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Abstract: DNA code design is a challenging problem, and it has received great attention in the
literature due to its applications in DNA data storage, DNA origami, and DNA computing. The
primary focus of this paper is in constructing new DNA codes using the cosets of linear codes over the
ring Z4. The Hamming distance constraint, GC-content constraint, and homopolymers constraint are
all considered. In this study, we consider the cosets of Simplex alpha code, Kerdock code, Preparata
code, and Hadamard code. New DNA codes of lengths four, eight, sixteen, and thirty-two are
constructed using a combination of an algebraic coding approach and a variable neighborhood search
approach. In addition, good lower bounds for DNA codes that satisfy important constraints have
been successfully established using Magma software V2.24-4 and Python 3.10 programming in our
comprehensive methodology.

Keywords: DNA codes; DNA word design; cosets of codes; GC-content constraint; homopolymers
constraint

MSC: 81P45; 05C50; 11E16

1. Introduction

In 1994, in a seminal work, Adleman [1] solved an instance of the Hamilton path
problem using a bunch of DNA strands, giving birth to a new branch of DNA computing.
This further resulted in many other new branches, such as DNA-based data storage, DNA
origami, and chemical computing. The backbone of DNA computing is DNA hybridiza-
tion, which is also the source of errors. To mitigate the errors in DNA computing, often,
we require sufficiently dissimilar DNA strands (called DNA codes) that satisfy certain
constraints, such as the Hamming distance constraint, the GC-content constraint, and the
homopolymers constraint. To avoid undesirable hybridization, the Hamming distance
constraint is applied to measure the difference between two DNA strings [2,3]. When we
store data in DNA, different types of errors occur. The DNA data storage is a two-step
process, viz., DNA synthesis (writing) and DNA sequencing (reading). The most frequent
errors that occur during these processes of DNA storage are deletion (certain symbols
are deleted), insertion (certain symbols are inserted), and substitution (certain symbols
are flipped between A, C, G, and T). The deletion errors occur more often if the encoded
DNA strand has a repetition of symbols (such as if A is repeated in CGAAAAAATCG),
called homopolymers. If the Hamming distance between the DNA stands is high, it forces
fewer substitution errors. If the encoded DNA strands have a higher GC-content, that will
affect sequencing errors. The ideal range for the GC-content is n

2 . Similarly, the presence of
homopolymers increases the error rate. Thus, it is very important to construct a large set
of DNA codes that satisfy these constraints. Many bounds on the DNA codes have been
studied with respect to some of these constraints [4]. For more details about these bounds
and for a 16-year overview of DNA coding theory, the reader is referred to [4].
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Recently, conflict-free DNA codes have been constructed in [5]. This was further
extended by S. T. Dougherty and his team in [6], where they provided better results using
MAGMA and MATLAB. In this work, we are focusing on a special case of conflict-free DNA
codes, that is, a homopolymer-free construction of degree one, using our new algorithm.
Note that 1-conflict-free DNA codes are known as DNA codes free from homopolymers.
The homopolymers constraint is the most essential constraint for DNA codes since it
prevents errors from occurring in the DNA synthesis. Several attempts have been made to
improve new lower bounds using various DNA code construction methodologies, such
as lexicographic approaches and stochastic local search [7]. Additionally, the variable
neighborhood search approach), the simulated annealing approach, and the evolutionary
algorithm approach are three metaheuristics used in [8].

Niema Aboluion used cosets of a linear code to improve the lower bounds on DNA
codes in her Ph.D. thesis [9] because it was discovered that cosets of a linear code sometimes
create more code words with constant GC-content than the linear code itself. In this paper,
we propose a new method for constructing the DNA codes. The current work focuses
on the coset formations of linear codes over Z4 using several DNA code construction
methodologies. We have used Magma software V2.24-4 for generating the code words
over Z4, and then Python programming is used to apply the constraints to generate the
final results.

