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Abstract: The paper is devoted to the approximate calculation of Riemann definite integrals, singular
and hypersingular integrals over closed and open non-rectifiable curves and fractals. The conditions
of existence for the Riemann definite integrals over non-rectifiable curves and fractals are provided.
We give a definition of a singular integral over non-rectifiable curves and fractals which generalizes
the known one. We define hypersingular integrals over non-rectifiable curves and fractals. We
construct quadratures for the calculation of Riemann definite integrals, singular and hypersingular
integrals over non-rectifiable curves and fractals and the corresponding error estimates for various
classes of functions. Singular and hypersingular integrals are defined up to an additive constant (or a
combination of constants) that are subject to a convention that depends on the actual problem being
solved. We illustrate our theoretical results with numerical examples for Riemann definite integrals,
singular integrals and hypersingular integrals over fractals.
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1. Introduction
1.1. Review of Approximate Methods for Calculating Singular and Hypersingular Integrals

Starting the middle of the last century, the methods of singular integral equations
(SIE) and then hypersingular integral equations (HIE) have been increasingly used in the
study and modeling of various problems in physics, natural science and technology: in
aerodynamics, electrodynamics, elasticity theory, nuclear and atomic physics, geophysics,
and mathematical physics.

Analytical methods for solving singular and hypersingular integral equations are
known only for very special cases (see [1] for singular integral equations and [2], Ref. [3]
for hypersingular integral equations). Thus, numerical methods are broadly employed to
solve singular and hypersingular integral equations.

The development of approximate methods for solving SIE started in the 1950s. The
number of publications devoted to approximate methods for solving SIE, their generaliza-
tions and related Riemann and Hilbert boundary problems has not diminished since. The
main approximate methods for solving SIE are presented in [4,5], where one can find an
extensive bibliography. The main approximate methods for solving HIE can be found in
the publications [6–10].

The major basic component of any approach to solving SIE and HIE is an efficient
approximate method for evaluating the corresponding singular (SI) and hypersingular inte-
grals (HI). It substantiates the need for development of numerical methods for evaluating
SI and HI.
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There are numerous publications devoted to numerical evaluation of SI and HI over
smooth curves (see [4,8,11–13] and the literature therein). The numerical approach to
the evaluation of SI and HI over fractals is different. Even though there are few papers
devoted to solutions of SIE and HIE on the prefractals of the Cantor perfect set and the
Sierpinski “carpet” [14,15], and the research on existence and uniqueness of SIE solutions on
fractals is being actively developed [16], the works devoted to generic numerical methods
for calculation of SI and HI and solution of SIE and HIE over fractals are unknown to
the authors.

The demand for approximate calculations of Riemann definite integrals, singular and
hypersingular integrals over non-rectifiable curves and fractals is determined by numerous
applications in physics and engineering that are based on integral equations over fractals. In
particular, modeling of fractal systems in electrodynamics, ultrahigh frequency technology,
antennas [17–20], in solid state physics and geophysics [21,22] is an active and growing
field. Further progress in this field is hampered by the lack of numerical methods for
such problems. This work should make up for this deficiency. We pay special attention to
numerical calculations of singular and hypersingular integrals over non-rectifiable curves
and fractals and their peculiarities.

This paper is devoted to approximate methods for the calculation of integrals—
including singular and hypersingular integrals—on non-rectifiable curves and fractals.
We recall the major definitions and summarize some known facts concerning the integrals
over fractals. Next, we shall discuss a few general cases of such integrals, introduce approx-
imate quadrature formulas and give their error estimates. Then, we introduce the cases of
singular and hypersingular integrals. Finally, we illustrate the results with a few simple
numerical examples.

1.2. Definitions

Let L be a contour on the complex plane. Let A = [a, b] or A = L.

Definition 1. Class of Hölder functions Hα(M; A), (0 < α ≤ 1) consists of functions f (x)
defined on A and satisfying at all points x′ and x′′ of this set the inequality | f (x′)− f (x′′)| ≤
M|x′ − x′′|α, M > 0.

Definition 2. The class Wr(M; A) consists of functions defined on A, continuous and having
continuous derivatives up to (r − 1)-th order inclusive and piece-wise continuous r-th order
derivative satisfying on this set the inequality | f (r)(x)| ≤ M, r ≥ 1.

Definition 3. The class Wr Hα(M; A) consists of functions f (x) belonging to the class Wr(M; A)
and satisfying an additional condition f (r)(x) ∈ Hα(M, A).

Definition 4 ([23]). Let ϕ(t) ∈ Wp−1Hα(M, A). The integral
∫ b

a
ϕ(τ) dτ
(τ−c)p , a < c < b, p =

2, 3, . . . , in the sense of Cauchy-Hadamard principal value is defined as the limit:

∫ b

a

ϕ(τ)dτ

(τ − c)p = limv→0

[∫ c−v

a

ϕ(τ)dτ

(τ − c)p +
∫ b

c+v

ϕ(τ)dτ

(τ − c)p +
ξ(v)
vp−1

]
,

where ξ(v) is a function satisfying the following conditions: (1) the limit exists; (2) ξ(v) has a
continuous p− 1 degree derivative at a neighborhood of zero.

Throughout the paper, we shall use the Whitney extension of continuous functions.
For the reader’s convenience, we provide the corresponding statement.

Let F ⊂ Rn be a closed set, H(α, F) is a space of functions defined on F and satisfying
the Hölder condition with an exponent α. The following statement holds.
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Lemma 1 ([24]). The linear Whitney extension operator E0 maps the space H(α, F) to the space
H(α, Rn) continuously. The norm of the mapping is bounded by a constant that does not depend on
the set F.

1.3. Definitions of Regular Integrals

Consider the integral ∫
Γ

f (τ)dτ , (1)

where Γ is a non-rectifiable curve on a complex plane.
In the literature, there are several definitions of integrals over non-rectifiable curves

and fractals. Here are some of them.
We will start with an informal definition of the integral (1).
Let g(x) be a one-to-one and continuous mapping of the interval [0, 1] onto the curve

Γ. Then, the evaluation of the integral (1) reduces to the evaluation of the integral

1∫
0

f (g(x))dg(x). (2)

First, we have to solve the issue of the existence of the integral (2). V. Kondurar [25]
obtained the following result.

Statement 1. The Stieltjes contour integral
∫
Γ

f dg exists if there is a one-to-one continuous map-

ping z(x) of the interval [0, 1] onto Γ, so that f (z(x)) ∈ Hα, g(z(x)) ∈ Hβ, α + β > 1.

Kats [26] notes that the Kondurar class {Hα, Hβ} is not geometrically invariant since
conditions for existence of the integral depend on the choice of parametrization z = z(x).
The generalization of the Statement 1 for functions of bounded Φ variation is also provided
in [26].

Definition 5. Let Φ(x) be a continuous increasing function for x ≥ 0, Φ(0) = 0, f (z) be the
function on the curve Γ. The quantity

sup
τ

n

∑
j=1

Φ(| f (z(τ)j )− f (z(τ)j−1)|) = VΦ( f , Γ)

is called the Φ variation of the function f . The supremum is taken with respect to all possible
partitions τ = {z(τ)j }

n
j=1 : a = z(τ)0 < z(τ)1 < . . . < z(τ)n = b.

Let VΦ(Γ) stand for the class of functions of bounded Φ variation, i.e., all functions for
which Φ variation is finite. Moreover CVΦ(Γ) is the subclass of VΦ(Γ) which consists of
continuous functions.

If Φ(x) = xp, p ≥ 1, Vp(Γ) and CVp(Γ) stand for the classes VΦ(Γ) and CVΦ(Γ), respec-
tively. The class V2(Γ) was introduced by Wiener [27] and the class Vp(Γ) by Young [28,29].

A number of statements about the existence of the integral (1) has been provided
in [26]. Here, we recall the generalization of Statement 1.

