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Abstract: In this paper we study the Marcinkiewicz–Zygmund-type strong law of large numbers
with general normalizing sequences under sublinear expectation. Specifically, we establish complete
convergence in the Marcinkiewicz–Zygmund-type strong law of large numbers for sequences of
negatively dependent and identically distributed random variables under certain moment conditions.
We also give results for sequences of independent and identically distributed random variables. The
moment conditions in this paper are based on a class of slowly varying functions that satisfy some
convergence properties. Moreover, some special examples and comparisons to existing results are
also given.
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1. Introduction

In recent years, with the development of science and society, more and more uncertain
phenomena no longer satisfy the assumption that probability and expectation are linearly
additive; therefore, we cannot use linear expectation to construct the models. Inspired by
uncertainty problems in financial mathematics, statistics, and other fields, many scholars
have begun to study nonlinear probability and nonlinear expectation, for example Choquet
expectation and g-expectation, see Chen and Epstein [1], Choquet [2], Schmeidler [3],
Wakker [4], and Wasserman and Kadane [5]. Nonlinear expectation theory provides
mathematical theoretical tools for the analysis of big data with high uncertainty, and it has
a wide range of applications in the fields of risk measurement, financial mathematics, and
financial technology, see Barrieu and Karoui [6], El Karoui et al. [7], Gianin [8], Peng [9],
and Peng et al. [10].

Recently, Peng [11,12] presented a general theory of sublinear expectation, which
differs from classical linear expectation in that sublinear expectation is directly defined
via expectation that satisfies certain properties. Based on the framework of sublinear
expectation theory, many scholars have generalized the classical law of large numbers
(LLN). For example, Chen, Liu, and Zong [13] weakened the independence of the random
variables in Peng [14] and obtained the moment conditions for the weak LLN to hold;
Chen, Wu, and Li [15] proved that the strong LLN holds for independent and identically
distributed random varibles under the condition that the (1 + α)-th moment is finite;
Zhang [16] studied the strong LLN for a sequence of independent and negatively dependent
random variables under the condition that the first moment is finite for Choquet expectation;
Hu [17] proved that the strong LLN is still true under a general moment condition, which
is weaker than that for a finite (1 + α)-th moment; Zhan and Wu [18] studied the strong
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LLN for weighted sums of extended negatively dependent random variables; Feng and
Lan [19] studied the Marcinkiewicz–Zygmund-type strong LLN for arrays of row-wise
independent random variables.

The Marcinkiewicz–Zygmund (M–Z)-type strong LLN is a very important class of
the strong LLN. Let {Xn, n ≥ 1} be a sequence of independent and identically distributed
random variables, then {Xn, n ≥ 1} is said to satisfy the M–Z-type strong LLN, i.e.,

Sn − nE[X1]

n1/p → 0, a.s. (1)

holds if and only if
E[|X1|p] < ∞,

where 1 < p < 2. Anh et al. [20] replaced the series {n1/p, n ≥ 1} in (1) with normalizing
constant series {n1/α L̃(n1/α), n ≥ Aα} and proved the M–Z-type strong LLN for sequences
of negatively associated and identically distributed random variables, i.e.,

n−1/α L̃−1(n1/α) max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣→ 0, a.s.

holds if and only if
E(X) = 0, E[|X|αLα(|X|+ A)] < ∞,

where 1 ≤ α < 2, L(x) is a slowly varying function defined on [A, ∞) with some A > 0
and L̃(x) is the de Bruijn conjugate of L(x). For more conclusions on the M–Z-type strong
LLN in the classical framework see Bai and Cheng [21], Chen and Gan [22], Miao, Mu and
Xu [23], and Sung [24].

Inspired by Anh et al. [20] under the classical framework, in this paper we generalize
to the framework of sublinear expectation theory. It is worth noting that in this paper we
consider a slowly varying function satisfying

∑
n≥Aα

L̃2ε(n1/α)

n
< ∞, ε > 0;

we can prove the complete convergence of weighted sums and the M–Z-type strong LLN
with general normalizing sequences. Note that in the existing literature, only some special
regularization sequences are considered. For example, Deng and Wang [25] studied com-
plete convergence for extended independent random variables under sublinear expectation
in the case of L(x) = 1. Feng and Huang [26] studied strong convergence for weighted
sums of extended negatively dependent random variables under sublinear expectation
in the case of L(x) = log−1/γ(x), 0 < γ < 2. By comparing the conditions with those in
existing results, it is shown that the results in this paper generalize existing results to
some extent.

Furthermore, we also studied complete convergence that was introduced by Hsu and
Robbins [27] under sublinear expectation. Note that there have been some results about
complete convergence under sublinear expectation, such as Deng and Wang [25], Feng and
Huang [28], Lin and Feng [29], and Zhong and Wu [30].

The paper is organized as follows. In Section 2, we recall the basic concepts of sublinear
expectation and slowly varying functions as well as some lemmas that will be used in
the proofs. In Section 3, we give the main results: complete convergence for weighted
sums and the M–Z-type strong LLN with general normalizing sequences under sublinear
expectation. In Section 4, the results for three specific slowly varying functions are given
and compared with existing results.
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2. Preliminaries
2.1. Sublinear Expectation

In this paper we use the framework of sublinear expectation introduced by Peng [14].
Given a measurable space (Ω,F ), let H be a linear space of real functions defined on
Ω satisfying the following: if X1, X2, . . . , Xn ∈ H, then ϕ(X1, X2, . . . , Xn) ∈ H for each
ϕ ∈ Cl,Lip(Rn), where Cl,Lip(Rn) denotes the linear space of local Lipschitz continuous
functions ϕ, i.e.,

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|, ∀x, y ∈ Rn,

where the constant C > 0 and the integer m ∈ N depend on ϕ. The spaceH can be used as
the space of random variables.

Let P be a nonempty set of probability measures on the measurable space (Ω,F ).
Define the upper probability V(·) and the lower probability v(·) as

V(A) := sup
P∈P

P(A), v(A) := inf
P∈P

P(A), ∀A ∈ F .