2. Problem Description

The problem considered in this paper is finding the largest set of DNA codes (a
DNA code `DNA(n, M, d)⊂ ∑n

DNA = {A, T, C, G}n, with each DNA code word of length
n, size M, and minimum Hamming distance d) that satisfies the following combinatorial
constraints:

• Hamming Distance Constraint (HD): For some Hamming distance d,
dH(xDNA, yDNA) ≥ d ∀xDNA, yDNA ∈ `DNA, dH denotes the Hamming distance
between any two code words.

• GC-Content Constraint: Each code word xDNA ∈ `DNA has the same GC content.
GC-content is denoted by w, and it is the number of positions in which the word has
coordinate C or G. Generally, w = [ n

2 ].
• Homopolymers Constraint: For a DNA code `DNA(n, M, d), the homopolymers

constraint means that no two consecutive elements in a DNA code word are identical.
For example, ACCT is not considered in the set of DNA code words since it has a
repeated C.

Following [10], AGC
4 (n, d, w) denotes the maximum size of a DNA code of length n

with constant GC-content w = [ n
2 ] that satisfies the HD constraint for a given d and the

homopolymers constraint. The purpose of this paper is to improve the lower bounds for
AGC

4 (n, d, w).

2.1. Codes over Z4

Definition 1. Following [11], a code over Z4 is defined to be any non-empty subset C of Zn
4 ,

where Zn
4 is the set of n-tuples over the ring of integers modulo four. The length of C is the positive

integer n, and code words of C are formed as n-tuples over Z4. Note that if C is an additive subgroup
of Zn

4 , then C is called a Z4-linear code of length n. The generator matrix of C mentioned in [12]
has the following form:

G =
[

Ik0 A B1 + 2B2
0 2Ik1 2C

]
,

where A, B1, B2, and C have entries 0 and 1, and Ik is the identity matrix of order k.

As in [11], a code over Z4 is called a quaternary code, and a Z4-linear code is called a
quaternary linear code. Some linear codes over Z4 that have been used in this paper are
described below. The first three codes have been taken from [12].
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2.1.1. Simplex Alpha Code

Let Gk be a k× 22k matrix over Z4 consisting of distinct columns. Inductively, Gk can
be written as:

Gk =
[

00 . . . 0 11 . . . 1 22 . . . 2 33 . . . 3
Gk−1 Gk−1 Gk−1 Gk−1

]
,

where G1 = [0123]. The code generated from this generator matrix Gk is called a
Simplex alpha code. It has a length 22k and 2-dimension 2k. Note that a code C is said to
be a Simplex alpha code if dH = [ dL

2 ], where dH is the minimum Hamming distance of C
and dL is the minimum Lee distance. For more information, see [12], which gives some
fundamental features of this type of code over Z4.

Many non-linear binary codes are represented [13] as linear codes over Z4 under
the Gray map ϕ, defined as follows: ϕ(0) = 00, ϕ(1) = 01, ϕ(2) = 11, ϕ(3) = 10. The
binary code C = ϕ(C) is called a Z4-linear code if C is a linear Z4 code; C need not be
linear. Note that the Gray map is an isometry that transforms Lee distances defined in the
quaternary codes to Hamming distances defined in the binary codes. Using the Gray map,
the following codes are represented, and they are all linear codes over Z4.

2.1.2. Preparata Code and Kerdock Code

In 1972, Kerdock gave a construction of a (2m, 22m, 2m−1 − 2(m−2)/2) binary nonlinear
code called Kerdock code, denoted by K(m), where m is even and larger than 4.

Preparata code is a binary nonlinear code that was given by Preparata in 1968. It is
denoted by P(m) and has the parameters (2m, 2(2

m−2m), 6), with m being even and m ≥ 4.
Note that, under the Gray map of linear codes over Z4, Preparata code and Kerdock

code can be formed as binary images. Hammons et al. have shown that both Kerdock
and Preparata codes are linear codes over Z4 in [13]. Our study considers these two codes
because they have more code words than any other known linear code with the same
minimal distance.