Statement 2 ([28]). The Stieltjes contour integral (1) exists under conditions f ∈ Vp(Γ), g ∈
Vq(Γ), 1/p + 1/q > 1, if f and g do not have common discontinuities.

The definition of integral over non-rectifiable curves on the complex plane called geo-
metric approximation by Kats [26] is as follows. If a function is given in the neighborhood
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of Γ, for large enough n, the curve can be approximated by a polygon Γn with n edges and
we shall assume ∫

Γ

f (z)dz = lim
n→∞

∫
Γn

f (z)dz. (3)

This approach has been investigated in [30–32].
Kats [33] presented the definition of the integral over an arc Γ

∫
Γ

f (z)dz based on

approximation of f (z) with algebraic polynomials {pn(z)} :∫
Γ

f (z)dz = lim
n→∞

(Pn(b)− Pn(a)),

where Pn(z) is anti-derivative of the polynomial pn(z).
It has been shown that the limit exists if

(1) The sequence pn(z) converges to f (z) in the metric of the Hölder space Hα, 0 < α ≤ 1;
(2) α > d(Γ)− 1, d(Γ)—is the upper metric dimension of the curve Γ;
(3) The arc Γ does not twist into a spiral at the ends.

In [34,35], the integral
∫
Γ

f (z)dz is defined as a generalized function with support Γ.

Let us assume that Γ is non-rectifiable or fractal contour in complex plane and D+ is
the domain bounded by Γ.

Definition 6. Let a closed curve Γ have a cell dimension d(Γ), f ∈ Hα(Γ) and α > d(Γ)− 1.
Then, the integral

∫
Γ f (z)dz is defined as

∫
Γ

f (z)dz = −
∫∫

D+

∂ f̃ (z, z)
∂z

dzdz, (4)

where f̃ (z, z) stands for the Whitney extension of f ([24], p. 205).

Recall [36] that the operator ∂ f
∂z is defined by the formula

∂ f
∂z

=
1
2

(
∂ f
∂x

+ i
∂ f
∂y

)
.

By Formula (4), evaluation of the integral (3) over the closed curve Γ reduces to
evaluation of the integral in the right-hand side of (4) over region D+ bounded with the
curve Γ.

The extension of function f (z), z ∈ Γ is carried out with the Whitney extension
operator [24]. When f ∈ Hα, the Whitney operator extends each continuous function f (z)
on Γ to a continuous function f̃ (z, z) on the complex plane C. Moreover

(1) If f ∈ Hα(Γ), 0 < α ≤ 1, then f̃ (z, z) ∈ Hα(C);
(2) In C\Γ the extension f̃ (z, z) has derivatives of the first order and |grad f̃ (z)| ≤

K(dist(z, Γ))α−1, K = const.

Remark 1. To evaluate integral of the function f ∈ C1(D+) over a smooth curve Γ, Vekua [36]
proposed the formula ∫

Γ

f (z)dz = 2i
∫∫
D+

∂ f
∂z

dxdy

By analogy, with Formula (4), this formula can be used to define integrals on non-rectifiable
curves and fractals
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∫
Γ

f (z)dz = 2i
∫∫
D+

∂ f̃
∂z

dxdy, (5)

where f̃ —the Whitney extension [24], p. 205. This representation seems to be more convenient to
construct quadrature formulas.

1.4. Definitions of Singular and Hypersingular Integrals

Consider the integral
∫

Γ f (z)dz, assuming that the function f has a pole at some point
on the contour Γ. In case of such a pole we can represent f as a product of regular and
singular functions f = f0v, here f0 ∈ Hα(Γ), f0(t) = 0, and

(1) |v| ≤ c|z− t|−1,

(2) |∂v/∂z| ≤ c|z− t|−1, z ∈ D+\t. Here, D+ is the domain bounded by the contour Γ.

Now, we can give a definition for a singular integral.

Definition 7 ([37]). If a closed curve Γ has a cell dimension d(Γ), the inequalities |v(z)| ≤
c|z− t|−1, |∂v/∂z| ≤ c|z− t|−1, z ∈ D+\t and α > (d(Γ))/2 are satisfied, then

∫
Γ f (z)dz =

−
∫∫

D+
∂(v f̃0(z))

∂z dzdz, where f̃0(z) is any Whitney extension for f0 = f
v .

Consider the singular integral SΓ f = 1
πi
∫

Γ
f (τ)dτ

τ−t , t ∈ Γ.
If Γ is a smooth curve, SΓ f is regularized by

(SΓ f )(t) =
1

πi

∫
Γ

f (τ)− f (t)
τ − t

dτ +
f (t)
πi

∫
Γ

dτ

τ − t
=

1
πi

∫
Γ

f (τ)− f (t)
τ − t

dτ + f (t).

This leads us to the following statement.

Definition 8 ([37]). A singular integral SΓ f over a closed non-rectifiable curve is defined by

(SΓ f )(t) = f (t)− 1
πi
∫∫

D+
∂( f̃ (z))

∂z
1

z−t dzdz, where f̃ (z) is a Whitney extension for f .

Using Equation (5) and repeating the arguments by Mironova [37], we have the
following definition of singular integrals.

Definition 9. A singular integral SΓ f over a closed non-rectifiable curve is defined by (SΓ f )(t) =

f (t) + 2
π

∫∫
D+

∂( f̃ (z))
∂z

1
z−t dxdy, where f̃ (z) is the Whitney extension for f .

Consider the hypersingular integral 1
πi
∫

Γ
f (τ)

(τ−t)p dτ, t ∈ Γ, p = 2, 3, . . . .
In the case of a smooth closed curve Γ, a hypersingular integral on the complex plane

C is defined by

1
πi
∫

Γ
f (τ)

(τ−t)p dτ = 1
πi
∫

Γ
g(τ,t)
τ−t dτ + f (t) 1

πi
∫

Γ
dτ

(τ−t)p +

+ f ′(t)
1!

1
πi
∫

Γ
dτ

(τ−t)p−2 + ... + f (p−1)(t)
(p−1)!

1
πi
∫

Γ
dτ

τ−t

= 1
πi
∫

Γ
g(τ,t)
τ−t dτ + 1

(p−1)! f (p−1)(t),

where g(τ, t) = ( f (τ)− f (t)− f ′(t)
1! (τ − t)− ...− f (p−1)(t)

(p−1)! (τ − t)p−1)/(τ − t)p−1.
Using the last formula, the definition follows.

Definition 10. A hypersingular integral over a non-rectifiable curve Γ is defined by

1
πi

∫
Γ

f (τ)
(τ − t)p dτ =

f (p−1)(t)
(p− 1)!

− 1
πi

∫∫
D+

∂g̃(z)
∂z

1
z− t

dzdz̄ ,
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where g̃(z)− is a Whitney extension for g(τ, t).

Using Formula (5), we have the following definition of hypersingular integrals.

Definition 11. A hypersingular integral over a non-rectifiable curve Γ is defined by

1
πi

∫
Γ

f (τ)
(τ − t)p dτ =

f (p−1)(t)
(p− 1)!

+
2
π

∫∫
D+

∂g̃(z)
∂z

1
z− t

dxdy ,

where g̃(z)− is a Whitney extension for g(τ, t).

Singular and hypersingular integrals with a singularity of the order higher than the
one given above can be considered as distributions (generalized functions) (see [38]). Within
this approach, the singular and hypersingular integrals can be defined up to an additive
constant, which depends on the particular method of regularization. Definitions of the sin-
gular and hypersingular integrals (8)–(11) also, in fact, rely upon some particular methods
of fractal boundary regularization. For instance, for t ∈ Γ we assign the integral 1

πi
∫

Γ
f (τ)
τ−t dτ

the value of f (t), as if Γ would have been a smooth contour. Here, we assume that f (t) is
an analytic function in D+. There are, however, other methods of contour regularization
that might be more appropriate when solving some particular physical or engineering
problems. Here, we shall discuss one more approach to such alternative regularization.