It is easy to see that V(·) and v(·) are conjugate, i.e., V(A) + v(Ac) = 1, where Ac is
the complement of A. Meanwhile, V(·) satisfies the following:

(i) V(∅) = 0, V(Ω) = 1.
(ii) Monotonicity: for ∀A, B ∈ F , if A ⊂ B, then V(A) ≤ V(B).
(iii) Subadditivity: for ∀A, B, A ∪ B ∈ F , then V(A ∪ B) ≤ V(A) +V(B).
(iv) Continuity from below: if An, A ∈ F , An ↑ A, then V(An) ↑ V(A).

Remark 1. Let G ⊂ F , a set function V : G → [0, 1] is called the capacity if it satisfies (i) and (ii).

Define the upper expectation Ê(·) and lower expectation Ê(·) with respect to P ,

Ê[X] := sup
P∈P

EP[X], Ê [X] = inf
P∈P

EP[X],

where X is an F -measurable real-valued random variable such that EP[X] < ∞ for any
P ∈ P . (Ω,F ,P , Ê) is called the upper expectation space. Obviously, Ê [X] ≤ Ê[X] and
Ê [X] = −Ê[−X] hold for every X.

Definition 1. A sublinear expectation E is a functional E : H → R satisfying the following:

(i) Monotonicity: if X ≥ Y, then E(X) ≥ E(Y).
(ii) Constant preserving: E(c) = c, ∀c ∈ R.
(iii) Subadditivity: E(X + Y) ≤ E(X) +E(Y), ∀X, Y ∈ H.
(iv) Positive homogeneity: E(λX) = λE(X), ∀λ ≥ 0.

The triplet (Ω,H,E) is called a sublinear expectation space.

Remark 2. By the definition of the sublinear expectation E, it’s easy to check that

|E(X)−E(Y)| ≤ E(|X−Y|), E(X + c) = E(X) + c, ∀c ∈ R,

and it can be verified that the upper expectation Ê is a sublinear expectation. Note that all the results
obtained in this paper are in the context of the upper expectation space.

Definition 2. For any capacity V, the Choquet expectation is defined by

CV(X) :=
∫ ∞

0
V(X ≥ t)dt +

∫ 0

−∞
[V(X ≥ t)− 1]dt.
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In particular, if the capacity V satisfies

V(A ∪ B) + V(A ∩ B) ≤ V(A) + V(B), ∀A, B ∈ F ,

then the Choquet expectation induced by this capacity V is a sublinear expectation. Replac-
ing the capacity V in the definition by the upper probability V and the lower probability v,
respectively, we can obtain a pair of Choquet expectations (CV, Cv).

The definitions of independent, negatively dependent, and identically distributed
random vectors in sublinear expectation spaces are given below.

Definition 3 ([31], Definition 3.4). In a sublinear expectation space (Ω,H, Ê), a random vector
Y = (Y1, . . . , Yn), Yi ∈ H is said to be independent to another random vector X = (X1, . . . , Xm),
Xi ∈ H under Ê, if for each test function ϕ ∈ Cl,Lip(Rm ×Rn), we have

Ê[ϕ(X, Y)] = Ê
[
Ê
[
ϕ(x, Y)

]∣∣∣
x=X

]
.

A sequence of random variables {Xn, n ≥ 1} is said to be independent if for each n ∈ N+,
Xn+1 is independent of (X1, X2, . . . , Xn).

Definition 4 ([16], Definition 1.5). In a sublinear expectation space (Ω,H, Ê), a random vec-
tor Y = (Y1, . . . , Yn), Yi ∈ H is said to be negatively dependent to another random vector
X = (X1, . . . , Xm), Xi ∈ H under Ê, if for each pair of test functions ϕ1 ∈ Cl,Lip(Rm) and
ϕ2 ∈ Cl,Lip(Rn), we have

Ê[ϕ1(X)ϕ2(Y)] ≤ Ê[ϕ1(X)]Ê[ϕ2(Y)],

whenever ϕ1(X) ≥ 0, Ê[ϕ2(Y)] ≥ 0, Ê[|ϕ1(X)ϕ2(Y)|] < ∞, Ê[|ϕ1(X)|] < ∞, Ê[|ϕ2(Y)|] < ∞,
and either ϕ1 and ϕ2 are coordinatewise nondecreasing or ϕ1 and ϕ2 are coordinatewise nonincreasing.

A sequence of random variables {Xn, n ≥ 1} is said to be negatively dependent if for each
n ≥ 1, Xn+1 is negatively dependent to (X1, X2, . . . , Xn).

Definition 5 ([32], Definition 2.5). Random variables X and Y are said to be identically dis-

tributed, denoted by X d
= Y, if for each Borel-measurable function ϕ, ϕ(X), ϕ(Y) ∈ H we have

Ê[ϕ(X)] = Ê[ϕ(Y)].

A sequence of random variables {Xn, n ≥ 1} is said to be identically distributed if Xn
d
= X1

for each n ≥ 1.

2.2. Slowly Varying Functions

First, we present the relevant definitions and properties of slowly varying functions.

Definition 6 ([33], Definitions 1.1, and 1.2). A function L(·) is said to be regularly varying at
infinity if it is real-valued, positive, and measurable on [A, ∞) with some A > 0, and if for each
λ > 0,

lim
x→∞

L(λx)
L(x)

= λρ,

where ρ ∈ R (ρ is called the index of regular variation). A regularly varying function with the
index of regular variation ρ = 0 is called slowly varying.

Definition 7 ([34]). Let L(·) be a slowly varying function, then there exists a slowly varying
function L̃(·) that can be asymptotically uniquely determined such that

lim
x→∞

L(x)L̃
(

xL(x)
)
= 1, lim

x→∞
L̃(x)L

(
xL̃(x)

)
= 1.
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The function L̃ is called the de Bruijn conjugate of L, and (L, L̃) is called a (slowly varying)
conjugate pair.

Lemma 1 ([34], Theorem 1). Let L(·) be a slowly varying function. If

lim
x→∞

(
L(λ0x)

L(x)
− 1
)

log(L(x)) = 0, (2)

for a fixed λ0 > 1, then

lim
x→∞

L(xLα(x))
L(x)

= 1 (3)

holds for every real number α.

Remark 3. From (3) and Definition 7, it follows that when L(x) satisfies (2), L̃(x) = 1/L(x) is
the de Bruijn conjugate (asymptotically unique) of the slowly varying function L(x).

