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Abstract: In this study, the inverse problems of recovering the heat transfer coefficient at the interface
of integral measurements are considered. The heat transfer coefficient occurs in the transmission
conditions of an imperfect contact type. This is representable as a finite part of the Fourier series
with time-dependent coefficients. The additional measurements are integrals of a solution multiplied
by some weights. The existence and uniqueness of solutions in Sobolev classes are proven and the
conditions on the data are sharp. These conditions include smoothness and consistency conditions
on the data and additional conditions on the kernels of the integral operators used in the additional
measurements. The proof relies on a priori bounds and the contraction mapping principle. The
existence and uniqueness theorem is local in terms of time.
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1. Introduction

Under consideration is a parabolic equation of the following form:

Mu = ut − Lu = f , Lu =
n

∑
i,j=1

∂

∂xi
aij(t, x)uxj −

n

∑
i=1

ai(t, x)uxi − a0(t, x)u, x ∈ G, (1)

where G ⊂ Rn is a bounded domain with boundary Γ of class C2 (see the definitions in [1]
(Chapter 1)), t ∈ (0, T). Let Q = (0, T)× G, S = (0, T)× Γ.

This equation is a vital tool in scientific and engineering applications in assessing and
forecasting temperature changes over time. According to Animasaun I. L. et al. (2022) [2],
it is commonly used to model heat conduction, diffusion, and numerous dynamic thermal
processes. The problems of identifying the interface heat transfer coefficients arise in
various problems of mathematical physics (see [3–6]): in the diagnostics and identification
of heat transfer in supersonic heterogeneous flows, in the modeling and description of
heat transfer in heat-shielding materials and coatings, in thermal protection design and the
control of heat transfer regimes, in the modeling of properties and thermal processes in the
reusable thermal protection of aerospace vehicles, in composite materials, in ecology, etc.

The statement of the problem is as follows. The domain G is divided into two open sets
G+ and G−, G− ⊂ G, G+ ∪ G− = G, G+ ∩ G− = ∅. Let Γ0 = ∂G+ ∩ ∂G−, S0 = Γ0 × (0, T).
Equation (1) is supplemented with the initial and boundary conditions

B(t, x)u|S = g, u|t=0 = u0(x), (2)

where Bu = ∂u
∂N + βu or Bu = u, ∂u

∂N = ∑n
i,j=1 aij(t, x)uxj(t, x)ni, with ~n = (n1, n2, . . . , nn)

the outward unit normal to S, and the transmission conditions
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∂u+

∂N
(t, x)− σ(t, x)(u+(t, x)− u−(t, x)) = g+(t, x), (t, x) ∈ S0, (3)

∂u−

∂N
(t, x) =

∂u+

∂N
(t, x), (t, x) ∈ S0, (4)

where ∂u±
∂N (t, x0) = limx∈G± , x→x0∈Γ0 ∑n

i,j=1 aijuxi νj, u±(t, x0) = limx∈G± , x→x0∈Γ0
u(t, x),

and ν is the unit outward normal to ∂G−. The inverse problem is to determine a solution u
to the problem (1)–(4) and the function σ = ∑m

i=1 qi(t)Φi(t, x), where the functions qi are
unknowns and {Φi(t, x)} are some basis functions. It is natural to assume that they depend
only on x but, for the sake of generality, we understand them as depending on all variables.
The additional integral measurements are as follows:∫

G
u(t, x)ϕk(x)dx = ψk(t), k = 1, 2, . . . , m. (5)

The transmission conditions (3) and (4) agree with the conventional imperfect contact
condition at the interface (see [5]). The coefficient σ is called the heat transfer coefficient. If
σ→ ∞ then we come to the diffraction problem (see [1] (Chapter 3, Section 16)) in which
u+ = u− and ∂u+

∂N = ∂u−
∂N on S0.

At present, there are many publications on the numerical solutions of the problems
of the type (1)–(5) in the various statements. The most usable statement provides the
pointwise additional measurements; in this case, the condition (5) is replaced with the
conditions u(t, bj) = ψj(t) (j = 1, 2, . . . , m, bj ∈ G). This is often the case when the
coefficient σ depends only on time [6–9] or space variables [10–13] (see, also, the bibliog-
raphy and the results in [14–17]). In almost all papers, the problem is reduced to some
optimal control problem and the minimization of the corresponding quadratic functional
(see [6–8,10,11,14,15]). Let us describe some of the previously addressed problems. In the
case of a sole space or time variable, the heat transfer coefficient depending on the tempera-
ture is recovered numerically with the use of pointwise measurements in [6]. In [14], the
authors determine the heat transfer coefficients that depend, in a special manner, on the
additional parameters from a collection of values of a solution at given points. In [10,16],
the Monte Carlo method is employed to restore the heat transfer coefficient depending
on two space variables. The values of a solution on the part of the boundary serve as the
overdetermination conditions. The simultaneous recovering of a coefficient in a parabolic
equation and the heat transfer coefficient is realized in [7]. The pointwise overdetermi-
nation conditions are also used in [15,17]. In [17], the problem under consideration is a
one-dimensional inverse problem of simultaneously recovering the heat flow on one of
the lateral boundaries and the thermal contact resistance at the interface. The authors of
reference [11] implement the numerical determination of the heat transfer coefficient from
measurements on the available part of the outer boundary of the domain.

Some existing results are known if the pointwise ovedetermination conditions are
used instead of those in (5). If the measurement points lie on the boundary of the domain
and the heat transfer coefficient occurring in the boundary condition is determined, then
the existence and uniqueness theorems can be found in [18–20]. The same results were
obtained if the measurement points lie at the interface. The inverse problem of determining
the interface heat transfer coefficient under certain conditions is well-posed and the most
general existence and uniqueness theorems can be found in [21,22]. If the measurement
points lie in G then the problem becomes ill-posed. The conditions (5) were used in [23,24] to
determine the heat flux on the outer boundary and the existence and uniqueness theorems
were proven. It is often the case when the integrals in (5) are taken over the boundary of a
domain [25,26] and the heat transfer coefficient, depending on time or space variables, is
determined. In these articles, the problem is reduced to a control problem, which is studied
theoretically, and some existence theories are presented. But these control problems are not
equivalent to the initial ones.