2.1.3. Hadamard Code [14]

Under the Gray map, linear codes over Z4 that give a binary Hadamard code are
called quaternary linear Hadamard codes, and we call the corresponding Z4-linear codes
Z4-linear Hadamard codes. A Hadamard code over Z4 that has the same parameters as the
binary Hadamard code of length 2m is one that has a length of 2m−1 after the Gray map.
Given an integer m ≥ 3 and an integer δ such that δ ∈ {1, ..., [m+1

2 ]}, we return a Hadamard
code over Z4 of length 2m−1 and type 2γ4δ, where the value of m is given by the formula
m = γ + 2δ− 1. For n = 32 with m = 6, there are three possible generator matrices for the
Hadamard code according to the value of δ (δ = 1, 2, 3), and we chose δ = 3 to form the
cosets in the work of length 32 explained later.

Simplex alpha code, Preparata code, Kerdock code, and Hadamard code are the four
types of codes over Z4 from which the cosets were derived in this paper. The next section
has more details about these cosets over Z4.

2.2. Cosets

Niema Aboluion [9] has considered cosets of codes in synthesizing DNA codes. She
began working on the cosets of linear codes in order to obtain DNA codes that satisfy HD,
GC-content, and RC constraints. The following is the definition of a coset of a code over Z4.

Let C ⊆ Zn
4 be a linear code of length n, and let y be any code word of length n; the

coset of C determined by y is denoted by C(y) and defined as:

C(y) = y + C = {y + c | c ∈ C, y ∈ Zn
4}. (1)

Following [9], for a given ring R and positive integer n, [n, n, 1], the universe code
contains all possible code words over the ring R. We have computed the cosets of linear
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codes over Z4 with n = 4, 8, 16, and 32. More information on code cosets can be found
in [9]. Further, Aboluion’s previous usage of cosets is expanded further by us. The code C
in (1) represents either Simplex alpha code, Preparata code, or Kerdock code in this paper.
The code word y has been taken from the universe code over Z4.

There are 40 different cosets for each value of n. Twenty of them are generated from
the first code over Z4 that involved in the union, and the remaining twenty are derived
from the second code included in the union for that particular value of n. For n = 4, 40
different cosets have been constructed from Simplex alpha code and Preparata code. For
n = 8, Kerdock and Preparata codes have been used to create the cosets in the union.
Simplex alpha code and Kerdock code have been involved at the union of length 16. At
n = 32, Hadamard code and Kerdock code have been used in the union of cosets. Coset
formation was instrumental in building new DNA codes with combinatorial constraints,
since it gave more code words than the other methods.

3. Approaches

Since the number of cosets might often exceed a million code words, the software is
required to construct them from the four codes over Z4. Magma [15] is a computer algebra
system that can be used to compute coding theory problems. It was employed to calculate
the vectors of the universe code discussed in the preceding section and to derive the code
words of codes over Z4. Additionally, it was used to determine the maximum number of
cosets of the four codes by the Magma command L : = CosetLeaders (C). In this study, we
applied two methods of constructing DNA codes:

• Algebraic Coding Approach [4]: Fields and rings are used to create DNA codes by
mapping the elements of the field and rings to DNA nucleotides.

– Codes over Rings: Over the ring of integers Z4, DNA sequences have been
created. The mapping is from {0, 1, 2, 3} to {A, C, G, T} with respect to the codes
over Z4. There are two possible mappings from Z4 to DNA nucleotides, as
shown in [9]. The first is with two non-invertible elements, combining 0 and 2
to form G, C. As a result, 0123 corresponds to GACT. The second mapping has
one invertible element and one non-invertible element, i.e., G, C is obtained by
pairing 0 with 1. That is, 0123 corresponds to GCAT.

• Variable Neighborhood Search Approach: This method uses a variety of local search
methods to search the DNA codes [16,17]; one of these methods is:

– Seed Building (SB): In this method, we determined an initial set of code words
with certain constraints called seed code words, and then we examined all the
possible code words randomly with respect to seed code words [8].

Note that this work requires many computations with a large number of cosets and
code words. Python [18] programs have been created to perform the calculations we need
in this paper.

3.1 Our Method

In this section, we demonstrate our new technique for improving the lower bounds of
the DNA codes.