Next we present some important properties about slowly varying functions.

Lemma 2 ([20], Lemma 2.1). Let L(·) be a slowly varying function, α, β > 0. Let f (x) =
xαβLα(xβ), g(x) = x1/(αβ) L̃1/β(x1/α). Then,

lim
x→∞

f
(

g(x)
)

x
= lim

x→∞

g
(

f (x)
)

x
= 1.

Lemma 3 ([20], Lemma 2.2). For any slowly varying function L(·) defined on [A, ∞) with some
A > 0, there exists a differentiable slowly varying function L1(·) defined on [B, ∞) with some
B ≥ A such that

lim
x→∞

L(x)
L1(x)

= 1 and lim
x→∞

xL′1(x)
L1(x)

= 0.

Conversely, if L(·) is a positive differentiable function satisfying

lim
x→∞

xL′(x)
L(x)

= 0, (4)

then L(·) is a slowly varying function.

Lemma 3 shows that for any slowly varying function L(·), we can always find a
differentiable slowly varying function L1(·) that is equivalent to it. Therefore, without loss
of generality, in the following we may assume that the slowly varying function L(x) is
differentiable and satisfies Equation (4). Moreover, Anh et al. [20] proved that if L(·) is a
slowly varying function defined on [A, ∞) with some A > 0, then there exists B ≥ A such
that L(·) is bounded on every finite closed interval [a, b] ⊂ [B, ∞). Thus, in addition to the
assumption of differentiability, we also assume that L(x) (x ≥ A, A > 0) is bounded on a
finite closed interval.

Lemma 4 ([20], Lemma 2.3). Let p > 0 and L(·) be a slowly varying function defined on [A, ∞)
with some A > 0 satisfying (4), then the following statements hold.

(i) There exists B ≥ A such that xpL(x) is increasing on [B, ∞), x−pL(x) is decreasing on
[B, ∞), and

lim
x→∞

xpL(x) = ∞, lim
x→∞

x−pL(x) = 0.

(ii) For all λ > 0,

lim
x→∞

L(x)
L(x + λ)

= 1.
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If L(x) does not satisfy (4), we still have limx→∞ xpL(x) = ∞ and limx→∞ x−pL(x) = 0
([33], p.18), but the monotonicity in Lemma 4 (i) no longer holds.

The following lemma describes the convergence of a special class of slowly varying
function series, and the conclusion will be used in the proofs.

Lemma 5 ([20], Lemma 2.5). Let p > 1, q ∈ R and let L(·) be a differentiable slowly varying
function defined on [A, ∞) with some A > 0, then

∞

∑
k=n

Lq(k)
kp ∼ Lq(n)

(p− 1)np−1 .

3. The M–Z-Type Strong LLN
3.1. The Strong LLN for Negatively Dependent Random Variables

In this section, we study the M–Z-type strong LLN for negatively dependent and
identically distributed sequences of random variables in the upper expectation space (Ω,
F ,P , Ê). In order to establish the connection between complete convergence and the
M–Z-type strong LLN, we first prove the following lemma under sublinear expectation. In
all the proofs, C denotes a positive constant that varies from row to row.

Lemma 6. Let {Xn, n ≥ 1} be a sequence of random variables, Sn = ∑n
i=1 Xi. Let {bn, n ≥ 1} be

a sequence of positive constants such that 0 < bn ↑, b2n/bn = O(1). If

∞

∑
n=1

1
n
V
(

max
1≤i≤n

|Si| > εbn

)
< ∞, ∀ε > 0,

then
max1≤i≤n |Si|

bn
→ 0, a.s. V.

Proof of Lemma 6. For 0 < bn ↑, we have

∞ >
∞

∑
n=1

1
n
V
(

max
1≤i≤n

|Si| > εbn

)

=
∞

∑
k=0

2k+1−1

∑
n=2k

1
n
V
(

max
1≤i≤n

|Si| > εbn

)
≥ 1

2

∞

∑
k=0

V
(

max
1≤i≤2k

|Si| > εb2k+1

)
.

By the Borel–Cantelli lemma and b2n/bn = O(1), we have

1
b2k

max
1≤i≤2k+1

|Si| → 0, a.s. V, (5)

and for 2k ≤ n < 2k+1,
max1≤i≤n |Si|

bn
≤

max1≤i≤2k+1 |Si|
b2k

;

therefore, by (5), we have
max1≤i≤n |Si|

bn
→ 0, a.s. V.

The next proposition relates the existence of Choquet expectation to the conver-
gence of some series, providing an equivalent characterization of the moment condition
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CV
(
|X|αLα(|X|+ A)

)
< ∞, while also generalizing the classical result of Proposition 2.6 in

Anh et al. [20].

Proposition 1. Let X be a random variable and α ≥ 1. Let L(x) be a slowly varying function defined
on [A, ∞) with some (A > 0). Assume that Aα is an integer, otherwise, take [Aα] + 1. Then,

CV
(
|X|αLα(|X|+ A)

)
< ∞⇔

∞

∑
n=Aα

V(|X| ≥ bn) < ∞,

where bn = n1/α L̃(n1/α), n ≥ Aα.

Proof of Proposition 1. Define f (x) = xαLα(x), g(x) = x1/α L̃(x1/α). By Lemma 4, there
exists B ≥ Aα such that f (x) and g(x) are increasing on [B, ∞).

It is obvious that if CV
(

f (|X|+ A)
)
< ∞, then CV

(
|X|αLα(|X|+ A)

)
< ∞. Next, we

prove that if CV
(
|X|αLα(|X|+ A)

)
< ∞, then CV

(
f (|X|+ A)

)
< ∞.

If the random variables X, Y and the constant a are nonnegative, by the definition of
Choquet expectation, the subadditivity of V, and {X + Y ≥ t} ⊂

{
{X ≥ t/2} ∪ {Y ≥ t/2}

}
,

we have

CV(X + Y) =
∫ ∞

0
V(X + Y ≥ t)dt

≤
∫ ∞

0
V
(
{X ≥ t

2
} ∪ {Y ≥ t

2
}
)

dt

≤
∫ ∞

0
V(X ≥ t

2
)dt +

∫ ∞

0
V(Y ≥ t

2
)dt

= 2CV(X) + 2CV(Y),

CV(aX) =
∫ ∞

0
V(aX ≥ t)dt = a

∫ ∞

0
V(X ≥ x)dx = aCV(X).

Moreover, for any random variables X, Y, if X ≤ Y, then by the monotonicity of V, we
have CV(X) ≤ CV(Y).