As for the problem (1)–(5), there are no theoretical results on the solvability or unique-
ness of the solutions to this problem in the literature. In contrast to other articles, we look
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for the heat transfer coefficient in the form of a finite segment of the Fourier series and this
statement allows us to obtain an approximation of the heat transfer coefficient depending
on all variables, and the accuracy of determination depends on just a number of measure-
ments. Hence, the statement of the problem is novel. Note that the integral conditions are
often employed as an approximation to the pointwise overdetermination conditions and
are of interest in their own right. In the present article, we study the well-posed questions
for the problem (1)–(5) and establish existence and uniqueness theorems for solutions to
this problem locally in terms of time.

2. Preliminaries

The Lebesgue spaces Lp(G; E) and the Sobolev spaces Ws
p(G; E), Ws

p(Q; E) of vector-
valued functions taking the values in a Banach space E (see the definitions in [27,28])
are used in the article. The Sobolev spaces are denoted by Ws

p(G), Ws
p(Q), etc., when-

ever E = Rn. The inclusion u = (u1, u2, . . . , uk) for a vector function means that every
component ui of u belongs to Ws

p(G). By a norm of a vector, we mean the sum of the
norms of its coordinates. The Hölder spaces Cα(G), Cα,β(Q), Cα,β(S) are defined in [1]
(see, also, [27]). Given an interval J = (0, T), put Ws,r

p (Q) = Ws
p(J; Lp(G)) ∩ Lp(J; Wr

p(G)

and Ws,r
p (S) = Ws

p(J; Lp(Γ)) ∩ Lp(J; Wr
p(Γ)). All coefficients of L are real, as well as the

corresponding function spaces.
To simplify the exposition, we suppose below that p > n + 2. Denote

(u, v) =
∫

G u(x)v(x)dx. Introduce the notations Qτ = (0, τ) × G, Sτ = (0, τ) × Γ,
Sτ

0 = (0, τ) × Γ0, Q± = (0, T) × G±, Qτ
± = (0, τ) × G±. Let Bδ(b) be a ball centered

at b of radius δ. The symbol ρ(X, M) stands for the distance between the sets X, M ⊂ Rn.
Endow the space Ws

p(0, β; E) (s ∈ (0, 1), β > 0, E—is a Banach space) with the

norm ‖q(t)‖Ws
p(0,β;E) = (‖q‖p

Lp(0,β;E)+ < q >
p
s,β)

1/p, < q >
p
s,β=

∫ β
0

∫ β
0
‖q(t1)−q(t2)‖

p
E

|t1−t2|1+sp dt1dt2.

This space agrees with the space Ws
p(0, β) whenever E = R. Given s ∈ (0, 1), put

W̃s
p(0, β; E) = {q ∈Ws

p(0, β; E) : t−sq(t) ∈ Lp(0, β; E)}. The following norm is used in this
space: ‖q(t)‖p

W̃s
p(0,β;E)

= ‖ q
ts ‖p

Lp(0,β;E)+ < q >
p
s,β. If s > 1/p and q ∈ W̃s

p(0, β; E) then

q(0) = 0 and this norm and the usual norm ‖ · ‖Ws
p(α,β;E) are equivalent for functions q(t),

such that q(0) = 0 (see [27] (Subsection 3.2.6, Lemma 1)). The spaces W̃s
p(0, β; Lp(G)) and

W̃s,2s
p (Qβ) = W̃s

p(0, β; Lp(G)) ∩ Lp(0, β; W2s
p (G)) for s 6= 1/p comprise functions v(t, x) in

Ws
p(0, β; Lp(G)) and in Ws,2s

p (Qβ), respectively, such that v(0, x) = 0 for s > 1/p. The
norms ‖ · ‖W̃s,2s

p (Qβ)
, ‖ · ‖W̃s

p(0,β;Lp(G)) are defined naturally, for example, ‖u‖W̃s,2s
p (Qβ)

=(
‖u‖p

W̃s
p(0,β;Lp(G))

+ ‖u‖p
Lp(0,β;W2s

p (G))

)1/p. Similar definitions are employed for the norms in

W̃s
p(0, β; Lp(Γ)), W̃s,2s

p (Sβ). The following lemmas are known (see [29] (Lemmas 1–4)).

Lemma 1. Let G be a bounded domain with boundary Γ of the class C2 and Qτ = (0, τ)× G,
Sτ = (0, τ)× Γ. There exists a constant C independent of τ ∈ (0, T], such that

‖v‖
W̃

s1,2s1
p (Sτ)

≤ C‖v‖W1,2
p (Qτ)

, s1 = 1− 1/2p,

‖∂v
∂ν
‖

W̃
s0,2s0
p (Sτ)

≤ C‖v‖W1,2
p (Qτ)

, s0 = 1/2− 1/2p,

for all v ∈W1,2
p (Qτ), such that v(x, 0) = 0. Here, ∂v

∂ν is the outward unit normal to Γ.

Lemma 2. Assume that s ∈ ((n + 2)/2p, 1). The product q · v of functions in Ws,2s
p (Qτ)

(τ ∈ (0, T]) is contained in Ws,2s
p (Qτ). If q ∈ W̃s,2s

p (Qτ) and v ∈Ws,2s
p (Qτ), then qv ∈ W̃s,2s

p (Qτ)
and ‖qv‖W̃s,2s

p (Qτ)
≤ c0‖q‖W̃s,2s

p (Qτ)
(‖v‖Ws,2s

p (Qτ)
+ ‖v‖L∞(Qτ)).

