1W12 + 611¢m(6ﬁ1W12) + Y ¢t(611)¢s(6ﬁ1W12)-
s+t=m
0<s t<m—1

By replacing W, with &11%; in the above equation, we obtain

on(611%12) = Pu(611)T12 + S11Pm(T2) + ). ¢s(T12)pe(S11)

s+t=m
0<s,t<m—1

= Y ¢(S11)¢s(Tn2).

s+t=m

0<s,t<m
Now, if 17 is not invertible in 411, we can find a sufficiently large number, say r, such
that I’Qp — G141 is invertible in A;;1. Then, Pm ((T’Qp - 611)512) = (TQp - 611)47"1(312) +
P (rQp — 611)%12. Since Q, is invertible in A1, from the above equation, we obtain

om(G1T12) = Y, ¢(S1)ds(Tr2).

s+t=m
0<s,t<m—1
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Fori=2and j =1, since (Qp + G2 — 62%71)(Qp + T21) = Qp, we have

—¢m(%21) = L (Pn (Qp + 62 — 62%01, Qp + T01,Qp, Qp, - - ,Qp))

Pn (Lm (QP + G — 622‘521),13;; + SZl;Qp, ... rQP)
+ P (Qp + 62 — ©2T01, Ln(Qp + Tn), Qp Q-+, 2y )

+ ) Pn (Lll (Qp + &2 — 620%21), Ly, (Qp + Ta1), Ly (Qp), L1, (Qp),

h4bh+-+l,=m
0<ly by, Iy <m—1

,Lln(gp))
= pu(Ln(Qp + 62 — 60Tn), Qp + T, Q-+, 2y )
+ P (Dp + 62 — 62%1, Lin(Qp +%21), Qp, Qp, - - ’DP>

+ Z Pn (Ls (Qp + 62— 622‘121)/ Lt(Qp + 121)/ Qp/ Qp/ to /Qp)

s+t=m
0<s,t<m—1

= Pn ((Pm(Dp + G — 622321),1];7 + (3:21/53;7,' .. ’DP)
+ P (9 + 622 — S0Ta1, ¢ (Qp + T1), s Q-+, )

+ Y (¢s(Qp + 62 — 62%01), ¢+ (Qp +F21), Qp, Qp, - - - ,Qp>-
0<Ss-f_tt§:nr1nfl

Since ¢, is additive, the above equation gives

— ¢m(Zn) = pn ((Pm(Dp) + Om(622) — P (622%21), Qp + F21,Qp, -+ ,Dp)
+ Pn (Qp + G2 — 62%01, P (Qp) + Pm(Ta1), Qp, Qp, - -~ ,Qp)

+ ), P (¢S(Dp) + ¢s(622) — ¢s(622%21), 91 (Qp) + ¢ (T21), Qp, Qp, - - - /Qp>

s+t=m

0<s,t<m—1
= —Pn(62%21) + Pn(G22)To1 + S0pm(T21) — Pn(T21) + Y. Ps(S22)P(Tn).
0ot
Which follows that

O (62%01) = Pu(62)T01 + S0P (T21) + Y. Ps(S2)Pi(Tn)
s+t=m
0<s,t<m—1

ie, pm(60n%r) = Zos<-|-tt:<m $s(622)Pt(Ta1) forall Gy € Ay and Ty € Ay;.
st<m

(b) Fori =1, j = 2, by considering (Qp +612)(Qp — Tz + 612%T2) = Qp and using
the same approach as above, one can easily obtain ¢, (S12%22) = ¥ s+t=m ¢s(S12)¢P¢(F22)
0<s,t<m

for all &1, € Ajp and Ty € Ay, and for the case wheni = 2, j =1, by considering
G111 (W216ﬁ1 + Gﬁl) = Qp, we can easily prove that ¢m(621‘3:11) = Zosjtt:<m 4)5(621)4),5 (‘3:11)
Ss,ism

forall Gy1 € Ay and Tq1 € Ay, O
Lemma 18. Forany S;;, T € Ajj, we have ¢ (S %) = ¢m(Sii)Tii + Siipm (Tii), 1 = 1,2

Proof. The proof of this lemma is same as that of Lemma 11. O
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Lemma 19. For any 61‘]‘ € .A,‘j , S]‘i € A]'i, we have (Pm(Gij‘Zji) = (Pm(Gij)(Iji + Gijfpm (Sji)/' 1<
i#£j<2

Proof. We prove the lemma with the help of the principle of mathematical induction.
For m = 1, it was shown to be true by Ashraf and Jabeen [19]. Suppose that the lemma
holds for all k < m — 1. We prove that it is true for k = m. Take any &1, € Aj, since
(612 + DP)QP = Qp. Then,