Assume that Γ is a piece-wise smooth continuous contour and t is one of its “corner”
points. Then, the integral

1
πi

∫
Γ

f (τ)
τ − t

dτ =
α

π
,

where α is the angle between left and right tangents to Γ at point t. If Γ is a fractal contour
and we approximate it with some sequence of piece-wise smooth prefractals Γn, and
starting from some n > n0, t ∈ Γn, we can define the angle between the right and the left
tangents to the prefractal αn(t) on each of the prefractals. Now, we can distinguish the two
following cases: (a) ∃ α∞(t) = limn→∞ αn(t); (b) there is no such limit. In the first case, we
can introduce the following definition of the singular integral:

Definition 12. A singular integral SΓ f over a fractal contour Γ approximated by a sequence of
prefractals Γn such that t ∈ Γn is defined by

(SΓ f )(t) = f (t)
α∞(t)

π
+

2
π

∫∫
D+

∂( f̃ (z))
∂z

1
z− t

dxdy,

where f̃ (z) is a Whitney extension for f , provided the limit

α∞(t) = lim
n→∞

αn(t)

exists, where αn(t) is the angle between the right and the left tangents to the prefractal Γn at the
point t.

This definition emphasizes that the singular integral evaluation depends on the choice
of the prefractal sequence that we use to approximate the idealized fractal contour. It also
exhibits the fact that there is no unique value that could be assigned as a value of singular
integral over the fractal curve, and only in some exceptional cases such a unique value—the
one given by Definition 12—can be found and substantiated under certain assumptions.

Remark 2. A similar situation takes place when defining hypersingular integrals.
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2. Approximate Calculation of the Stieltjes Integral

In this section, we construct quadrature formulas to calculate the Stieltjes integral over
non-rectifiable curves and fractals.

The most natural way is to calculate the Stieltjes integral (1) using known quadrature
formulas, which is applied for the integral (2). Using (2), however, requires an explicit
form of the function z = g(x). Constructing it in general form is very complicated, if
not impossible. Therefore, using (2) in approximate calculations is difficult. So, the more
natural way is to employ the Definition 6—or an equivalent Equation (5)—for complex
functions and the corresponding vector fields.

In this section, we present the method for calculation of integrals of continuous
functions over non-rectifiable curves and fractals under the condition that the integral over
non-rectifiable curve is understood in the sense of Definition 6.

We shall assume—without loss of generality—that the curve Γ is a closed contour. If
the curve Γ does not form a closed contour, we can connect its start and end points with a
smooth curve and perform two separate calculations for a closed partially fractal contour
and its smooth part.

For example, let us assume that a non-rectifiable curve Γ with the start point B and the
end point C lies in the plane of the complex variable z, in the region Ω = [−1, 1]2. Let f (z)
be an analytic function defined on Ω. Connect the points B and C with polygon γ lying
in D. Any piece-wise smooth function suitable for quadrature formula construction can
be selected.

Let L = Γ ∪ γ. Since
∫
L

f (z)dz = 0 then
∫
Γ

f (z)dz = −
∫
γ

f (z)dz. Thus, if we deal with

an analytic function defined in the region Ω, the problem reduces to the calculation of
Riemann integral over a rectifiable curve γ.

Now, let us turn to a general case.
Assume that the function f (z), z ∈ Γ has a continuously differentiable extension in D̄+.
Consider several algorithms to calculate the integral (4).
Let f (z) ∈W1Hα(M, D̄+). Assume the region D̄+ is within the square Ω∗ = [−A, A]2.
Let ∆kl stand for squares ∆kl = [xk, xk+1; yl , yl+1], k, l = 0, 1, . . . , n− 1, xk = −A + 2kA

n ,
k = 0, 1, . . . , n, yl = −A + 2lA

n , l = 0, 1, . . . , n. Let ūkl = (x̄k, ȳl), x̄k = xk + A/n, k =
0, 1, . . . , n− 1, ȳl = yl + A/n, l = 0, 1, . . . , n− 1.

Construct the cubature formula to calculate the integral (4). Let α > d(Γ)− 1. Then,

∫
Γ

f (z)dz = 2i
∫∫
D+

∂ f
∂z̄ dxdy = 2i

n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

∂ f
∂z̄ dxdy + rn,n( f ) =

= 2i
n−1
∑

k=0

n−1
∑

l=0

∗ ∂ f
∂z̄ (ūkl)

∫∫
∆kl

dxdy = 8i A2

n2

n−1
∑

k=0

n−1
∑

l=0

∗ ∂ f
∂z̄ (ūkl) + Rnn( f ).

(6)

Here,
n−1
∑

k=0

n−1
∑

l=0

∗ means summation over indexes (k, l) such that ūkl ∈ D̄+, and |Rnn( f )|

is the total residual term (the error).
There are two contributions to the error of the method: an error of the rectangle

cubature formula over ∆kl squares that do not have common points with Γ and an error
over the boundary Γ

Rnn( f ) = qnn( f ) + rnn( f ) .

The contribution rn,n( f ) to the residue corresponds to changing the domain of integra-
tion from D+ to D+

nn = ∪n−1
k=0 ∪

n−1
l=0

∗∆kl , where the symbol ∪n−1
k=0 ∪

n−1
l=0

∗ stands for a union
of the tiles we use in the cubature rule.

Obviously, the first component qnn( f ) does not exceed A/nα (the error of the rectangle
cubature formula for double integral, and α is the Hölder class exponent).

To estimate the second term, it is necessary to estimate the number of squares ∆kl ,
k, l = 0, 1, . . . , n − 1 covering the curve Γ. In doing so, we employ fractal measure
(Minkowski’s measure).
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Definition 13 ([39]). Let Ω be a compact set on the plane. Divide the plane onto squares with sides
ε > 0. Let Nε(Ω) stand for the number of squares that have intersections with Ω. The quantity

d(Ω) = lim sup
ε→0

log Nε(Ω)

log ε−1

is called the upper metric dimension of the set Ω.

It follows from the definition that for the cubature formula in question Nε(Γ) �
( 1

ε )
d(Γ) � nd(Γ). Here, ε = 1

n .
The maximum error of the rectangular quadrature rule in the square ∆kl does not

exceed M/n2+α. If the square ∆kl intersects the region D̄+ and is not included in the
number of the squares to be summed in (6), then its lack in the cubature Formula (6)
introduces the error of the order M/n2. Thus, the quantity of the second component of the
error of the cubature Formula (6) does not exceed CMnd(Γ)/n2 = CM/n2−d(Γ), where d(Γ)
is the metric dimension of the fractal Γ.

Therefore the error of (6) is |Rnn( f )| ≤ C(n−α + Mn−2+d(Γ)). So, we have come up
with the following theorem.

Theorem 1. Let f (z) ∈ W1Hα(D̄+). The cubature Formula (6) has the error |Rnn( f )| ≤
C(n−α + Mn−2+d(Γ)), where d(Γ) is metric dimension of the set Γ, and C and M are independent
positive constants.

Now, let us look at the case of a smoother function f , where, for instance, we assume
that f (z) ∈Wr+1Hα(M, D̄+). We will use the same notation. Let the region D̄+ lie inside a
square Ω∗ = [−A, A]2. In each square ∆k,l , k, l = 0, 1, . . . , n− 1, the function ∂ f (z)

∂z will be

approximated with interpolation polynomial Pr,r(
∂ f (z)

∂z , ∆k,l) constructed with respect to
r + 1 equidistant points.

We will calculate the integral
∫
Γ

f (z)dz by the quadrature formula

∫
Γ

f (z)dz = 2i
∫∫
D+

∂ f
∂z̄ dxdy=2i

n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

∂ f
∂z̄ dxdy + rn,n( f )=

=2i
n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

Pr,r

(
∂ f (z)

∂z

)
dxdy + Rnn( f ).

(7)

Here,
n−1
∑

k=0

n−1
∑

l=0

∗ means summation over indexes (k, l) so that ūkl ∈ D̄+, the error Rn,n( f )

is determined the same way as in Equation (6).
Employing the estimates of the constructive theory of functions [40], we have

|Rnn( f )| ≤ C(n−r−α + Mn−2+d(Γ)).