If v ∈Ws,2s
p (Q), then the last inequality can be written as



Mathematics 2023, 11, 4739 4 of 14

‖qv‖W̃s,2s
p (Qτ)

≤ c1‖q‖W̃s,2s
p (Qτ)

‖v‖Ws,2s
p (Q)

,

and if v ∈ W̃s,2s
p (Qτ), then

‖qv‖W̃s,2s
p (Qτ)

≤ c2‖q‖W̃s,2s
p (Qτ)

‖v‖W̃s,2s
p (Qτ)

,

where the constants ci, i = 0, 1, 2 are independent of q, v and τ ∈ (0, T]. If |v(t)| is strictly positive
in Qτ , i.e., δ0 = inf(t,x)∈Qτ |v(t, x)| > 0, then the ratio q/v of functions in Ws,2s

p (Qτ) (τ ∈ (0, T])
belongs to Ws,2s

p (Qτ) and if q ∈ W̃s,2s
p (Qτ) and v ∈Ws,2s

p (Qτ), then q/v ∈ W̃s,2s
p (Qτ) and

‖q/v‖W̃s
p(0,τ) ≤ c0‖q‖W̃s,2s

p (Qτ)
(‖v‖Ws,2s

p (Qτ)
+ ‖v‖L∞(Qτ)),

‖q/v‖W̃s,2s
p (Qτ)

≤ c0‖q‖W̃s,2s
p (Qτ)

‖v‖Ws,2s
p (Q)

,

where the constant c0 is independent of q and τ. The set Qτ can be replaced with Sτ in the above
inequalities and s ∈ ((n + 1)/2p, 1) in this case. In the case of a function q depending only on one
variable t, the norm of q in W̃s,2s

p (Qτ) in the above inequalities is replaced with the norm of q in
W̃s

p(0, τ).

Consider the following auxiliary transmission problems:

Mu = f (t, x), (t, x) ∈ Q, Bu|S = g, u|t=0 = u0, (6)

B+u =
∂u+

∂N
− σ̃(u+ − u−) = g+,

∂u+

∂N
=

∂u−

∂N
+ g−, (t, x) ∈ S0. (7)

Describe the conditions on the data ensuring the solvability of the problem (6) and (7).
Proceed with the conditions on the data. The operator L is elliptic, i.e., there exists a
constant δ0 > 0 such that

∑n
i,j=1 aij(t, x)ξiξ j ≥ δ0|ξ|2 ∀ξ ∈ Rn, ∀(t, x) ∈ Q. (8)

The conditions on the coefficients are as follows:

ai ∈ Lp(Q) (i ≥ 0), aij ∈ C(Q±) ( i, j = 1, . . . , n); (9)

the function aij|Q± admits extensions to continuous functions of class C(Q±) and

a±ij |S0 ∈Ws0,2s0
p (S0), aij|Q± ∈ C([0, T]; W1

p(G
±)), aij|S ∈Ws0,2s0

p (S), (10)

where i, j = 1, . . . , n, a±ij (t, x0) = limx∈G± , x→x0∈Γ0
aij(t, x), and the last inclusion in (10) is

fulfilled provided that Bu 6= u in (2)

aij, ak ∈ L∞(G; Ws0
p (0, T)) (k = 0, 1, . . . , n, i, j = 1, . . . , n). (11)

The main conditions on the data are of the following form:

f ∈ Lp(Q), u0(x) ∈W2−2/p
p (G±), g ∈Wk0,2k0

p (S), g± ∈Ws0,2s0
p (S0), (12)

where k0 = 1− 1/2p in the case of Bu = u and k0 = 1/2− 1/2p, otherwise,

β ∈Ws0,2s0
p (S), g(0, x)|Γ = B(0, x)u0|Γ,

∂u+
0

∂N
=

∂u−0
∂N

+ g−(0, x), x ∈ Γ0, (13)

σ̃ ∈Ws0,2s0
p (S),

∂u+
0

∂N
= σ̃(u+

0 − u−0 ) + g+(0, x). (14)

The following theorem is a consequence of Theorem 1 in [21].
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Theorem 1. Let the conditions (8)–(14) hold and let Γ, Γ0 ∈ C2. Then, there exists a unique
solution u|Q± ∈W1,2

p (Q±) to the problems (6) and (7), satisfying the estimate

‖u‖W1,2
p (Q+)

+ ‖u‖W1,2
p (Q−) ≤ C0(‖u0‖W2−2/p

p (G+)
+ ‖u0‖W2−2/p

p (G−)
+

‖ f ‖Lp(Q) + ‖g+‖W
s0,2s0
p (S0)

+ ‖g−‖
W

s0,2s0
p (S0)

+ ‖g‖
W

k0,2k0
p (S)

).

If u0 ≡ 0, then, for every τ ∈ (0, T], there exists a unique solution u ∈W1,2
p (Qτ

+) ∩W1,2
p (Qτ

−) to
the problems (6) and (7), satisfying the estimate

‖u‖W1,2
p (Qτ

+)
+ ‖u‖W1,2

p (Qτ
−)
≤

C1(‖ f ‖Lp(Qτ) + ‖g+‖W̃
s0,2s0
p (Sτ

0 )
+ ‖g−‖

W̃
s0,2s0
p (Sτ

0 )
+ ‖g‖

W̃
k0,2k0
p (Sτ)

).

The constants C0, C1 are independent of τ.

Proof. Let τ = T. The claim of the theorem agrees with that in Theorem 1 in [21] for our
case (see, also, Theorem 3 of [29]). Our problem is a particular case of that considered in
this theorem. However, there are some distinctions in the conditions on the coefficients
aij, a±ij . They belong to some Hölder class on S, S0, respectively, in [21]. However, the results
remain valid if the conditions (10) are used instead of these conditions and the proof of this
theorem does not change whenever we use the reference to the results in [28] (Theorem 2.1)
on solvability of parabolic problems instead of the reference to the classical results in [1].
The conditions on coefficients of the boundary operators are stated in [28] (Theorem 2.1) in
terms of the Sobolev spaces. Thus, the only distinction in the proofs is that one reference is
replaced with another and this fact allows us to say that an analog of Theorem 1 in [21] for
our case is valid.