Coset Formation

To construct the cosets of the four codes over Z4, we follow the next steps:

• Step 1. First, a large number of code words from the universe code with n = 4, n = 8,
n = 16, and n = 32 have been taken using Magma by the following Magma command:
V: = UniverseCode(Z4,n). We also obtain the code words of the four codes over Z4
using Magma. Now, we use Python to complete the rest of the steps.

• Step 2. Employ the coset formation technique outlined in the preceding section to
create 40 cosets from the codes over Z4 we indicated earlier. To construct the next
coset, we should make sure that our next choice of y does not exist in all the previous
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cosets. Note that, as Aboluion used 40 cosets in her thesis, we also considered that
number of cosets here.

• Step 3. To obtain better bounds, the union of the cosets has been applied. The following
describes how the union of cosets has been constructed with the different values of n
that we considered in this paper.

1. n = 4
For this length, a union of 20 cosets each from Simplex alpha code and Preparata
code has been considered. Note that, although that Preparata code and Kerdock
code are defined as m = 4, here we are using Magma output for m = 2. The total
number of cosets in this union is 40. Each coset has four code words, since four
is the size of the Simplex alpha code and Preparata code of length four. The code
words of these two codes are derived by the Magma commands:
C := SimplexAlphaCodeZ4(k) and
P := PreparataCode(m).

2. n = 8
The size of the Kerdock code and Preparata code of length 8 is 256, so each coset
of these two codes has 256 code words. At length 8, a union of 20 cosets each
from the Kerdock and Preparata codes has been used. Therefore, at the union of
this length, the Python program will check 40 cosets that contain 10,240 DNA
code words.
K := KerdockCode(k) is the Magma command to get the Kerdock code over Z4.

3. n = 16
The union of 20 cosets each from the Simplex alpha code and the Kerdock code
have been involved in the calculations. Simplex alpha code with length 16 has
size 16, and each coset of this code has 16 code words. The Kerdock code of
length 16 has a size of 1024, so each coset here has 1024 code words. A Python
program was run here over 40 cosets with 20,800 DNA code words.

4. n = 32
Hadamard code was used with the Kerdock code at the union of this length.
There are 20 cosets of size 128 from the Hadamard code of length 32 given by
this command:
H := HadamardCodeZ4(3, 6) and 20 cosets of size 4096 from the Kerdock code.
Therefore, the union of these codes over Z4 has 40 cosets needed to work on
them, with 84,480 DNA code words of length 32.

After we obtain the union of the cosets from the two codes over Z4 at each value of n,
we have the three remaining steps to complete our work on the cosets.

• Step 1. After removing the duplicated elements in the union, we map {0, 1, 2, 3} to
A, C, G, T considering the two previous mappings. Then we apply the no-repetition
constraint on the code words.

• Step 2. Apply the SB approach to the union by first choosing two random seed code
words that satisfy the given three constraints. These seed code words satisfy HD and
GC-content constraints for a given d with w = [ n

2 ] and the no-repetition constraint to
find lower bounds for AGC

4 (n, d, w). Note that lower bounds depend on the choice of
seed code words, and we chose seed code words with better lower bounds.

• Step 3. The program then examines all the DNA code words that exist in the set of
the union and keeps those code words that satisfy the given constraints with respect
to the seed code words. The program then collects these code words in a new set
and gives its size to obtain lower bounds for DNA codes. Note that, for the lower
bounds of AGC

4 (n, d, w) that we obtained, we should make sure they do not exceed
the upper bound of AGC

4 (n, d, w). The upper bound has been taken from Theorem 5 in
reference [19].

The following is an example of our method with n = 4.
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Example 1. Letting n = 4, d = 4, and w = 2, Table 1 shows the set of code words that represent
the vector y from the universe code over Z4 with n = 4. Let C1 be the Simplex alpha code over
Z4 such that C1 = [0000, 0123, 0202, 0321], and let C2 be the Preparata code over Z4 such that
C2 = [0000, 1111, 2222, 3333]. A pictorial flow is given towards the end of the paper.

Table 1. The set of code words from the universe code over Z4 with n = 4.