Thus, we have proved the following assertion.

Theorem 2. Let f (z) ∈ Wr+1Hα(D̄+). The cubature Formula (7) has the error |Rnn( f )| ≤
C(n−r−α + Mn−2+d(Γ)), where d(Γ) is upper metric dimension of the set Γ, C and M are indepen-
dent positive constants.

From the estimate of |Rn,n( f )| given in Theorem 2 we see that the contributions to

the error of the quadrature coming from the squares that enter the sum
n−1
∑

k=0

n−1
∑

l=0

∗ and that

coming from omitting the squares crossed by the region boundary are not equal. It would
be just natural to modify the quadrature (7) so that the contributions equalize. For this
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purpose, we introduce a finer supplementary grid ∆k,l which allows us to compensate for
the slow decay of the second term and which contributes only in the near-boundary region.

Cover the region Ω∗ by squares ∆k,l = [vk, vk+1, vl , vl+1], vk = −A + 2kA/m, k =
0, 1, . . . , m, m = 2A

n
1

2β , β = d( r+α
2−d(Γ) − 1) log2 ne.

We shall calculate integral (1) using the cubature∫
Γ

f (z)dz = 2i
∫∫
D+

∂ f
∂z̄ dxdy=

= 2i
n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

∂ f
∂z̄ dxdy+

+2i
m−1
∑

k=0

m−1
∑

l=0

∗∗ ∫∫
∆kl

∂ f
∂z̄ dxdy + rn,n( f )=

= 2i
n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

Pr,r

(
∂ f (z)

∂z

)
dxdy+

+2i
m−1
∑

k=0

m−1
∑

l=0

∗∗ ∂ f (z)
∂z |z=v̄k+iv̄l

∫∫
∆k,l

dxdy + Rnn( f ).

(8)

Here,
m−1
∑

k=0

m−1
∑

l=0

∗∗ means summation over the squares ∆k,l for which the measure of

intersection with ∆i,j is zero and their centers (vk, vl) belong to Ω. In this case, the error of
the cubature is

|Rnn( f )| ≤ Cn−r−α.

Now, we shall assume that the function f (z) is not defined in D+. In this case, to
construct cubature formulas we employ the Whitney extension of the function f (z) onto
region D+. Finally, we obtain the following cubature formulas.

Let f (z) ∈W1Hα(M, Γ).
Then, the cubature formula reads

∫
Γ

f (z)dz = 2i
∫∫
D+

∂ f̃
∂z̄ dxdy = 2i

n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

∂ f̃
∂z̄ dxdy + rn,n( f )=

=2i
n−1
∑

k=0

n−1
∑

l=0

∗ ∂ f̃
∂z̄ (ūkl)

∫∫
∆kl

dxdy + Rn,n( f ) = 8i A2

n2

n−1
∑

k=0

n−1
∑

l=0

∗ ∂ f̃
∂z̄ (ūkl) + Rnn( f ).

(9)

Knowing that ∂ f̃
∂z̄ ∈ Hα(M, D+), we have |Rnn| ≤ C(n−α + Mn−2+d(Γ)).

We now consider another approach to calculating integrals over non-rectifiable curves
and fractals by calculating the contour integral directly.

Let us calculate the integral
∫
Γ

f (z)dz. On contour Γ, we choose n equidistant points

zk. Using the following notation ∆k = zk+1 − zk, k = 0, 1, . . . , n − 1 h = |zk+1 − zk|,
ζk = (zk+1 + zk)/2, we construct a quadrature

∫
Γ

f (z)dz =
n−1

∑
k=0

f (ζk)∆k + Rn( f ).

Let us estimate the error:

|Rn( f )| ≤ n
∫
∆k

| f (z)− f (ζk)| |zk+1 − zk| ≤ Cn|zk+1 − zk|1+α = Cnh1+α.

Parameters h and n are related as nhd(Γ) = l, where d(Γ) is the fractal dimensionality
of the contour Γ and l is its length in fractal measure.

Finally, we have
|Rn( f )| ≤ Clh1+α−d(Γ).
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Remark 3. As the nodes of the quadrature we can choose any points of the complex plane that
deviate from Γ by no more than h, it does not affect the error estimate.

3. Approximate Calculation of Singular Integrals

In this section, we shall use the same notation. Let f (z) ∈ W1Hα(M, D+), 0 < α ≤
1, α > d(Γ)− 1, where d(Γ) is the cell dimension of the curve Γ = ∂(D̄+).

We shall construct cubature formulas to calculate singular integrals on the class of
functions W1Hα(M, D+) based on the following formula

1
πi

∫
Γ

f (τ)dτ

τ − t
= f (t) +

2
π

∫∫
D+

∂( f (z))
∂z

1
z− t

dxdy. (10)

Let the region D̄+ be within the square Ω∗ = [−A, A]2. Let ∆kl stand for squares ∆kl =
[xk, xk+1; yl , yl+1], k, l = 0, 1, . . . , n − 1, xk = −A + 2kA

n , k = 0, 1, . . . , n, yl = −A + 2lA
n ,

l = 0, 1, . . . , n. Let ūkl = (x̄k, ȳl), x̄k = xk + A/n, k = 0, 1, . . . , n − 1, ȳl = yl + A/n,
l = 0, 1, . . . , n− 1.

Construct the cubature formula

1
πi
∫
Γ

f (τ)dτ
τ−t = f (t) + 2

π

∫∫
D+

∂ f (z)
∂z̄ dxdy=

= f (t) + 2
π

n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

∂ f (z)
∂z̄

z−t dxdy + rnn( f )=

= f (t) + 2
π

n−1
∑

k=0

n−1
∑

l=0

∗
(

∂ f
∂z̄

)
(ūkl)

∫∫
∆kl

1
z−t dxdy + Rnn( f ).

(11)

Here,
n−1
∑

k=0

n−1
∑

l=0

∗ means summation over indexes (k, l) so that the nodes ūkl , k, l =

0, 1, . . . , n− 1 are within the region D̄+, |Rnn( f )| is the error of the cubature Formula (11),
and rnn( f ) has the same meaning as in Equation (6). We call the squares ∆kl marked if they
are entirely in the region D̄+, (∆kl\∂∆kl) ∩ Γ = ∅ .

Let us estimate the error of the cubature Formula (11), which consists of three compo-
nents: first, the accuracy of calculation of the integrals defined in marked squares; second,
in the cubature Formula (11), we do not count the squares, whose centers are outside the
region D̄+; third, when constructing Formula (11), we disregard the fact that if the distance
between the center of the square ∆kl and the boundary of the region D̄+ is less than A/n,
then ∆kl ∩ D̄+ 6= ∆kl . We estimate each of the components. Let t ∈ ∆kl .

Obviously,

sup
t∈∂D+

|
∫∫
∆kl

(
∂ f
∂z̄

)
1

z− t
dxdy−

(
∂ f
∂z̄

)
ūkl

∫∫
∆kl

1
z− t

dxdy|=

= sup
t∈∂D+

|
∫∫
∆kl

(
∂ f
∂z̄
−
(

∂ f
∂z̄

)
ūkl

)
1

z− t
dxdy| ≤

≤ A
nα

∫∫
∆kl

| 1
z−t |dxdy ≤ C

n1+α ,

(12)

Here and below, C stands for positive constants that do not depend on n.
Let us estimate the second contribution to the error of cubature (11). This estimate

essentially depends on the topology of the fractal Γ.
During the cubature construction, the region D+ has been covered by squares with

the side h = A/n. Let us enumerate the squares crossed by Γ counterclockwise starting
from the one with the singularity point t. We shall call these squares marked.