3. Existence and Uniqueness Theorems

The following additional conditions are used in what follows:

ϕk|G± ∈W1
∞(G±), Φk ∈Ws0,2s0

p (S0), ψk ∈Ws0+1
p (0, T), ( f , ϕk) ∈Ws0

p (0, T), (15)

where k = 1, 2, . . . , m. Assume that a pair (u,~q), ~q = (q1, q2, . . . , qm) is a solution to the
problem (1)–(5). Multiply (1) by ϕi and integrate over G. Integrating by parts and using
the transmission conditions, we infer

ψ′i(t) +
m

∑
j=1

qj(t)
∫

Γ0

Φj(t, x)(u+(t, x)− u−(t, x))(ϕ+
i (x)− ϕ−i (x))dΓ0 −

∫
Γ

∂u
∂N

ϕi(x) dΓ

+
∫

Γ0

g+(ϕ+
i (x)− ϕ−i (x)) dΓ + a(u, ϕi) = ( f , ϕi) =

∫
G

f (t, x)ϕi(x) dx.

a(u, ϕi)(t) =
n

∑
k,l=1

∫
G

akluxl ϕixk (x) dG +
∫

G
(

n

∑
k=1

akuxk + a0u)ϕi(x) dG, (16)

where ϕ±k (x0) = limx→x0,x∈G± ϕk(x). Define the function ϕ0
i (x) = ϕ+

i (x)− ϕ−i (x) (x ∈ Γ0).
We would like to have it so that the system (16) is uniquely solvable relative to the
functions ~q, i.e., |det B(t)| ≥ δ0 > 0 ∀t ∈ [0, T], where B(t) is the matrix with entries∫

Γ Φj(t, x)(u+(t, x)− u−(t, x))(ϕ+
i (x)− ϕ−i (x)) dΓ. Taking t = 0, we obtain the condition

|det B0| 6= 0 B0 = B(0), bij =
∫

Γ
Φj(0, x)(u+

0 (x)− u−0 (x))(ϕ+
i (x)− ϕ−i (x)) dΓ. (17)

Let t = 0 in (16). We arrive at the system
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ψ′i(0) +
m

∑
j=1

qj(0)
∫
Γ0

Φj(0, x)(u+
0 (x)− u−0 (x))ϕ0

i (x) dΓ0−

∫
Γ

∂u0

∂N
ϕi(x) dΓ +

∫
Γ0

g+(0, x)ϕ0
i (x) dΓ + a(u0, ϕi) = ( f (0, x), ϕi). (18)

where i = 1, 2, . . . , m. Under these conditions (17), there exists a unique solution
(q1(0), . . . , qm(0)) to the system (18). Thus, we have determined the function
σ(0, x) = ∑m

i=1 qi(0)Φi(0, x). Taking t = 0 at (3) and (5) and using the initial conditions (2),
we come to the necessary consistency conditions

∂u+
0

∂N
− σ(0, x)(u+

0 − u−0 )
∣∣
Γ = g+(0, x) (x ∈ Γ),

∫
G

u0(x)ϕk(x) dx = ψk(0), (19)

where k = 1, . . . , m. The main result of the article is the following theorem.

Theorem 2. Let the conditions (8)–(13), (15), (17) and (19) hold. Then, on some segment [0, τ0]
(τ0 ≤ T), there exists a unique solution (u,~q) (~q = (q1, . . . , qm)) to the problem (1)–(5), such that
u|Q± ∈W1,2

p (Qτ0
± ),~q ∈Ws0

p (0, τ0).

Proof. Let a pair u ∈ W1,2
p (Q+) ∩W1,2

p (Q−), ~q ∈ Ws0
p (0, T) be a solution to the problem

(1)–(5). As before, we can find constants qi(0). Let ∑m
i=1 qi(0)Φi(t, x) = σ0(t, x) and denote

by v ∈W1,2
p (Q+)∩W1,2

p (Q−) a solution to the problems (6) and (7) (see Theorem 1) with σ0
rather than σ̃ and g− = 0. Make the change of variables u = v+w. Inserting this function u
in (1) and involving the equation (6), we obtain that the function w ∈W1,2

p (Q+)∩W1,2
p (Q−)

is a solution to the problem

wt − Lw = 0, Bw|Γ = 0,
∂w+

∂N
=

∂w−

∂N
, w|t=0 = 0,

∂w+

∂N
− σ0(w+ − w−) = (σ− σ0)(v+ + w+ − v− − w−). (20)

The condition (5) is rewritten as follows:∫
G

wϕk(x) dx = ψk −
∫

G
v(t, x)ϕk(x) dx = ψ̃k, k = 1, 2, . . . , m. (21)

In view of (15) and (19), ψ̃k(0) = 0 and ψ̃k(t) ∈ W1
p(0, T). Below, we demonstrate that∫

G vt(t, x)ϕk(x) dx ∈ Ws0
p (0, T) and, thus, ψ̃k(t) ∈ W1+s0

p (0, T). Multiply the equation in
(20) by ϕk(x) and integrate over G. Integrating by parts, we infer

ψ̃′i(t) +
m

∑
j=1

q̃j(t)
∫

Γ0

Φj(t, x)(w+(t, x)− w−(t, x) + v+(t, x)− v−(t, x))ϕ0
i (x) dΓ0

−
∫

Γ

∂w
∂N

ϕi(x) dΓ +
∫

Γ0

σ0(w+(t, x)− w−(t, x))ϕ0
i (x) dΓ + a(w, ϕi) = 0. (22)

where i = 1, . . . , m and q̃i = qi − qi(0). The equality (22) is rewritten as

m

∑
j=1

q̃j(t)
∫

Γ0

Φj(t, x)(v+ − v−)ϕ0
i (x)dΓ0 = −a(w, ϕi)− ψ̃′i(t) +

∫
Γ

∂w
∂N

ϕi(x) dΓ−

∫
Γ0

σ0(w+ − w−)ϕ0
i (x) dΓ−

m

∑
j=1

q̃j(t)
∫

Γ0

Φj(t, x)(w+ − w−)ϕ0
i (x)dΓ0.

and, therefore, we have the operator equation
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B(t)~q = ~F, Fk = −a(w, ϕi)− ψ̃′i(t) +
∫

Γ

∂w
∂N

ϕi(x) dΓ−
∫

Γ0

σ0(w+ − w−)ϕ0
i (x) dΓ

−
m

∑
j=1

q̃j(t)
∫

Γ0

Φj(t, x)(w+ − w−)ϕ0
i (x) dΓ0,

where ~F = (F1, . . . , Fm)T , ~q = (q̃1, . . . , q̃m)T and B(t) is the matrix with entries
bij =

∫
Γ0

Φj(t, x)(v+(t, x)− v−(t, x))ϕ0
i (x) dΓ0. Moreover, B(0) = B0 and the matrix B0 is

nondegenerate. The embedding theorems imply that v ∈ C(Q), Φi ∈ C(S) (even more
v ∈ C1−(n+2)/2p,2−(n+2)/p(Q)) and, therefore, there exist parameters τ0 and δ1 > 0, such
that

|det B(t)| ≥ δ1 ∀t ∈ [0, τ0].