Lm (pn (612 + Qp/ Qp/ Qp/ te /Qpl I21))
= po(Lin(S12+92p), 2, Q-+, 2 a1 ) + pir(S12 + D, Lin(Qp), Q-+, 2, 1)
+ e+ pu (612 +9Qp,Qp, - ,Lm(Dp)I(521> + pn (612 +9p,Qp, ,Dp,Lm(le))

+ Z Pn (Lll(612 +Qp)/le (Qp)/Ll3 (Qp)/' c /Ll,,,l(Qp)/Lln (‘121))
L4+ +ly=m
0<Iy, Iy, ey <m—1

= Pn (Lm((‘512 +9p),Qp,Qp, -+ ,Qp,%l) + Pn ((‘512 +9p,Qp,Qp, -+, Qp, Lm(Tzl))

+ Z Ls(&12 + Qp) Li(T21)

s+t=m
0<s,t<m—1

= pu (th(612 +9Qp), Qp, Qp, - ,Qp,‘321> + P (612 +Qp, Qp, Qp, -, Qp, (Pm({SZl))
+ ) (G124 Q)P (T2)

s+t=m
0<s,t<m—1

= Pn (¢m(612)/ Qp/ Qp/ T /Qp/ TZ]) + Pn (612/ Qp/ Qp/ e /Qp/ 4)771 (‘321))
+ )Y s(S12)¢i(Ta).

s+t=m
0<s,t<m—1

From thiS, we obtain Lm(612{3:21 — ‘3,'21612) = (Pm(GlZ)TZl + 61247;11 (‘3:21) — (Pm (‘3,'21)612 —

1¢Pm(S12) + ZO<5+tt<:m ) $s(S12)P:(Ta1) since ¢ (&) = Lin(S) — T, (QpSQp) — Ly
st<m—

(0Q,69y) forall & € A. We have

P (612%1 — T21612) + T (61221 — £21612)
= Pu(S12)%21 + S120m(T21) — P (%21)G12 — T219Pm (S12)
+ )Y s(S12)¢(Ta).

s+t=m
0<s, t<m—1

by using Lemma 12 and applying similar steps to obtain {,,; (&12%21 — £21612) = 0. Then,
from the above relation, we obtain

P (S12%21) = Pm(612)To1 + S12¢m (To1) + Y, ¢s(S12)P1(To1)
s+t=m
0<s,t<m—1

= Y ¢s(S12)¢t(Tx)

s+t=m
0<s,t<m

and

Pn(T21612) = P (T1)S12 + To1¢m(S12) + Y. ¢s(T21)¢(S12)
s+t=m
0<s,t<m—1

= Y ¢s(To)¢t(S12)

s+t=m
0<s,t<m
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for all &1, € A1, 1 € A1p. This shows that the lemma is true forallm € N. O

Proof of Theorem 2. The proof is similar to that of Theorem 1 and by using Lemmas 13-19
instead of Lemmas 10-12. O

As a direct consequence of Theorem 2, we have the following corollary:

Corollary 3. Let A be a von Neumann algebra with no central summands of type Iy and a linear

map Ly, : A — A satisfying

Lm(Pn<61/ Gy, - r6n)) = Z Pn (Lll (Gl)/ L12 (62>/‘ e /Lln (Gn))
hi+b+Aly=m

forall 6; € A;1 < i < n, with 6,6, = Qp, where Q is a core-free projection with the
central carrier 1. Then, there exists an operator T € A and a linear map p, : A — Z(A),
which annihilates every (n — 1)"-commutator p, (&1, &, - -+ , &) with &8, = 9, such that
Ly(8) =6T =TS+ {m(6) forall & € A.

3. Conclusions

In the present paper, firstly, we studied the action of Lie-type higher derivations of
von Neumann algebras and described their structures. Precisely, we established that every
additive Lie-type higher derivation of von Neumann algebras has a standard form at
zero products as well as the projection products; that is, every additive map L, from von
Neumann algebra A into itself can be written as L, (&) = ¢ (S) + {m(S) forall & € A,
where ¢, : A — A is an additive higher derivation and {,, : A — Z(.A) is an addi-
tive higher map, which annihilates every (1 — 1)-commutator p,, (&1, &, - - ,&,) with
616, = 0. Secondly, we characterized Lie derivations on general von Neumann algebras
with no central summands of type I by using the actions at projection products. Finally,
we described the structures of linear maps via core-free projections with the central carrier.

In view of Ferreira et al. [16], these results are still open for alternative rings, where
one can study and characterize the Lie-type higher derivations of alternative rings.
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