Consider two limiting cases. First, we shall assume that the fractal is covered by a
rather coarse grid or that its structure approaches the structure of a smooth curve. In this
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case, the number of tiles crossed by the contour in the vicinity of the singularity is limited
to just the two nearest tiles. In the second case, the grid is dense enough to cover the finest
variations in the fractal curve and those variations scale, so most of the tiles that neighbor
the singularity are crossed by the contour.

In the first case, the distance from the squares Ks in the vicinity of the singularity point
t and the singularity can be estimated as

d(Ks, t) ≥ α
s
n

,

where α > 0, Ks is the s-th marked square and. Then, if the m-th marked square is missed
in the summation, the lack of its contribution leads to the error∣∣∣∣∫∫Km

∂ f̃
∂z̄

dxdy
z− t

∣∣∣∣ ≤ C
n

αm

∣∣∣∣∫∫Km

∂ f̃
∂z̄

dxdy
∣∣∣∣ ≤ C

1
αmn

.

The squares more distant from the singularity contribute O(n−2) to the error. So, the
second component of the error can be estimated as

r1( f ) ≤ C1

m

∑
l=0

1
αln

+ C2

m

∑
l=0

1
n2 ≤ C(

log m
n

+
m
n2 ) ,

where m is the number of marked squares. Let L be the Hausdorff measure of the fractal Γ,
then mhd(Γ) = L, and we can conclude

r1( f ) ≤ C(d(Γ)
log n

n
+

1
n2−d(Γ)

) ∼ 1
n2−d(Γ)

.

In the second case, as before, we start marking the squares from K0 which contains the
singularity point. K0 is surrounded by eight squares ∆kl , the next layer contains 16 squares,
and, generally, the i-th layer from K0 contains 8i tiles. Now, we shall assume that all the
squares around K0 up to the r-th layer are marked. As they do not contribute to the sum,
they introduce the error

8i
n
i

∫∫
∆

∣∣∣∣∂ f̃
∂z̄

∣∣∣∣dxdy ≤ 8i
n
i

C
n2 =

C′

n
.

So, we can conclude that each layer introduces the error O(1/n), and we have to
estimate the number of such “boundary” layers r. For this purpose, let us compare the
number of marked cells m = 4r(r + 1) with characteristic length L = m( 1

n )
d(Γ) of the fractal.

Obviously, r ∼ m1/2 = (Lnd(Γ))1/2. Thus, the second contribution to the error has the
order of

r1( f ) ≤ C
nd(Γ)/2

n
=

C
n1−d(Γ)/2

.

Combining the obtained estimates leads us to the following assertion.

Theorem 3. Let f ∈W1Hα(M, D+
), α > d(γ)− 1. The cubature Formula (11) has the error

|Rn(W1Hα(M, D+
)| ≤ (

C1

n1−d(Γ)/2
+

C2

nα
) .

Here, d(Γ) is upper metric dimension of the set Γ, C1 and C2 are independent positive constants.

Now, consider the case of a smoother function. Let f ∈ Wr+1Hα(M, D+
). Let the

region D̄+ be within the square Ω∗ = [−A, A]2. We will use the foregoing notation. We
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will approximate function ∂ f (z)
∂z in each square ∆k,l , k, l = 0, 1, . . . , n− 1 by the interpolating

polynomial Pr,r(
∂ f (z)

∂z , ∆k,l) constructed with respect to r + 1 equidistant nodes.
Let us construct the cubature formula

1
πi
∫
Γ

f (τ)dτ
τ−t = f (t) + 2

π

∫∫
D+

∂ f
∂z̄

1
z−t dxdy=

= f (t) + 2
π

n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

∂ f (z)
∂z̄

1
z−t dxdy + rnn( f )=

= f (t) + 2
π

n−1
∑

k=0

n−1
∑

l=0

∗ ∫∫
∆kl

Pr,r(
∂ f (z)

∂z , ∆k,l)
1

z−t dxdy + Rnn( f ).

(13)

Here,
n−1
∑

k=0

n−1
∑

l=0

∗ means summation over indexes (k, l) so that the nodes ūkl , k, l =

0, 1, . . . , n − 1 lie in the region D̄+, |Rnn( f )| is the error of the cubature formula when
calculating the singular integral on the function f (z).

Repeating the foregoing arguments (given standard estimates of constructive function
theory [40]) leads us to the following assertion.

Theorem 4. Let f ∈Wr+1Hα(M, D+
). The cubature Formula (13) has the error

|Rn(Wr+1Hα(M, D+
)| ≤ (

C1

n1−d(Γ)/2
+

C2

nr+α
) .

Here, d(Γ) is upper metric dimension of the set Γ, C1 and C2 are independent positive constants.

4. Approximate Calculation of Hypersingular Integrals

In this section, we study the calculations of hypersingular integrals∫
Γ

f (τ)
(τ − t)p dτ , p = 2, 3, . . .

over non-rectifiable curves and fractals. We use the same notation as in previous sections.
Let f (z) ∈Wp+r−1Hα(M, D+). We shall construct cubature formulas for the calcula-

tion of hypersingular integrals on the classes of functions Wp+r−1Hα(M, D+) based on the
following formula (see Definition 10)

1
πi

∫
Γ

f (τ)
(τ − t)p dτ =

f (p−1)(t)
(p− 1)!

+
2
π

∫∫
D+

∂g̃(z)
∂z

1
z− t

dxdy. (14)

Let the region D̄+ be within the square Ω∗ = [−A, A]2. Let us construct the cubature
formula

1
πi

∫
Γ

f (τ)dτ

(τ − t)p =
f (p−1)(t)
(p− 1)!

+
2
π

n−1

∑
k=0

n−1

∑
l=0

∗
∫∫
∆kl

Pr,r(
∂g̃(z)

∂z
, ∆k,l)

1
z− t

dxdy + Rnn( f ). (15)

Here, we use the same notation for the summation symbols as before.
Repeating the foregoing arguments (given standard estimates of constructive function

theory [40]) leads us to the following assertion.

Theorem 5. Let f ∈Wr+p−1Hα(M, D+
). The cubature Formula (15) has the error

|Rn(Wr+p Hα(M, D+
)| ≤ C1

nr+α
+

C2

n1−d(Γ)/2
.

Here, d(Γ) is upper metric dimension of the set Γ, and C1 and C2 are independent positive constants.
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5. Numerical Illustrations

In this section, we give a few examples of numerical calculations for integrals over
fractals. As test fractals, we choose the Koch snowflake and its analog based on scaled
squares (see Figure 1a,b). We shall refer them to as fractals “a” and “b”. The corresponding
fractal dimensions for the fractals “a” and “b” are d(a) ≈ 1.4650 and d(b) ≈ 1.26196.

(a) (b)

Figure 1. Fractals used in numerical examples: (a) an analogue of the Koch snowflake based on
scaled squares; (b) the Koch snowflake.

As integrands, we use five functions. For examples of regular functions, we use

f1(x, y) = x + 2iy =
3
2

z− 1
2

z̄

and
f2(x, y) = ex+2iy = e

3
2 z− 1

2 z̄ .

As singular function integrands, we employ

f3(z) =
1
z

and

f4(z, z̄) =
(z̄ + i)p

z
p = 1, 3 .

Finally, for an example of hypersingular integral, we use the following integrand

f5(z, z̄) =
a0 + a1z + a2z̄2

z2 .

We perform two versions of calculations for the corresponding contour integrals: the
first is based on Formula (7) and its analog for the singular case (11), and the second
corresponds to a direct calculation of the integral over the corresponding prefractals with
mid-point or trapezoidal rules. The results of calculations for the integral

∫
Γ f1,2(z)dz for

regular functions are given in Table 1. As the function f1 is linear in both arguments,
the midpoint rule gives an exact result for both approaches. The numerical results for a
given order of the prefractal match exactly. The results for function f2 obtained by direct
calculation and by Formula (7) also agree well. This demonstrates the correctness of the
integral over fractals definitions that we have been using.