For τ ≤ τ0, we have that
~q = B−1~F = R(~q) = ~g0 + R0(~q), (23)

where ~g0 = B−1~Ψ and the kth coordinate Ψk of the vector ~Ψ is of the form
Ψk(t) = −ψ̃′k(t). This equation is used to determine ~q. We demonstrate that the oper-
ator R is a contraction in the ball BR0 = {~q ∈ W̃s0

p (0, τ) : ‖~q‖W̃
s0
p (0,τ) ≤ R0}, provided that

the parameter τ is sufficiently small, where R0 = 2‖~g0‖W̃
s0
p (0,T). First, we obtain estimates

for the function w, which is a solution to the problem (20). In what follows, the notation
‖w‖τ = ‖w‖W1,2

p (Qτ
+)

+ ‖w‖W1,2
p (Qτ

−)
is used. Fix a parameter τ ∈ (0, T]. Theorem 1, when

applied to the problem (20), implies the estimate

‖w‖τ ≤ c‖(σ0 − σ)(v+ + w+ − v− − w−)‖
W̃

s0,2s0
p (Sτ

0 )
, (24)

where c is independent of τ. Let ~q ∈ BR0 . Since Φj ∈ Ws0,2s0
p (S0), according Lemma 2

q̃i(t)Φi(t, x) ∈Ws0,2s0
p (Sτ

0 ), we have the estimates

‖σ0 − σ‖
W̃

s0,2s0
p (Sτ

0 )
≤ c0‖~q‖W̃

s0
p (0,τ),

‖(σ0 − σ)(v+ + w+ − v− − w−)‖
W̃s0,2s0

p (Sτ
0 )
≤ ‖(σ0 − σ)(v+ − v−)‖

W̃s0,2s0
p (Sτ

0 )
+

‖(σ0 − σ)(w+ − w−)‖
W̃s0,2s0

p (Sτ
0 )
≤ c1‖~q‖W̃s0

p (0,τ)(‖v
+ − v−‖

Ws0,2s0
p (S0)

+ ‖w+ − w−‖
W̃s0,2s0

p (Sτ
0 )
)

≤ c2R0(1 + ‖w+‖
W̃s0,2s0

p (Sτ
0 )
+ ‖w−‖

W̃s0,2s0
p (Sτ

0 )
).

The definition of the norm in W̃s0,2s0
p (Sτ

0 ) and Lemma 1 imply that

‖w±‖
W̃

s0,2s0
p (Sτ

0 )
≤ τ1/2‖w±‖

W̃
s1,2s1
p (Sτ

0 )
≤ c3τ1/2‖w‖τ .

This inequality and (24) validate the inequality

‖w‖τ ≤ 2c2R0 (25)

provided that τ ≤ τ1, with 2c2R0c3τ1/2
1 = 1/2. Note that the constants c2, c3 are indepen-

dent of τ. Next, we assume that the functions w1, w2 are solutions to the problem (20),
where the function σ is replaced with σ1, σ2, σi = ∑m

j=1 qi
jΦi and~q i = (qi

1, qi
2, . . . , qi

m)
T ∈ BR0 .

The difference w0 = w1 − w2 is a solution to the problem

w0t − Lw0 = 0,
∂w+

0
∂N

=
∂w−0
∂N

, w0|t=0 = 0,
∂w+

0
∂N
− σ0(w+

0 − w−0 ) =

(σ1 − σ2)(v+ − v− +
w+

1 + w+
2 − w−1 − w−2

2
) +

(σ1 + σ2)

2
(w+

0 − w−0 ). (26)
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Again involving Theorem 1, using (25) for the functions wi, and repeating the proof of (25),
we obtain the estimate

‖w0‖τ ≤ c3(R0)‖~q 1 −~q 2‖W̃
s0
p (0,τ) + c4(R0)(‖w+

0 ‖W̃
s0,2s0
p (Sτ

0 )
+ ‖w−0 ‖W̃

s0,2s0
p (Sτ

0 )
).

The above arguments of the proof of (25) imply that

‖w0‖τ ≤ 2c3(R0)‖~q 1 −~q 2‖W̃
s0
p (0,τ) (27)

provided that τ ≤ τ3 = min(τ1, τ0, τ2), with 2c4(R0)c3τ1/2
2 = 1/2. Consider the expression

R(~q 1)− R(~q 2) = B−1(~F1 − ~F2), F1
k − F2

k = −a(w0, ϕk) +
∫

Γ

∂w0

∂N
ϕk(x) dΓ−

∫
Γ0

σ0(w+
0 − w−0 )ϕ0

k(x) dΓ0 −
m

∑
j=1

(q1
j (t) + q2

j (t))

2

∫
Γ0

Φj(w+
0 − w−0 )ϕ0

k(x) dΓ0

−
m

∑
j=1

(q1
j (t)− q2

j (t))
∫

Γ0

Φj
(w+

1 + w+
2 − w−1 − w−2 )

2
ϕ0

k(x) dΓ0.