From the above properties of Choquet expectation and the Cr inequality, we have

CV
(

f (|X|+ A)
)
= CV

(
(|X|+ A)αLα(|X|+ A)

)
≤ CV

(
2α−1|X|αLα(|X|+ A) + 2α−1 AαLα(|X|+ A)

)
≤ 2CV

(
2α−1|X|αLα(|X|+ A)

)
+ 2CV

(
2α−1 AαLα(|X|+ A)

)
= 2αCV

(
|X|αLα(|X|+ A)

)
+ 2α AαCV

(
Lα(|X|+ A)

)
= I1 + CI2,

where I1 = 2αCV
(
|X|αLα(|X|+ A)

)
and I2 = CV

(
Lα(|X|+ A)

)
.

We already have I1 < ∞, now we focus on I2,

I2 = CV
(

Lα(|X|+ A)I(|X| < A) + Lα(|X|+ A)I(|X| ≥ A)
)

≤ C + 2CV
(
|X|αLα(|X|+ A)I(|X| ≥ A)

)
< ∞;

therefore, we obtain CV
(

f (|X| + A)
)
< ∞. By the definition of Choquet expectation,

we have

CV(|X|) < ∞⇔
∫ ∞

0
V(|X| ≥ t)dt < ∞⇔

∞

∑
n=0

V(|X| ≥ n) < ∞,

then, it follows from (2) that
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CV
(

f (|X|+ A)
)
< ∞⇔

∞

∑
n=1

V
(

f (|X|+ A) ≥ n
)
< ∞

⇔
∞

∑
n=B

V
(

g
(

f (|X|+ A)
)
≥ g(n)

)
< ∞

⇔
∞

∑
n=n0

V(|X|+ A ≥ bn) < ∞, ∃n0 ≥ B

⇔
∞

∑
n=n1

V(|X| ≥ bn) < ∞, ∃n1 ≥ n0.

Next, we give the main result of this section.

Theorem 1. Let 1 ≤ α < 2 and ε > 0, for a slowly varying function L(x) defined on [A, ∞) with
some A > 0, assume that L(x) is increasing when α = 1 and satisfies

∑
n≥Aα

L̃2ε(n1/α)

n
< ∞, (6)

where L̃(x) is the de Bruijn conjugate of L(x). Let {X, Xn, n ≥ 1} be a sequence of negatively
dependent and identically distributed random variables in the upper expectation space (Ω,F ,P , Ê)
that satisfies

Ê[X] = Ê [X] = 0, CV
(
|X|αLα+ε(|X|+ A)

)
< ∞. (7)

Define bn = n1/α L̃(n1/α), n ≥ Aα, then we have the following:

(i) For any array of nonnegative constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1

a2
ni ≤ Cn, n ≥ 1, (8)

we have

∑
n≥Aα

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0. (9)

Specifically,

∑
n≥Aα

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0. (10)

(ii) The M–Z-type strong LLN holds, i.e.,

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

bn
= 0, a.s. V. (11)

Proof of Theorem 1. For simplicity, we assume that Aα is an integer number, otherwise
we can take [Aα] + 1. When n ≥ Aα, let

Xni = Xi I(|Xi| ≤ bn) + bn I(Xi > bn)− bn I(Xi < −bn), 1 ≤ i ≤ n,

Snk =
k

∑
i=1

[
aniXni − Ê[aniXni]

]
, 1 ≤ k ≤ n.
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(i) For any ε > 0, n ≥ Aα, we have

V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
≤V

(
max

1≤k≤n
|Xk| > bn

)

+V
(

max
1≤k≤n

|Snk| > εbn −
n

∑
i=1

∣∣Ê[aniXni]
∣∣). (12)

First, since CV
(
|X|αLα+ε(|X|+ A)

)
< ∞, by the subadditivity of V and Proposition 1,

we have

∑
n≥Aα

n−1V
(

max
1≤k≤n

|Xk| > bn

)
≤ ∑

n≥Aα

V(|X| > bn) < ∞. (13)

Next, we focus on the second term on the right-hand side of (12). Define

fbn(X) = XI(|X| ≤ bn) + bn I(X > bn)− bn I(X < −bn),

f̂bn(X) = X− fbn(X).

By the Cauchy–Schwarz inequality and (8), we have(
n

∑
i=1

ani

)2

≤ n

(
n

∑
i=1

a2
ni

)
≤ Cn2.

Thus, recall Ê[X] = 0, we have

n
∑

i=1

∣∣∣Ê[aniXni]
∣∣∣

bn
=

n
∑

i=1

∣∣∣Ê[ani fbn(Xi)
]∣∣∣

bn

=

n
∑

i=1
ani

∣∣∣Ê[ fbn(X)
]
− Ê[X]

∣∣∣
bn

≤

n
∑

i=1
aniÊ

[∣∣∣ f̂bn(X)
∣∣∣]

bn

≤
CnCV

(
(|X| − bn)+

)
bn

= Cn1−1/α L̃−1(n1/α)
∫ ∞

n1/α L̃(n1/α)
V(|X| ≥ t)dt.

By Lemmas 3 and 4, we can find B ≥ A such that x1/α L̃(x1/α) and xα−1Lα(x) are
increasing on [B, ∞). Without loss of generality, we can assume that x1/α L̃(x1/α) and
xα−1Lα(x) are increasing on [A, ∞).
For |X| ≥ t ≥ n1/α L̃(n1/α), we have

|X|α−1Lα(|X|+ A) ≥ tα−1Lα(t) ≥ n(α−1)/α L̃α−1(n1/α)Lα
(
n1/α L̃(n1/α)

)
,

therefore,
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n
∑

i=1

∣∣∣Ê[aniXni]
∣∣∣

bn

≤Cn1−1/α L̃−1(n1/α)
∫ ∞

n1/α L̃(n1/α)
V(|X| ≥ t)dt

≤ 1
L̃α(n1/α)Lα

(
n1/α L̃(n1/α)

) ∫ ∞

nL̃α(n1/α)Lα
(

n1/α L̃(n1/α)
) V(|X|αLα(|X|+ A) ≥ y

)
dy.