The case of singular functions is less trivial. Even an elementary direct calculation of
an integral over a contour meets some unexpected complications. In the example above we
chose the step of the quadrature as the length of the corresponding prefractal side. This
choice does not guarantee convergence to a correct result in some contour geometries.
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Table 1. Convergence table for integrals
∫

Γ fi(z)dz of regular functions over fractal “a”. Here i stands
for the imaginary unit.

Order n f1 f2
Direct (7) Direct (7)

0 4 −1i −1i 0.889–0.571i 1.387–0.891i
1 20 −1.444i −1.444i 1.616–1.037i 1.686–1.083i
2 100 −1.691i −1.691i 1.885–1.210i 1.894–1.216i
3 500 −1.829i −1.829i 2.016–1.295i 2.017–1.295i
4 2500 −1.905i −1.905i 2.087–1.340i 2.087–1.340i
5 12,500 −1.947i −1.947i 2.126–1.365i 2.126–1.365i
6 62,500 −1.971i −1.971i 2.148–1.379i 2.147–1.379i
7 312,500 −1.984i −1.984i 2.160–1.387i 2.160–1.387i
8 1,562,500 −1.991i −1.991i 2.166–1.391i
9 7,812,500 −1.995i - 2.170–1.393i -

10 39,062,500 −1.997i - 2.172–1.395i -

Consider a sequence of contours composed of the prefractals for the fractal Figure 1
shifted so that the lowest side of each prefractal is centered at the singularity point z = 0+ 0i
(Figure 2). The sides of the prefractal scale are 1/3k, where k is the order of the prefractal.

Figure 2. A sequence of prefractals used in singular integral example.

In order to calculate the singular integral over the contour, we employ the trapezoidal
rule on each side of the prefractal. Even though the integration step goes to zero, any fixed
order quadrature formula has a constant error contribution in the vicinity of the singular
point. In order to compensate for this effect, we either have to use a sufficiently high order
quadrature or further subdivide the sides of the prefractal. This effect has little to do with
the fractal-like structure of the contour and can be also observed with piece-wise smooth
contours of certain geometries. We attract the readers’ attention to this peculiarity only as a
warning that the experience in numerical calculations of principal value integrals over real
ranges does not always translate directly to their complex contour integral counterparts.
The results of calculations are summarized in Table 2.
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Table 2. Contour integral calculation results for function f3(z) = 1/z over the contours shown in
Figure 2. The first column indicates the order of the corresponding prefractal, and the second column
contains the length of the corresponding prefractal side. The calculated real part of the integral
does not exceed 10−10 and is not indicated. Take note that even though the prefractal side length
approaches zero, there is a non-vanishing error in the evaluation of the singular integral. This error
goes down, however, with more accurate quadrature formulas being used. Here i stands for the
imaginary unit.

Order
Prefractal Quadrature Rule

Side
Length Trapezoidal Gaussian

n = 2
Gaussian

n = 4
Gaussian

n = 6 (11)

0 1 3.20000i 3.19335i 3.14076i 3.14160i πi
1 0.333 3.27940i 3.19616i 3.14078i 3.14160i πi
2 0.111 3.27875i 3.19616i 3.14078i 3.14160i πi
3 0.037 3.27853i 3.19616i 3.14078i 3.14160i πi
4 0.0123 3.27850i 3.19616i 3.14078i 3.14160i πi
5 0.00412 3.27849i 3.19616i 3.14078i 3.14160i πi
6 0.00137 3.27849i 3.19616i 3.14078i 3.14160i πi
7 0.000457 3.27849i 3.19616i 3.14078i 3.14160i πi
8 0.000152 3.27849i 3.19616i 3.14078i 3.14160i πi
9 5.08 ×10−5 3.27849i 3.19616i 3.14078i 3.14160i πi

As we have mentioned above, the singularity contribution πi f (t) when Formula (11)
is employed strongly depends on the approximation of the fractal and can vary between 0
and 2πi f (t). We have constructed the prefractal contours so that the singularity always
strikes at the middle of one of the straight sides of the prefractal, which corresponds to
the πi f (t), as if the fractal is approximated by a smooth contour. Here, we emphasize one
more time that this choice is a result of a somewhat arbitrary convention that we make
when performing singular integral calculations over a fractal. For instance, if we shift the
prefractals in Figure 2 so that the singularity at z = 0 hits the vertex of the prefractals rather
than a midpoint of the side, the limiting fractal will be exactly the same, as the side length
goes to zero, but the value of the integral would change from πi to πi/2.

The results of calculations for f4(z, z̄) are summarized in Table 3. As the function
is not analytical, unlike the previous example, the contribution of the double integral
in Equation (11) is not trivial. Direct calculations are preformed using an eight-point
Gauss–Legendre rule, which guarantees eight significant digits in our case. The results of
direct calculations of the integral agree well with the calculations performed on the base of
Formula (11). Again, the values that we report here are based on the same convention as in
the previous example.

Table 3. Convergence table for integrals of a singular function f4(z, z̄) over the contours shown in
Figure 2. The first column indicates the order of the corresponding prefractal, and the second column
contains the length of the corresponding prefractal side.

Order Side p = 1 p = 3
Length Direct (11) Direct (11)

0 1 0.32242 0.85841 −3.57477 0.14159
1 0.333 0.81504 0.99404 −0.76477 −0.37710
2 0.111 0.97871 1.03837 0.07356 0.02639
3 0.037 1.10254 1.12243 0.32884 0.28685
4 0.0123 1.20064 1.20728 0.37339 0.35579
5 0.00412 1.27084 1.27306 0.35007 0.34372
6 0.00137 1.31705 1.31780 0.31504 0.31286
7 0.000457 1.34579 1.34604 0.28613 0.28539
8 0.000152 1.36300 1.36309 0.26623 0.26597
9 5.08 ×10−5 1.37305 – 0.25366 –
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Another enlightening example of the delicacy of singular integrals over fractals can
be given by calculating the integrals of functions f3(z) and f4(z, z̄) over fractal “b”. Both
approaches to the calculation of the integral∫

γb

f3(z)dz =
∫

γb

dz
z

=
π

3
i

give identical results provided the singularity contribution in Formula (11) is chosen
correctly. But an infinitesimal—in the infinite prefractal order limits—shift of the contour
to place the singularity at one of the nearest sides of the prefractals changes the result to πi.
The numerical results for

∫
γb

f4(z, z̄)dz are given in Table 4.

Table 4. Convergence table for integrals of a singular function f4(z, z̄) over the fractal “b” prefractals
(Koch snowflake). The first column indicates the order of the corresponding prefractal, and the
second column shows the grid step for the evaluation of the double integral (11).

Order Grid p = 1 p = 3
Step Direct (11) Direct (11)

0 3 4.39420 10.9528 −2.63710 −2.17206
1 0.6 5.55701 7.18216 −2.87898 −4.17509
2 0.176 6.19947 7.06799 −3.18282 −4.95637
3 0.0566 6.53120 6.94534 −3.50067 −4.50142
4 0.0186 6.69404 6.82474 −3.69242 −4.01492
5 0.00619 6.77155 6.82638 −3.79339 −3.92664
6 0.00206 6.80771 6.83072 −3.84343 −3.89787
7 0.000686 6.82435 6.83403 −3.86739 −3.88961
8 0.000229 6.83194 6.83603 −3.87861 −3.88772

Finally, we give an example of a hypersingular integral calculation. We calculate the
integral using Definition 12

∫
γb

a0 + a1z + a2z̄2

z2 dz =
πia1

3
+
∫

γb

a2z̄2 dz
z2 (16)

=
πia1

3
+ 2i

∫∫
D+

b

2a2z̄
z2 dxdy. (17)

The calculations have been performed with parameters a0 = 1, a1 = 3 and a2 = 1.
The results of calculations are given in Table 5. If no regularization is applied, the direct
calculation of the contour integral at the left-hand side of Equation (16) is not feasible as
the real part of the integral rapidly diverges. The imaginary part of the directly evaluated
integral, however, is finite and evaluates to the values close to πia1/3 consistent with the
results evaluated from (16) and (17).