Estimate the quantity ‖F1
k − F2

k ‖W̃
s0
p (0,τ). The estimates of Lemma 2 yield

‖~F1
k − ~F2

k ‖W̃s0
p (0,τ) ≤ ‖a(w0, ϕk)‖W̃s0

p (0,τ) + ‖
∫
Γ

∂w0
∂N

ϕk(x) dΓ‖W̃s0
p (0,τ)

+ ‖
∫
Γ0

σ0(w+
0 − w−0 )ϕ0

k(x) dΓ0‖W̃s0
p (0,τ)+

c4

m

∑
j=1
‖q1

j (t)− q2
j (t)‖W̃s0

p (0,τ)‖
∫
Γ0

Φj(t, x)
(w+

1 + w+
2 − w−1 − w−2 )

2
ϕ0

k(x) dΓ0‖W̃s0
p (0,τ)

+ c5

m

∑
i=1
‖q1

i (t) + q2
i (t)‖W̃s0

p (0,τ)‖
∫
Γ0

Φj(t, x)(w+
1 − w+

2 − w−1 + w−2 )ϕ0
k(x) dΓ0‖W̃s0

p (0,τ). (28)

Estimate the summands in the expression a(w0, ϕk). We have

a(w0, ϕk) =
∫

G

n

∑
i,j=1

aijw0xj ϕkxi
+ (

n

∑
i=1

aiw0xi + a0w0)ϕk dx.

The Minkowskii and Hölder inequalities, Lemma 2 and the conditions (11) and (15) yield

‖
∫

G
aijw0xj ϕkxi

‖W̃
s0
p (0,τ) ≤ c

∫
G
‖∇w0‖W̃

s0
p (0,τ) dx ≤ c1

(∫
G
‖∇w0‖

p
W̃

s0
p (0,τ)

dx
)1/p (29)

for all i, j. Recall that the Hölder inequality is written as |
∫

G u(x)v(x) dx| ≤ ‖u‖Lp(G)‖v‖Lq(G)

with 1/p + 1/q = 1. Note that∫
G
‖∇w0‖

p
W̃

s0
p (0,τ)

dx =
∫

G

∫ τ

0

|∇w0|p
ts0 p dtdx+∫

G

∫ τ

0

∫ τ

0

|∇w0(t1, x)−∇w0(t2, x)|p
|t1 − t2|1+s0 p dt1dt2dx. (30)

Since we have the inequality ([W2
p(G±), Lp(G±)]1/2 = W1

p(G±), Theorem 4.3.1 in [27])

‖∇w0‖
p
Lp(G±)

≤ c2‖w0‖1/2
W2

p(G±)
‖w0‖1/2

Lp(G±)
,

the first summand on the right-hand-side of (30) is estimated as follows:

‖ 1
ts0
∇ω0‖Lp(Qτ) ≤ c2(‖w0‖Lp(0,τ;W2

p(G+)) + ‖w0‖Lp(0,τ;W2
p(G−))

)1/2‖ 1
t2s0

w0‖1/2
Lp(Qτ)

.



Mathematics 2023, 11, 4739 9 of 14

The Newton–Leibnitz formula ensures that ‖ 1
t2s0

w0‖Lp(Qτ) ≤ τ1/p‖w0t‖Lp(Qτ). In this case,
the last inequality can be rewritten as

‖ 1
ts0
∇w0‖Lp(Qτ) ≤ c2τ1/2p‖w0‖τ . (31)

Estimate the second summand in (30). We infer∫
G

∫ τ

0

∫ τ

0

|∇w0(t1, x)−∇w0(t2, x)|p
|t1 − t2|1+s0 p dt1dt2dx ≤∫

G

∫ τ

0

∫ τ

0

|∇w0(t1, x)−∇w0(t2, x)|p

|t1 − t2|1+p/2 dt1dt2dxτ1/2. (32)

Next, there exist extensions P±w0 of a function w0 defined in G± to the whole Rn such
that P± : W2

p(G±) → W2
p(Rn) is a linear operator such that ‖P±u‖W2

p(Rn) ≤ c3‖u‖W2
p(G±)

and ‖P±u‖Lp(Rn) ≤ c3‖u‖Lp(G±) for all u ∈ W2
p(G±), respectively, u ∈ Lp(G±). We can

use the Hestenes method described in the proof of Lemma 2.9.3 in [27] for the half-space
and then use it for arbitrary domains. In the case of G = Rn

+ = {x ∈ Rn : xn > 0}, the
method can be described as follows. Given a function u ∈W2

p(Rn
+), construct its extension

ũ to the whole Rn using the formula ũ = u for xn > 0 and ũ(x) = ∑2
i=1 ciu(x′,−λxn)

for xn < 0, where λi > 0 are different numbers and the constants ci are determined as a
solution to the system ∑2

i=1 ci = 1, −∑2
i=1 λici = 1. Generally speaking, this system is a

consequence of the equalities ũ(x′,+0) = ũ(x′,−0), ũ(x′ ,+0)
∂xn

= ũ(x′ ,−0)
∂xn

. The new function
belongs to W2

p(Rn) for u ∈ W2
p(Rn

+) and the space Lp(Rn) if u ∈ Lp(Rn
+). The case of a

general domain G is reduced to this simple case with the use of a partition of unity on ∂G
and a local straightening of the boundary (see the proof of Theorem 4.2.2 in [27]).

Thus, we can define the functions P±w0 ∈ W1,2
p ((0, τ) × Rn) such that

‖P±w0‖W1,2
p ((0,τ)×Rn)

≤ c3‖w0‖τ , with c the constant independent of w0 and τ > 0. Note

that Pw0(0, x) = 0. We have∫
G±

∫ τ

0

∫ τ

0

|∇w0(t1, x)−∇w0(t2, x)|p

|t1 − t2|1+p/2 dt1dt2dx ≤∫
Rn

∫ τ

0

∫ τ

0

|∇P±w0(t1, x)−∇P±w0(t2, x)|p

|t1 − t2|1+p/2 dt1dt2dx.