By Definition 7 and (7), we have

lim
n→∞

1
L̃α(n1/α)Lα

(
n1/α L̃(n1/α)

) ∫ ∞

nL̃α(n1/α)Lα
(

n1/α L̃(n1/α)
) V(|X|αLα(|X|+ A) ≥ y

)
dy = 0.

Therefore,

lim
n→∞

n
∑

i=1

∣∣∣Ê[aniXni]
∣∣∣

bn
= 0. (14)

From (12)–(14), to obtain (9), it remains to show that

∑
n≥Aα

n−1V
(

max
1≤i≤n

|Sni| >
εbn

2

)
< ∞. (15)

By the Chebyshev inequality (see Proposition 2.1 in [15] and Theorem 2.1 in [16]),
we have

∑
n≥Aα

1
n
V
(

max
1≤i≤n

|Sni| >
εbn

2

)

≤ ∑
n≥Aα

4
n

Ê
[
(max1≤i≤n |Sni|)2

]
ε2b2

n

≤ ∑
n≥Aα

C ∑n
i=1 Ê

[∣∣aniXni − Ê[aniXni]
∣∣2]

nε2b2
n

+ ∑
n≥Aα

C
{

∑n
i=1

[(
Ê
[
aniXni − Ê[aniXni]

])−
+
(
Ê
[
aniXni − Ê[aniXni]

])+]}2

nε2b2
n

=M1 + M2, (16)

where

M1 := ∑
n≥Aα

C ∑n
i=1 Ê

[
|aniXni − Ê[aniXni]|2

]
nε2b2

n
,

and

M2 := ∑
n≥Aα

C
{

∑n
i=1

[(
Ê
[
aniXni − Ê[aniXni]

])−
+
(
Ê
[
aniXni − Ê[aniXni]

])+]}2

nε2b2
n

.
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For M2, by Ê
[
aniXni − Ê[aniXni]

]
= 0 and the Cauchy–Schwarz inequality, we have{

n

∑
i=1

[(
Ê
[
aniXni − Ê[aniXni]

])−
+
(
Ê
[
aniXni − Ê[aniXni]

])+]}2

=

[
n

∑
i=1

(
− Ê[aniXni]− Ê[−aniXni]

)−]2

≤2n
n

∑
i=1

(
Ê2[aniXni] + Ê2[−aniXni]

)
=2n

n

∑
i=1

(
a2

ni
(
Ê2[ fbn(Xi)] + Ê2[− fbn(Xi)]

))
≤Cn2

{(
Ê[ fbn(X)]− Ê[X]

)2
+
(
Ê[− fbn(X)]− Ê[−X]

)2}
≤Cn2Ê2[(|X| − bn)

+
]
,

then, from (6), we have

M2≤ C ∑
n≥Aα

nÊ2((|X| − bn)+
)

b2
n

≤ C ∑
n≥Aα

nC2
V
(
(|X| − bn)+

)
b2

n

≤ C ∑
n≥Aα

n
b2

n
C2
V
(
|X|I(|X| ≥ bn)

)
≤ C ∑

n≥Aα

nb−2
n · b2−2α

n L−2α−2ε(bn)C2
V
(
|X|αLα+ε(|X|+ A)

)
≤ C ∑

n≥Aα

n−1L−2ε
(
n1/α L̃(n1/α)

)
C2
V
(
|X|αLα+ε(|X|+ A)

)
≤ C ∑

n≥Aα

1
n

L̃2ε(n1/α)C2
V
(
|X|αLα+ε(|X|+ A)

)
< ∞. (17)

For M1, we have

M1 ≤ ∑
n≥Aα

C ∑n
i=1 Ê

[
(aniXni)

2]
nε2b2

n

= ∑
n≥Aα

C ∑n
i=1 Ê

[(
ani fbn(Xi)

)2
]

nε2b2
n

= ∑
n≥Aα

C ∑n
i=1 Ê

[(
ani fbn(X)

)2
]

nε2b2
n

≤ ∑
n≥Aα

C
ε2b2

n
Ê
[
X2 I(|X| ≤ bn)

]
+ ∑

n≥Aα

C
ε2V(|X| > bn).

By Proposition 1 and (7), we have

∑
n≥Aα

C
ε2V(|X| > bn) < ∞. (18)
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From (16)–(18), to obtain (15), it remains to show that

∑
n≥Aα

C
ε2b2

n
Ê
[
X2 I(|X| ≤ bn)

]
< ∞. (19)

Note that

∑
n≥Aα

1
b2

n
Ê[X2 I(|X| ≤ bn)]

≤C + ∑
n≥Aα+1

1
b2

n
Ê[(|X| ∧ bn)

2]

≤C + ∑
n≥Aα+1

1
b2

n
Ê[

n

∑
i=Aα

b2
i I(bi−1 < |X| ≤ bi) + b2

n I(|X| > bn)]

≤C + ∑
n≥Aα+1

1
b2

n
Ê[

n−1

∑
i=Aα

(
b2

i+1 − b2
i

)
I(|X| > bi) + b2

Aα I(|X| > bAα−1)]

≤C + ∑
n≥Aα+1

C
b2

n
+ ∑

n≥Aα+1

1
b2

n

n−1

∑
i=Aα

(b2
i+1 − b2

i )V(|X| > bi)

=C + CN1 + N2,

where
N1 := ∑

n≥Aα+1

1
b2

n
,

N2 :=
∞

∑
i=Aα

[
(b2

i+1 − b2
i ) ∑

n≥i+1

1
b2

n

]
V(|X| > bi).