Table 5. Convergence table for integrals of a hypersingular function (16) over the fractal “b” prefrac-
tals (Koch snowflake). The first column indicates the order of the corresponding prefractal, and the
second column shows the grid step for the evaluation of the double integral in (17). Here i stands for
the imaginary unit.

Order Grid
Step (16) (17)

0 3 −7.11720 + 3.14159i −24.00000 + 3.14159i
1 0.6 −6.58614 + 3.14159i −9.02423 + 3.14159i
2 0.176 −5.96004 + 3.14159i −6.29219 + 3.14159i
3 0.0566 −5.59279 + 3.14159i −5.51049 + 3.14159i
4 0.0186 −5.40095 + 3.14159i −5.37218 + 3.14159i
5 0.00619 −5.30618 + 3.14159i −5.27821 + 3.14159i
6 0.00206 −5.26090 + 3.14159i −5.24412 + 3.14159i
7 0.000686 −5.23972 + 3.14159i −5.23105 + 3.14159i
8 0.000229 −5.22995 + 3.14159i −5.22578 + 3.14159i
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6. Discussion and Conclusions

We have discussed definitions of regular, singular and hypersingular contour integrals
over non-rectifiable curves and fractals. One of the main observation is in the difference
between singular (hypersingular) integrals over piece-wise smooth curves and fractals. Let
us emphasize this difference.

Consider an integral ∫
Γ

f (τ)
τ − t

dτ, t ∈ Γ,

where Γ is a closed bounded curve. Suppose that Γ is a smooth curve and t ∈ Γ. The
integral

∫
Γ

f (τ)
τ−t dτ is a singular integral, and some regularization is required. The standard

regularization method is∫
Γ

f (τ)
τ − t

dτ =
∫

Γ

f (τ)− f (t)
τ − t

dτ + f (t)
∫

Γ

1
τ − t

dτ .

It is known [1], that for a smooth closed curve∫
Γ

1
τ − t

dτ = πi .

If f (t) satisfies the Hölder condition, then
∫

γ
f (τ)− f (t)

τ−t dτ is a definite integral. To
calculate it, we use standard quadrature formulas.

In some form or other, this scheme can be applied to the construction of quadrature
formulas for the calculation of singular integrals.

Now, let Γ be a piece-wise smooth curve, and t∗ be a point where there is no tangent
to the given curve. For t = t∗, the regularization of the integral

∫
Γ

f (τ)
τ−t∗ dτ is implemented

by the formula [1] ∫
Γ

f (τ)
τ − t∗

dτ =
∫

Γ

f (τ)− f (t∗)
τ − t∗

dτ + f (t∗)
∫

Γ

dτ

τ − t∗
=

=
∫

Γ

f (τ)− f (t∗)
τ − t∗

dτ + f (t∗)iα,

where α is an angle between left and right tangents to the curve γ at the point t∗.
For non-rectifiable curves, the construction described above is not applicable. There is,

at least, a countable set of points where the curve Γ has no tangent lines. Moreover, left and
right tangent lines may have different angles between them at different points. There are
also curves with no tangent line at any point.

To calculate singular integral over a non-rectifiable curve or fractal, we implement the
regularization similar to the regularization for a piece-wise smooth curve∫

Γ

f (τ)
τ − t

dτ =
∫

Γ

f (τ)− f (t)
τ − t

dτ + f (t)
∫

Γ

dτ

τ − t
.

The first integral is calculated by Stokes’s formula and the Whitney extension

∫
Γ

f (τ)− f (t)
τ − t

dτ =
2
π

∫ ∫
D+ ∂( f̃ (z))

∂z̃
1

z− t
,

where f̃ (z) is the Whitney extension for f .
So, ∫

Γ

f (τ)
τ − t

dτ =
2
π

∫ ∫
D+ ∂( f̃ (z))

∂z̃
1

z− t
+ f (t)

∫
Γ

dτ

τ − t
. (18)

The second integral f (t)
∫

Γ
dτ

τ−t calculation depends on t. If t is a finite decimal or
binary and, for a large enough N, it is included in the list of the vertices of the nth prefractals
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(n ≥ N), then we assume f (t)
∫

Γ
dτ

τ−t = iαN f (t), here αN is an angle between the left and
the right tangent lines at the point t of the N-th order prefractal. If the condition is not
fulfilled, any value between 0 and 2π can be ascribed to the integral

∫
Γ

dτ
τ−t .

Singular and hypersingular integrals are particular cases of generalized functions.
In the theory of generalized functions [38,41], there is a known statement that all the
regularizations differ by a constant. Within this approach, it is legitimate to define—
according to Mironova [37]—a singular integral as

1
πi

∫
Γ

f (τ)
τ − t

dτ = f (t)− 1
πi

∫
D+

∂( f̃ (z))
∂z

1
z− t

dzdz,

where f̃ (z) is the Whitney extension for f .
In this work, we define a singular integral by using Formula (18). This approach is

substantiated by the representation of the singularity point t. If t is presented as an infinite
fraction, then, when solving a particular problem, its value has to be approximated by
a finite decimal fraction. Therefore, by choosing an approximate representation of t and
the prefractal sequence, which approximates the fractal curve, the researcher ascribes the
value to the singular integral

∫ dτ
τ−t according to the problem being solved. (It seems that

further generalizations of this construction are also possible. For instance, singular and
hypersingular integrals over fractals could be treated as stochastic objects with distributions
depending on the fractal curve. This approach, however, is subject to future research).

The stability of quadrature and cubature formulas for one- and multi-dimensional
singular integrals has been studied in the monograph [11]. Upper bounds of the errors
for a number of cubature formulas have been obtained assuming an ε-perturbation of
the integrands. Besides the upper bounds, for some cubatures, the expected values for
the errors have also been given. These results can be easily transferred to the cubatures
discussed in the article

Similar arguments are applicable to quadrature formulas for hypersingular integrals.
In this paper, we have constructed quadrature and cubature formulas for the calcu-

lation of Riemann, singular and hypersingular integrals over non-rectifiable curves and
fractals. Some quadrature and cubature formulas have been constructed based on various
definitions of integrals over non-rectifiable curves and fractals. We obtained error estimates
on classes of functions having derivatives of the first order satisfied the Hölder condition
with α, 0 < α ≤ 1.

The obtained results show that having derivatives greater than the first order does not
affect the accuracy of cubature formulas with rectangular grids. To increase the accuracy of
cubature formulas, it is necessary to construct cubature formulas with several grids, which
account for the boundary layer. A similar problem arises when we construct cubature
formulas to calculate integrals over non-rectifiable curves and fractals based on the Whitney
extension. This is caused by the feature of Whitney’s extension: the extension u(z) of
function f (z) defined on the boundary Γ of region D has derivatives of the first order in
D\Γ and |grad u(z)| ≤ K(dist(z, Γ))α−1, K = const.

The authors intend to construct cubature formulas with variable grids accounting for
the boundary layer in future works.

Author Contributions: I.B. conceived of the presented idea, I.B. and V.R. developed the theory. I.B.
and V.R. performed the computations and verified the analytical methods. I.B. and V.R. wrote the
manuscript with support from A.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Mathematics 2023, 11, 4752 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gakhov, F.D. Boundary Value Problems; Dover Publication: Mineola, NY, USA, 1990.
2. Boykov, I.V.; Boykova, A.I. Analytical methods for solution of hypersingular integral equations. Univ. Proc. Volga Reg. Phys. Math.

Sci. 2017, 2, 63–78.
3. Boykov, I.V.; Boykova, A.I. Analytical methods for solution of hypersingular and polyhypersingular integral equations. arXiv

2019, arXiv:1901.04880v1.
4. Lifanov, I.K. Singular Integral Equations and Discrete Vortices; VSP: Utrecht, The Netherlands, 1996.
5. Boykov, I.V. Approximate Methods of Solution of Singular Integral Equations; Penza State University Publishing House: Penza,

Russia, 2004.
6. Golberg, M.A. The convergence of several algorithms for solving integral equations with finite-part integrals, I. J. Integral Equ.