0000 1000 2000 3000 0100 1100
2100 3100 0200 1200 2200 3200
0300 1300 2300 3300 0010 1010
2010 3010 0110 1110 2110 3110
0210 1210 2210 3210 0310 1310
2310 3310 0020 1020 2020 3020
0120 1120 2120 3120

Now, construct 20 cosets of the Simplex alpha code using the formula in (1) to obtain
the following cosets:

C1(0000) = [0000, 0123, 0202, 0321]
C1(1000) = [1000, 1123, 1202, 1321]
C1(2000) = [2000, 2123, 2202, 2321]
C1(3000) = [3000, 3123, 3202, 3321]
C1(0100) = [0100, 0223, 0302, 0021]
C1(1100) = [1100, 1223, 1302, 1021]
C1(2100) = [2100, 2223, 2302, 2021]
C1(3100) = [3100, 3223, 3302, 3021]
C1(0200) = [0200, 0323, 0002, 0121]
C1(1200) = [1200, 1323, 1002, 1121]
C1(2200) = [2200, 2323, 2002, 2121]
C1(3200) = [3200, 3323, 3002, 3121]
C1(0300) = [0300, 0023, 0102, 0221]
C1(1300) = [1300, 1023, 1102, 1221]
C1(2300) = [2300, 2023, 2102, 2221]
C1(3300) = [3300, 3023, 3102, 3221]
C1(0010) = [0010, 0133, 0212, 0331]
C1(1010) = [1010, 1133, 1212, 1331]
C1(2010) = [2010, 2133, 2212, 2331]
C1(3010) = [3010, 3133, 3212, 3331]

Also construct 20 cosets of the Preparata code using the formula in (1) to obtain the
following cosets:

C2(0110) = [0110, 1221, 2332, 3003]
C2(1110) = [1110, 2221, 3332, 0003]
C2(2110) = [2110, 3221, 0332, 1003]
C2(3110) = [3110, 0221, 1332, 2003]
C2(0210) = [0210, 1321, 2032, 3103]
C2(1210) = [1210, 2321, 3032, 0103]
C2(2210) = [2210, 3321, 0032, 1103]
C2(3210) = [3210, 0321, 1032, 2103]
C2(0310) = [0310, 1021, 2132, 3203]
C2(1310) = [1310, 2021, 3132, 0203]
C2(2310) = [2310, 3021, 0132, 1203]
C2(3310) = [3310, 0021, 1132, 2203]
C2(0020) = [0020, 1131, 2202, 3313]
C2(1020) = [1020, 2131, 3202, 0313]



Mathematics 2023, 11, 4732 7 of 10

C2(2020) = [2020, 3131, 0202, 1313]
C2(3020) = [3020, 0131, 1202, 2313]
C2(0120) = [0120, 1231, 2302, 3013]
C2(1120) = [1120, 2231, 3302, 0013]
C2(2120) = [2120, 3231, 0302, 1013]
C2(3120) = [3120, 0231, 1302, 2013]

Now, create the union of these two cosets and remove the duplicated elements. Then,
apply the second mapping of the elements 0123 to GCAT. After that, apply the homopoly-
mers constraint to obtain the code words listed in Table 2.

Table 2. The set of DNA code words with homopolymers constraint for n = 4.

GCAT GAGA GTAC CAGA CTAC
ACAT ATAC TCAT TAGA GTGA
CTGA CGAC ATGA AGAC TGAC
GTAT GCAC CTAT ATAT ACAC
TCAC GCGA CGAT AGAT ACGA
TGAT TCGA GACA CGCG CACA
AGCG TGCG TACA GACG CTAC
AGTA TCGT CACG ATAC TGTA
GCGT TACG GTAC CGTA ACGT
GTCG CGAC ACTA TAGT CTCG
AGAC TCTA GAGT ATCG TGAC
GCTA CAGT CGAG ACTC TAGA
GTCT AGAG TCTC GAGA CTCT
TGAG GCTC CAGA ATCT GCAG
CATC ATGA TGCT ACAG TATC
GTGA CGCT TCAG GATC CTGA
AGCT

Next, apply the SB approach to the DNA code words in Table 2 using these two
seed-building code words: CATC, TCGA with d = 4 and w = 2. Choose only DNA code
words with w = 2 to compare with CATC and TCGA. For example, take ATCG: dH(CATC,
ATCG) = 4 and dH(TCGA, ATCG) = 4. After checking all the code words in the table, we see
that ATCG, GTCT, AGAG, and AGCT are all have a distance of 4 from the SB code words,
and their w = 2. Therefore, the final set of DNA code words that satisfies the homopoly-
mers, HD, and GC-content constraints is: [ATCG, GTCT, AGAG, AGCT]. Therefore,
AGC

4 (4, 4, 2) = 4. The approach is summarized in Figure 1.