Let L̂(x) = L̃(x1/α), x ≥ Aα. Since L̃(x) is a slowly varying function defined on [A, ∞)
with some A > 0, by Definition 6, for any λ > 0, we have

L̂(λx)
L̂(x)

=
L̃(λ1/αx1/α)

L̃(x1/α)
→ 1, x → ∞;

therefore, L̂(·) is a slowly varying function defined on [Aα, ∞) with some Aα > 0. By
Lemma 5, we have

N1 = ∑
n≥Aα+1

1
n2/α L̃2(n1/α)

= ∑
n≥Aα+1

L̂−2(n)
n2/α

≤ L̂−2(Aα + 1)
(2/α− 1)(Aα + 1)2/α−1 < ∞. (20)

For N2, by Lemma 5, we have
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(b2
i+1 − b2

i ) ∑
n≥i+1

1
b2

n

=
[
(i + 1)2/α L̃2((i + 1)1/α

)
− i2/α L̃2(i1/α)

]
C

L̃−2((i + 1)1/α
)

(i + 1)2/α−1

≤C
(i + 1)2/α L̃2((i + 1)1/α

)
− i2/α L̃2(i1/α)

i2/α−1 L̃2(i1/α)

≤C
(i + 1)2/α − i2/α

i2/α−1

≤C(1 +
1
i
)

2
α−1;

therefore, we have

N2 ≤ C
∞

∑
i=Aα

V(|X| > bi) < ∞. (21)

Combining (20) and (21), we obtain (19).
Let ani ≡ 1 in (9), we obtain (10).

(ii) Since

0 < bn = n1/α L̃(n1/α) ↑, b2n

bn
=

(2n)1/α L̃
(
(2n)1/α

)
n1/α L̃(n1/α)

→ 21/α, n→ ∞,

by Lemma 6, we have

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

bn
= 0, a.s. V.

The above theorem requires that the series ∑n≥Aα L̃2ε(n1/α)/n is finite, where L̃(x) is
the de Bruijn conjugate of the slowly varying function L(x). By Definition 7, we can show
that L̃(x) is not unique. In fact, it is sufficient that there exists at least one L̃(x) satisfying
the condition. Indeed, by Remark 3, when L(x) satisfies (2), L̃(x) = 1/L(x) is the de Bruijn
conjugate of L(x) and is asymptotically unique. Condition (6) can then be rewritten as
∑n≥Aα 1/

[
nL2ε(n1/α)

]
< ∞, from which we obtain the following theorem.

Theorem 2. Let 1 ≤ α < 2 and ε > 0, for a slowly varying function L(x) defined on [A, ∞) with
some A > 0, assume that L(x) is increasing when α = 1 and satisfies

lim
x→∞

(
L(λ0x)

L(x)
− 1
)

log(L(x)) = 0,

for a fixed λ0 > 1 and

∑
n≥Aα

1
nL2ε(n1/α)

< ∞,

where L̃(x) is the de Bruijn conjugate of L(x). Let {X, Xn, n ≥ 1} be a sequence of negatively
dependent and identically distributed random variables in the upper expectation space (Ω,F ,P , Ê)
that satisfies

Ê[X] = Ê [X] = 0, CV
(
|X|αLα+ε(|X|+ A)

)
< ∞.

Define bn = n1/α L̃(n1/α), n ≥ Aα, then we have the following:

(i) For any array of nonnegative constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1

a2
ni ≤ Cn, n ≥ 1,
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we have

∑
n≥Aα

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0.

Specifically,

∑
n≥Aα

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0.

(ii) The M–Z-type strong LLN holds, i.e.,

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

bn
= 0, a.s. V.

3.2. The Strong LLN for Independent Random Variables

In Theorem 1, we consider the strong LLN for a sequence of negatively dependent
and identically distributed random variables, and, in order to ensure that X̃i = aniXni −
Ê[aniXni] is also negatively dependent, we assume that ani is a nonnegative constant. For a
sequence of independent (Definition 3) and identically distributed random variables, we
can extend the condition in Theorem 1 to a general array {ani}. The theorem we obtain is
as follows.

Theorem 3. Let 1 ≤ α < 2 and ε > 0, for a slowly varying function L(x) defined on [A, ∞) with
some A > 0, assume that L(x) is increasing when α = 1 and satisfies

∑
n≥Aα

L̃2ε(n1/α)

n
< ∞,

where L̃(x) is the de Bruijn conjugate of L(x). Let {X, Xn, n ≥ 1} be a sequence of independent and
identically distributed random variables in the upper expectation space (Ω,F ,P , Ê) that satisfies

Ê[X] = Ê [X] = 0, CV
(
|X|αLα+ε(|X|+ A)

)
< ∞.

Define bn = n1/α L̃(n1/α), n ≥ Aα, then we have the following:

(i) For any array of constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1

a2
ni ≤ Cn, n ≥ 1,

we have

∑
n≥Aα

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0.

Specifically,

∑
n≥Aα

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0.

(ii) The M–Z-type strong LLN holds, i.e.,

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

bn
= 0, a.s. V.

Proof of Theorem 3. The proof is similar to Theorem 1 with necessary modifications due
to the condition on ani; therefore, we only give the proof with respect to ani. The rest of the
proof is similar to that of Theorem 1 and is omitted here.
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For every array of constants {ani, n ≥ 1, 1 ≤ i ≤ n}, define I1 = {1 ≤ i ≤ n|ani ≥ 0}
and I2 = {1 ≤ i ≤ n|ani < 0}. First, for

n
∑

i=1

∣∣Ê[aniXni]
∣∣/bn, we have

n
∑

i=1

∣∣∣Ê[aniXni]
∣∣∣

bn
=

n
∑

i=1

∣∣∣Ê[ani fbn(X)
]∣∣∣

bn

=

∑
i∈I1

ani

∣∣∣Ê[ fbn(X)
]
− Ê[X]

∣∣∣
bn

+

∑
i∈I2

|ani|
∣∣∣Ê[− fbn(X)

]
− Ê[−X]

∣∣∣
bn

≤
∑

i∈I1

aniÊ
[∣∣ f̂bn(X)

∣∣]
bn

+

∑
i∈I2

|ani|Ê
[∣∣ f̂bn(X)

∣∣]
bn

=

n
∑

i=1
|ani|Ê

[
| f̂bn(X)|

]
bn

≤
CnÊ

[
(|X| − bn)+

]
bn

.