1983, 5, 329–340.
7. Golberg, M.A. The convergence of several algorithms for solving integral equations with finite-part integrals, II. J. Integral Equ.

1985, 9, 267–275.
8. Lifanov, I.K.; Poltavskii, L.N.; Vainikko, G.M. Hypersingular Integral Equations and Their Applications; CRC Press Company: Boca

Raton, FL, USA, 2004.
9. Boykov, I.; Roudnev, V.; Boykova, A. Approximate methods for solving linear and nonlinear hypersingular integral equations.

Axioms 2020, 9, 74. [CrossRef]
10. Boykov, I.V. Approximate methods for solving hypersingular integral equations. In Topics in Integral and Integro-Difference

Equations. Theory and Applications; Singh, H., Dutta, H., Cavalcanti, M.M., Eds.; Springer: Dordrecht, The Netherlands, 2021;
pp. 63–102.

11. Boykov, I.V. Approximate Methods for Calculating Singular and Hypersingular Integrals. Part One. Singular Integrals; Penza State
University Publishing House: Penza, Russia, 2005.

12. Boykov, I.V. Approximate Methods for Calculating Singular and Hypersingular Integrals. Part Two. Hypersingular Integrals; Penza State
University Publishing House: Penza, Russia, 2009.

13. Boykov, I.V.; Ventsel, E.S.; Boykova, A.I. Accuracy optimal methods for evaluating hypersingular integrals. Appl. Numer. Math.
2009, 59, 1366–1385. [CrossRef]

14. Boykov, I.V.; Boykova, A.I.; Aikashev, P.V. Projection methods for solving hypersingular integral equations on fractals. Univ. Proc.
Volga Reg. Phys. Math. Sci. Math. 2016, 1, 71–86.

15. Boykov, I.V.; Boykova, A.I.; Potapov, A.A.; Rassadin, A.E. Approximate Methods for Solving Hypersingular Integral Equations
on Fractals. In 14th Chaotic Modeling and Simulation International Conference. CHAOS, Greece, 2021; Skiadas, C.H., Dimotikalis, Y.,
Eds.; Springer Proceedings in Complexity; Springer: Cham, Switzerland, 2022.

16. Kats, B.A.; Mironova, S.R.; Pogodina, A.Y. Singular Integral Equations on Non-Smooth Curves in Hölder-Frechet Space. Russ.
Math. Iz. VUZ 2018, 10, 26–29. [CrossRef]

17. Jaggard, D.L.; Jaggard, A.D. Polyadic Cantor Superlattices with Variable Lacunarity. Opt. Lett. 1997, 22, 145–147. [CrossRef]
18. Puente, C.; Romeu, J.; Pous, R.; Cardama, A. On the Behavior of the Sierpinski Multiband. Fractal Antenna IEEE Trans. Antennas

Propag. 1998, 46, 517–524. [CrossRef]
19. Potapov, A.A. Fractals in Radiophysics and Radar: The Topology of the Sample; Universitetskaya Kniga: Moscow, Russia, 2005.
20. Werner, D.H.; Gangul, S. An Overview of Fractal Antenna. Eng. Res. IEEE Antennas Propag. Mag. 2003, 45, 38–57. [CrossRef]
21. Turcotte, D. Fractals and Chaos in Geology and Geophysics; Cambridge University Press: Cambridge, UK, 1992.
22. Babayants, P.S.; Blokh, Y.I.; Trusov A.A. Fundamentals of modeling potential fields of fractal geological objects. In Questions

of Theory and Practice of Geological Interpretation of Gravitational, Magnetic and Electric Fields. Proceedings of the 32nd Session of the
International Seminar Named after D.G. Uspensky; Mining Institute of the Ural Branch of the Russian Academy of Sciences: Perm,
Russia, 2005; pp. 12–14.

23. Chikin, L.A. Special cases of the Riemann boundary value problems and singular integral equations. Sci. Notes Kazan State Univ.
1953, 113, 53–105.

24. Stein, I. Singular Integrals and Differential Properties of Functions; Mir: Moscow, Russia, 1973.
25. Kondurar, V. Sur l’integrale de Stieltjes. Rec. Math. Moscou 1937, 2, 361–366.
26. Kats, B.A. The Stieltjes integral over a fractal contour and some of its applications. Russ. Math. 2000, 44, 19–29.
27. Wiener, N. The quadratic variation of a function and its Fourier coefficients. J. Math. Phys. 1924, 3, 72–94. [CrossRef]
28. Young, L.C. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. Upps. 1936, 36, 251–282. [CrossRef]
29. Young, L.C. General inequalities for Stieltjes integrals and the convergence of Fourier series. Math. Ann. 1938, 115, 581–612.

[CrossRef]
30. Kats, B.A. Jump problem and integral over non-rectifiable curve. Sov. Math. 1987, 31, 65–75.
31. Harrison, J.; Norton, A. The Gauss–Green theorem for fractal boundaries. Duke Math. J. 1992, 67, 575–586. [CrossRef]
32. Harrison, J. Stokes theorem for nonsmooth chains. Bull. Am. Mat. Soc. 1993, 29, 235–242. [CrossRef]
33. Kats, B.A. Integration over Non-Rectifiable Curve; Issues of Mathematics, Continuum Mechanics and Application of Mathematical

Methods in Construction: Collection of Scientific Papers; MGSU, MSUCE: Moscow, Russia, 1992; pp. 63–69.

http://dx.doi.org/10.3390/axioms9030074
http://dx.doi.org/10.1016/j.apnum.2008.08.004
http://dx.doi.org/10.3103/S1066369X18100031
http://dx.doi.org/10.1364/OL.22.000145
http://dx.doi.org/10.1109/8.664115
http://dx.doi.org/10.1109/MAP.2003.1189650
http://dx.doi.org/10.1002/sapm19243272
http://dx.doi.org/10.1007/BF02401743
http://dx.doi.org/10.1007/BF01448958
http://dx.doi.org/10.1215/S0012-7094-92-06724-X
http://dx.doi.org/10.1090/S0273-0979-1993-00429-4


Mathematics 2023, 11, 4752 20 of 20

34. Kats, B.A. Integration over a plane fractal curve, a jump problem and generalized measure. Russ. Math. 1998, 42, 51–63.
35. Kats, B.A. Integration over a fractal curve and the jump problem. Math. Notes 1998, 64, 476–482. [CrossRef]
36. Vekua, I.N. Generalized Analytic Functions, 2nd ed.; Olejnik, O.A., Shabat, B.V., Eds.; Nauka: Moscow, Russia, 1988.
37. Mironova, S.R. Singular integral equations on countable set of closed non-rectifiable and fractal curves. Russ. Math. 1998, 42,

41–47.
38. Gel’fand, I.M.; Shilov, G.E. Generalized Functions. Volume 1: Properties and Operations; AMS Chelsea Publishing, American

Mathematical Society: Providence, RI, USA, 2016.
39. Potapov, A.A.; Gulyaev, Y.V.; Nikitov, S.A.; Pakhomov, A.A.; German, V.A. The Modern Methods of Image Processing; Potapov, A.A.,

Ed.; FIZMATLIT: Moscow, Russia, 2008.
40. Natanson, I.P. Constructive Function Theory. Vol. I. Uniform Approximation; Frederick Undar Publishing Co.: New York, NY,

USA, 1965.
41. Schwartz, L. Théorie des Distributions; Hermann: Paris, France, 1966.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF02314628

	Introduction
	Review of Approximate Methods for Calculating Singular and Hypersingular Integrals
	Definitions
	Definitions of Regular Integrals
	Definitions of Singular and Hypersingular Integrals

	Approximate Calculation of the Stieltjes Integral
	Approximate Calculation of Singular Integrals
	Approximate Calculation of Hypersingular Integrals
	Numerical Illustrations
	Discussion and Conclusions
	References