Make the change of variables ti = ττi (i = 1, 2), x =
√

τy. The last integral takes the form
(P̃±w0(τi, y) = P±w0(ττi,

√
τy))

I = τ1−p+n/2
∫
Rn

1∫
0

1∫
0

|∇y P̃±w0(τ1, y)−∇y P̃±w0(τ2, y)|p

|τ1 − τ2|1+p/2 dτ1dτ2dy. (33)

If u ∈W1,2
p ((0, 1)×Rn), then (see, for instance, Lemma 3.8 in [28], or Lemma 7.2 in [30] or

Theorem 18.12 in [31]) ∇u ∈W
1
2 ,1
p ((0, 1)×Rn) and

‖∇u‖
W

1
2 ,1

p ((0,1)×Rn)
≤ c4‖u‖W1,2

p ((0,1)×Rn)
,

where the constant c4 is indepedent of u. In this case, the integral in (33) is estimated by

I ≤ cp
4 τ1−p+n/2‖P̃±w0‖

p
W1,2

p ((0,1)×Rn)
=

cp
4 τ1−p+n/2

∫ 1

0

∫
Rn
|P̃±w0τ |p +

n

∑
i,j=1
|(P̃±w0)yiyj |

p dτdy,
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where the integral defines an equivalent norm to the power p in W1,2
p ((0, 1)×Rn), since

P̃±w0(0, x) = 0. Turn back to the old variables (t, x) and refer to the above estimate for P±.
We conclude that

I ≤ c5‖w0‖
p
τ , (34)

where the constant c5 is independent of τ. The relations (29)–(34) ensure the inequality

‖
∫

G
aijw0xj ϕkxi

‖W̃
s0
p (0,τ) ≤ c6τ1/2p‖w0‖τ ,

where the constant c6 is independent of τ. The summands
∫

G aiw0xi ϕk dx in a(w0, ϕk) are
estimated similarly. Simpler arguments are used to estimate the integral J =

∫
G a0w0 ϕk dx.

Indeed, Lemma 2 implies that

‖J‖W̃
s0
p (0,τ) ≤ c

∫
G

‖w0‖W̃
s0
p (0,τ) dx ≤ c1‖w0‖W̃

s0
p (0,τ;Lp(G))

,

‖w0‖
p
W̃

s0
p (0,τ;Lp(G))

=
∫
G

τ∫
0

1
ts0 p |w0|pdtdx +

∫
G

τ∫
0

τ∫
0

|w0(t1, x)− w0(t2, x)|p
|t1 − t2|1+s0 p dt1dt2dx.

Now, we use the representation w0(t1, x)−w0(t2, x) =
∫ t2

t1
ωt(t, x) dt in the second integral

and the equality w0(t, x) =
∫ t

0 w0ξ(ξ, x) dξ in the first integral. We derive that

‖w0‖
p
W̃

s0
p (0,τ;Lp(G))

≤ c2‖w0t‖Lp(Qτ) τ1/2+1/2p,

and, therefore,

‖
∫

G
a0w0 ϕk dx‖W̃

s0
p (0,τ) ≤ c‖w0‖W̃

s0
p (0,τ;Lp(G))

≤ c3‖w0t‖Lp(Qτ)τ
1/2+1/2p, (35)

where c3 is independent of τ. As can easily be seen, the above arguments (see the proof of
(31) and (34)) validate the inequality

‖w‖W̃
s0
p (0,τ;W1

p(G+))
+ ‖w‖W̃

s0
p (0,τ;W1

p(G−))
≤ cτ1/2p‖w‖τ , w|Qτ

±
∈W1,2

p (Qτ
±), w(0, x) = 0, (36)

where the constant c is independent of τ. In fact, the claim follows from the definition of
the norm

‖w‖p
W̃

s0
p (0,τ;W1

p(G±))
=
∫ τ

0
‖ 1

ts0
w‖p

W1
p(G±)

dt +
∫ τ

0

∫ τ

0

‖w(t1, x)− w(t2, x)‖p
W1

p(G±)

|t1 − t2|1+s0 p dt1dt2.

The necessary estimate of the former summand follows from (31) and (35) and the estimate
of the latter is a consequence of the estimates (32)–(34). Finally, we can state that

‖a(w0, ϕk)‖W̃
s0
p (0,τ) ≤ cτ1/2p‖w0‖τ .

Now, estimate the second summand J0 = ‖
∫

Γ
∂w0
∂N ϕk(x) dΓ‖W̃

s0
p (0,τ) in (28). Let Gδ = {x ∈

Rn : ρ(x, Γ) < δ (δ > 0). Choose a parameter δ so that ρ(Gδ, Γ0) > 0. In this case,
Gδ ∩ G ⊂ G+. Construct a function ϕ ∈ C∞

0 (Rn) such that supp ϕ ∈ Gδ and ϕ(x) = 1 for
x ∈ Gδ/2. The function ϕw0 is a solution to the problem

M(ϕw0) = 2
n

∑
i,j=1

aij ϕxi w0xj + w0Lϕ = Φ, w0|t=0 = 0, Bw0|Γ = 0, w0|Γ0 = 0.

Referring to the conventional parabolic theory (see [1] or [28]) and using Lemma 1 and
simple arguments (see the proof of Theorem 2 in [29]), we can say that there exist constants
c, c1, c2 > 0 independent of τ, such that
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‖∂w0

∂N
‖

W̃
s0,2s0
p (Γ)

≤ c‖ϕw0‖W1,2
p (Qτ

+)
≤ c1‖Φ‖Lp(Qτ

+)
≤ c2‖w0‖Lp(0,τ;W1

p(G+)).

Next, we can use the estimate (36) and conclude that

‖∂w0

∂N
‖

W̃
s0,2s0
p (Γ)

≤ c3τ1/2p‖w0‖τ . (37)

Consider the third summand J1 = ‖
∫

Γ0
σ0(w+

0 −w−0 )ϕ0
k(x) dΓ0‖W̃

s0
p (0,τ) in (28). We have that

J1 ≤ c
∫

Γ
‖w+

0 − w−0 ‖W̃
s0
p (0,τ) dΓ ≤ c1(‖w+

0 ‖W̃
s0
p (0,τ;Lp(Γ0))

+ ‖w−0 ‖W̃
s0
p (0,τ;Lp(Γ0))

) ≤

c2(‖w+
0 ‖W̃

s0
p (0,τ;W1

p(G+))
+ ‖w−0 ‖W̃

s0
p (0,τ;W1

p(G−))
) ≤ c3τ1/2p‖w0‖τ , (38)

where the constants ci are independent of τ. Here, we have employed the Hölder in-
equality, the embedding W1

p(G) ⊂ Lp(Γ) and the estimate (36). Estimate the factor

J2 = ‖
∫

Γ0
Φj(t, x) (w

+
1 +w+

2 −w−1 −w−2 )
2 ϕ0

k(x)dΓ0‖W̃
s0
p (0,τ) in the forth summand of (28). As

before (see (38)), we have

J2 ≤ c5τ1/2p(‖w1‖τ + ‖w2‖τ). (39)