Next, for M2, we have{
n

∑
i=1

[(
Ê
[
aniXni − Ê[aniXni]

])−
+
(
Ê
[
aniXni − Ê[aniXni]

])+]}2

≤2n
n

∑
i=1

[
Ê2[aniXni] + Ê2[−aniXni]

]
=2n ∑

i∈I1

[
a2

ni

(
Ê
[

fbn(X)
]
− Ê[X]

)2
+ a2

ni

(
Ê[−X]− Ê

[
− fbn(X)

])2
]

+ 2n ∑
i∈I2

[
a2

ni

(
Ê[−X]− Ê

[
− fbn(X)

])2
+ a2

ni

(
Ê[X]− Ê

[
fbn(X)

])2
]

≤2n ∑
i∈I1

[
a2

niÊ
2[| f̂bn(X)|

]
+ a2

niÊ
2[| f̂bn(X)|

]]
+ 2n ∑

i∈I2

[
a2

niÊ
2[| f̂bn(X)|

]
+ a2

niÊ
2[| f̂bn(X)|

]]
=4n

n

∑
i=1

a2
niÊ

2[| f̂bn(X)|
]
= 4n

n

∑
i=1

a2
niÊ

2[(|X| − bn)
+
]
.

Remark 4. All the above results obtained in this paper hold in the upper expectation space (Ω,F ,
P , Ê). If we consider the general sublinear expectation space (Ω,H, Ê), the corresponding results
still hold as long as both the sublinear expectation Ê and the capacity V are countably subadditive.

4. Further Discussions on the Moment Condition

In this section we consider several special slowly varying functions and compare the
corresponding results with existing conclusions. Let ln x denote the natural logarithm
function with e as the base and log x denote the logarithmic function with 2 as the base.

4.1. L(x) = ln x

Let L(x) = ln x, we have the following result.
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Theorem 4. Let 1 ≤ α < 2, ε > 0 and {X, Xn, n ≥ 1} be a sequence of negatively dependent
and identically distributed random variables in the upper expectation space (Ω,F ,P , Ê), let
bn = n1/α/ ln(n1/α), n ≥ [eα] + 1, suppose the random variable X satisfies

Ê[X] = Ê [X] = 0, CV
(
|X|α lnα+1/2+ε(|X|+ e)

)
< ∞,

then we have the following:

(i) For any array of nonnegative constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1

a2
ni ≤ Cn, n ≥ 1,

we have

∑
n≥[eα ]+1

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0. (22)

Specifically,

∑
n≥[eα ]+1

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ > εbn

)
< ∞, ∀ε > 0. (23)

(ii) The M–Z-type strong LLN holds, i.e.,

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

bn
= 0, a.s. V. (24)

Proof of Theorem 4. For ∀ε > 0, n ≥ [eα] + 1, we have

V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εbn

)
≤V

(
max

1≤k≤n
|Xk| > bn

)

+V
(

max
1≤k≤n

|Snk| > εbn −
n

∑
i=1

∣∣Ê[aniXni]
∣∣).

Similar to the proof of Theorem 1, we can show that

∑
n≥[eα ]+1

n−1V
(

max
1≤k≤n

|Xk| > bn

)
< ∞,

lim
n→∞

∑n
i=1
∣∣Ê[aniXni]

∣∣
bn

= 0,

and

∑
n≥Aα

C ∑n
i=1 Ê

[
|aniXni − Ê[aniXni]|2

]
nε2b2

n
< ∞.

To obtain (22), it remains to show that

∑
n≥Aα

C
{

∑n
i=1

[(
Ê
[
aniXni − Ê[aniXni]

])−
+
(
Ê
[
aniXni − Ê[aniXni]

])+]}2

nε2b2
n

< ∞,
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which can be proved as follows:

∑
n≥Aα

C
{

∑n
i=1

[(
Ê
[
aniXni − Ê[aniXni]

])−
+
(
Ê
[
aniXni − Ê[aniXni]

])+]}2

nε2b2
n

≤ ∑
n≥[eα ]+1

16n
n
∑

i=1
a2

ni

nε2b2
n

Ê2[(|X| − bn)
+
]

≤ ∑
n≥[eα ]+1

Cn
b2

n
C2
V
(
(|X| − bn)

+
)

≤ ∑
n≥[eα ]+1

Cn1−1− 2
α ln2(n)

ln2α−2(n)
n(2α−2)/α ln2α+1+ε(n)

C2
V

(
|X|α lnα+1/2+ε(|X|+ e)

)
= ∑

n≥[eα ]+1
C

1

n ln1+ε(n)
C2
V

(
|X|α lnα+1/2+ε(|X|+ e)

)
< ∞.

Then, similar to the proof of Theorem 1, we can obtain (23) and (24).

Remark 5. We note that the order of the moment condition CV
(
|X|α lnα+1/2+ε(|X|+ e)

)
< ∞

in Theorem 4 is increased by 1/2 + ε compared to the result in the linear expectation space. The
ε term is commonly used for the generalization of the M–Z-type strong LLN to the sublinear
expectation space, which is similar to the α term of the moment condition Ê[|X1|1+α] < ∞ in [32];
the 1/2 term is needed in this paper due to the specific method. We conjecture that the 1/2 term can
be removed and we will study this in our future work.

4.2. L(x) ≡ 1

Let L(x) ≡ 1, then we have the following result.

Theorem 5. Let 1 ≤ α < 2, ε > 0 and {X, Xn, n ≥ 1} be a sequence of negatively dependent and
identically distributed random variables in the upper expectation space (Ω,F ,P , Ê), suppose the
random variable X satisfies

Ê[X] = Ê [X] = 0, CV(|X|α+ε) < ∞,

then we have the following:

(i) For any array of nonnegative constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1

a2
ni ≤ Cn, n ≥ 1,

we have

∑
n≥1

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εn1/α

)
< ∞, ∀ε > 0. (25)

Specifically,

∑
n≥1

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ > εn1/α

)
< ∞, ∀ε > 0.

(ii) The M–Z-type strong LLN holds, i.e.,

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

n1/α
= 0, a.s. V.
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Deng and Wang [25] studied extended independent (EI, for short) sequences of random
variables and also proved complete convergence. First, we recall the definition of an
extended independent sequence of random variables.

Definition 8. Given a sublinear expectation space (Ω,H, Ê). A sequence of random variables
{Xn, n ≥ 1} is said to be extended independent if

Ê
[

n

∏
i=1

ψi(Xi)

]
=

n

∏
i=1

Ê
[
ψi(Xi)

]
,

for any nonnegative function ψi ∈ Cl,Lip(R) (i = 1, 2, . . . , n), ∀n ≥ 1.

For sequences of extended independent random variables, Deng and Wang [25] proved
the following proposition.

Proposition 2. Let αp = 1, α > 1/2, and 0 < p < 1. Assume that {Xn, n ≥ 1} is a sequence of
identically distributed EI random variables with

lim
c→∞

Ê
[
(|X1|p − c)+

]
= 0, CV(|X1|) < ∞,

then
∞

∑
n=1

n−1V
(∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣ > εnα

)
< ∞, ∀ε > 0. (26)

Remark 6. In Theorem 5, we consider a sequence of negatively dependent and identically distributed
random variables. Note that (25) describes the complete convergence of “weighted" sums of random
variables, which is more general than the complete convergence of “standard" sums of random
variables described by (26).

4.3. L(x) = log−1/γ(x)

Let L(x) = log−1/γ(x), γ > 0, x ≥ 2, then we have the following result.

Theorem 6. Let 1 < α < 2, 0 < γ < α, 1 < δ < α/γ, and {X, Xn, n ≥ 1} be a sequence of
negatively dependent and identically distributed random variables in the upper expectation space
(Ω,F ,P , Ê), suppose the random variable X satisfies

Ê[X] = Ê [X] = 0, CV
(
|X|α log−α/γ+δ/2(|X|+ 2)

)
< ∞,

then we have the following:

(i) For any array of nonnegative constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1

a2
ni ≤ Cn, n ≥ 1,

we have

∑
n≥2

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

aniXi

∣∣∣∣∣ > εn1/α log1/γ(n)

)
< ∞, ∀ε > 0.

Specifically,

∑
n≥2

n−1V
(

max
1≤k≤n

∣∣∣∣∣ k

∑
i=1

Xi

∣∣∣∣∣ > εn1/α log1/γ(n)

)
< ∞, ∀ε > 0.
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(ii) The M–Z-type strong LLN holds, i.e.,

lim
n→∞

max1≤k≤n |∑k
i=1 Xi|

n1/α log1/γ(n)
= 0, a.s. V.

Remark 7. In Theorem 6, we remove the case α = 1. This is because the method we used requires
that xα−1 log−α/γ(x) is increasing on [A, ∞), which is not satisfied when α = 1.

Proof of Theorem 6. First, note that Proposition 1 still holds, i.e., CV
(
|X|α log−α/γ+δ/2(|X|+

2)
)
< ∞ implies that ∑n≥2 V(|X| ≥ α−1/γn1/α log1/γ(n)) < ∞ holds.
Most of the proof is similar to that of Theorem 1, so we only give the proof of M2 < ∞

with some necessary changes.

M2 ≤C ∑
n≥2

n
(
α−1/γn1/α log1/γ(n)

)−2

× C2
V

( |X|α log−α/γ+δ/2(|X|+ 2)

|X|α−1 log−α/γ+δ/2(|X|+ 2)
I
(
|X| ≥ α−1/γn1/α log1/γ(n)

))
≤C ∑

n≥2
n1−2/α log−2/γ(n)

(
α−1/γn1/α log1/γ(n)

)2−2α

× log−δ+2α/γ(α−1/γn1/α log1/γ(n) + 2)C2
V
(
|X|α log−α/γ+δ/2(|X|+ 2)

)
=C ∑

n≥2
n−1 log−2α/γ(n) log−δ+2α/γ (α−1/γn1/α log1/γ(n) + 2

)
× C2

V
(
|X|α log−α/γ+δ/2(|X|+ 2)

)
≤C ∑

n≥2

log−δ+2α/γ(n)
n log2α/γ(n)

C2
V
(
|X|α log−α/γ+δ/2(|X|+ 2)

)
=C ∑

n≥2

1

n logδ(n)
C2
V
(
|X|α log−α/γ+δ/2(|X|+ 2)

)
< ∞.

First we recall the definition of an extended negatively dependent sequence of random
variables in [26].

Definition 9. Given a sublinear expectation space (Ω,H, Ê). A sequence of random variables
{Xn; n ≥ 1} is said to be upper (respectively lower) extended negatively dependent, if there is some
dominating constant K ≥ 1 such that

Ê
[

n

∏
i=1

ϕi(Xi)

]
≤ K

n

∏
i=1

Ê
[
ϕi(Xi)

]
, ∀n ≥ 2,

where the nonnegative functions ϕi(x) ∈ Cb,Lip(R) (i = 1, 2, · · · ) are all nondecreasing (respec-
tively all nonincreasing). They are called extended negatively dependent (END) if they are both
upper extended negatively dependent and lower extended negatively dependent.

Feng and Huang [26] studied extended independent sequences of random variables
and proved complete convergence as follows.

Proposition 3. Let 1 < α ≤ 2, α > γ > 0 and {X, Xn, n ≥ 1} be a sequence of identically
distributed END random variables in the sublinear expectation space (Ω,H, Ê), if the random
variable X satisfies

Ê[X] = Ê [X] = 0,

Ê
[
|X|α log−α/γ+δ(|X|)

]
≤ CV

[
|X|α log−α/γ+δ(|X|)

]
< ∞, 1 < δ < α/γ,



Mathematics 2023, 11, 4734 20 of 21

then for the array of constants {ani, n ≥ 1, 1 ≤ i ≤ n} satisfying

n

∑
i=1
|ani|α = O(n),

we have
∞

∑
n=1

n−1V
(∣∣∣∣∣ n

∑
i=1

aniXi

∣∣∣∣∣ > εn1/α log1/γ(n)

)
< ∞, ∀ε > 0. (27)

Remark 8. Note that the moment conditions when comparing Theorem 6 and Proposition 3
are, respectively,

Ê[X] = Ê [X] = 0, CV
(
|X|α log−α/γ+δ/2(|X|+ 2)

)
< ∞,

and

Ê[X] = Ê [X] = 0, Ê
[
|X|α log−α/γ+δ(|X|)

]
≤ CV

(
|X|α log−α/γ+δ(|X|)

)
< ∞.

Hence the order of the moment condition in this paper is δ/2 less than in [26].
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