In this case, the estimate of the forth summand J3 in (28) is of the form

J3 ≤ c6τ1/2p‖~q 1 −~q 2‖W̃
s0
p (0,τ)(‖w1‖τ + ‖w2‖τ). (40)

The last summand

J4 =
m

∑
i=1

‖q1
i (t) + q2

i (t)‖W̃
s0
p (0,τ)

2
‖
∫

Γ0

Φj(t, x)(w+
1 − w+

2 − w−1 + w−2 )ϕ0
k(x)dΓ0‖W̃

s0
p (0,τ)

is estimated as follows:

J4 ≤ c7‖~q 1 +~q 2‖W̃
s0
p (0,τ)(‖w

+
0 ‖W̃

s0
p (0,τ;Lp(Γ0)

+ ‖w−0 ‖W̃
s0
p (0,τ;Lp(Γ0)

) ≤ c8(R0)τ
1/2p‖w0‖τ (41)

The estimates (27), (28), (37), (38), (40) and (41) imply that

‖~F1
k − ~F2

k ‖W̃
s0
p (0,τ) ≤ c8τ1/2p‖~q 1 −~q 2‖W̃

s0
p (0,τ),

where the constant c8 is independent of τ ≤ τ3. This estimate and Lemma 2 ensure
the estimate

‖R~q 1 − R~q 2‖W̃
s0
p (0,τ) ≤ c9τ1/2p‖~q 1 −~q 2‖W̃

s0
p (0,τ),

where the constant c9 is independent of τ ≤ τ3. To apply the fixed point theorem, we need
to justify the membership ψ̃kt ∈ W̃s0

p (0, T). Recall that ψ̃kt = ψ′k(t)−
∫

G vt ϕk dx. Multiply
the equation in (6) written for the function v by ϕk and integrate over G. We obtain that∫

G
vt ϕk dx +

∫
Γ0

σ0(v+(t, x)− v−(t, x))ϕ0
k(x)dΓ0 −

∫
Γ

∂v
∂N

ϕk(x) dΓ

+
∫

Γ0

g+ϕ0
k(x) dΓ + a(v, ϕk) = ( f , ϕk).

This equality can be rewritten with the use of (18) as follows:
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∫
G

vt ϕk dx− ψ′k(t) = −a(v− u0, ϕk)−
∫
Γ0

σ0(v+(t, x)− u+
0 − v−(t, x) + u−0 )ϕ0

kdΓ0

+
∫

Γ
(

∂v
∂N
− ∂u0

∂N
)ϕk(x) dΓ−

∫
Γ0

(g+(t, x)− g+(0, x))ϕ0
k(x) dΓ0 + ( f − f (0, x), ϕk). (42)

Recall that (18) is written as

ψ′k(0) +
∫

Γ
σ0(u+

0 − u−0 )ϕk(x) dΓ + a(u0, ϕk) +
∫

Γ0

g+(0, x)ϕk(x) dΓ0 −
∫

Γ

∂u0

∂N
ϕk(x) dΓ

= ( f (0, x), ϕk), k = 1, 2, , . . . , m.

In this case, the equality (42) ensures that
∫

G vt(0, x)ϕk dx = ψ′k(0), i.e., ψ̃′k(0) = 0. Note
that all summands in (42) are continuous functions in t, which results from the conditions
on the coefficients and embedding theorems. Now we can see that every summand on the
right-hand side of (42) belongs to the space W̃s0

p (0, T) due to the above estimates. Next, we

can find τ4 ≤ τ3, such that c9τ
1/2p
4 ≤ 1/2. In this case, the fixed point theorem implies that

the equation (23) has a unique solution in the ball BR0 for every τ ≤ τ4. The function w is
defined as a solution to the problem (20). Respectively, u = v + w.

Validate the conditions (21). Multiply the equation in (20) by ϕk and integrate the
result over G. Integrating by parts, we infer∫

G

wt ϕk dx +
m

∑
j=1

q̃j(t)
∫

Γ0

Φj(t, x)(w+(t, x)− w−(t, x) + v+(t, x)− v−(t, x))ϕ0
i (x) dΓ0

−
∫

Γ

∂w
∂N

ϕi(x) dΓ +
∫

Γ0

σ0(w+ − w−)ϕ0
i (x) dΓ + a(w, ϕi) = 0.

Subtracting this equality from (22), we infer∫
G

wt ϕk dx = ψ̃′k, k = 1, . . . , m.

Integrating this equality with respect to t, we establish (21). The uniqueness of the solutions
is obvious due to the estimates obtained in the proof.

Remark 1. The stability estimate for solutions also holds and can be easily derived with the use of
the arguments in the proof.

Remark 2. The results remains valid if the boundary Γ0 consists of several connected components
as well as the set G− itself. In this case, we have several heat transfer coefficients. The corresponding
solvability conditions are not difficult to specify.

4. Discussion

We consider the inverse problems of recovering the heat transfer coefficient at the
interface using integral measurements. These problems arise in some practical applications,
but there are no theoretical results concerning the questions of existence and uniqueness.
The results can be used in developing new numerical algorithms and provide new condi-
tions of existence and uniqueness for solutions to these problems. We consider a model
case, but it is clear what changes should be made in the general case for validating similar
results. The main conditions on the data are conventional. The proof relies on a priori
bounds and the contraction mapping principle.

5. Conclusions

The existence and uniqueness theorems in the inverse problems of recovering the
heat transfer coefficient at the interface using the integral measurements are proven locally
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in terms of time. The heat transfer coefficient occurs in the transmission conditions of
imperfect contact type. This was sought in the form of a finite segment of the Fourier series
with coefficients depending on time. The proof relies on a priori bounds and a fixed point
theorem. The conditions on the data, ensuring the existence and uniqueness of the solutions
in Sobolev classes, are sharp. These are smoothness and consistency conditions on the
data and additional conditions on the kernels of the integral operators used in additional
measurements.
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