Figure 1. Our approach applied on the example n = 4, d = 4, w = 2.



Mathematics 2023, 11, 4732 8 of 10

4. Results

Finally, the program gives the lower bounds for DNA codes after completing all steps
described in the previous section. Table 3 shows the improved lower bounds that were
obtained by our method. Note that all values are computed by map2, since map1 does not
give any good results.

Table 3. Solutions obtained by our approach for different size instances.

(n, d) Lower Bound with Homopolymers
Constraint

(4, 4) 4
(16, 13) 12
(16, 14) 3
(32, 27) 8

We obtained better results than existing bounds based on our comprehensive approach
to the n = 4 instance for d = 4, n = 16 for d = 13, and n = 32 instance for d = 27. In the
first two cases, we obtain the same result as in the previous bound, and in the last case with
n = 32, we are getting very close to the upper bound. Therefore, our method is very good,
since it gives us either the previous known bound or close to the upper bound. Additionally,
length n = 32 with d = 27 has not previously been dealt with by the SB approach in the
literature. All the calculations are given on this web site, accessed on 22 October 2023 https:
//dsr-asa.kau.edu.sa/Pages-DNA-code-design-based-on-the-cosets-of-codes.aspx.

For the DNA word design problem (n = 4; d = 4), (n = 16; d = 13), (n = 16; d = 14),
and (n = 32; d = 27) we identified a solution of size 4, 12, 3, and 8, respectively. The
solution is given in Tables 4–7 for these values of n with the homopolymers constraint.

Table 4. Solution of 4 words for the n = 4, d = 4, w = 2 instance with the homopolymers constraint;
SB code words are: CATC and TCGA.

ATCG GTCT

AGAG AGCT

Table 5. Solution of 12 words for the n = 16, d = 13, w = 8 instance with the homopolymers
constraint; SB code words are: GTCATCTCAGAGCTCT and GCATGTCGATGCAGAT.

CTCAGAGAGAGAGAGA

AGCAGAGAGAGAGAGA

TGCAGAGAGAGAGAGA

CAGTATGCGCATATGC

TCGACAGCTACGTCTA

CGCGAGTGACTATGTA

AGTCACTAGCATGAGC

ATAGCGACTGCATCTG

ACGACAGCTACGTCTA

TGTCACTAGCATGAGC

TAGCACTAGCATGAGC

TATGCGACTGCATCTG

 https://dsr-asa.kau.edu.sa/Pages-DNA-code-design-based-on-the-cosets-of-codes.aspx
 https://dsr-asa.kau.edu.sa/Pages-DNA-code-design-based-on-the-cosets-of-codes.aspx
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Table 6. Solution of 3 words for the n = 16, d = 14, w = 8 instance with the homopolymers constraint;
SB code words are: GCATGTCGATGCAGAT and GTCATGAGTACGTAGC.

AGTAGCTCGCTAGTGT

TGTAGCTCGCTAGTGT

CATAGCTCGCTAGTGT

Table 7. Solution of 8 words for the n = 32, d = 27, w = 16 instance with the homopoly-
mers constraint; SB code words are: TAGCAGCTCACACATGTGCACATGTGCACATG and
TGCATGCGTCACAAGTGTCTGTACACGCATAC.

ACGTGATCTGTGTGCACATGTGCACATGTGCA

TCGTGATCTGTGTGCACATGTGCACATGTGCA

CACTGATCTGTGTGCACATGTGCACATGTGCA

GACTGATCTGTGTGCACATGTGCACATGTGCA

CTCTGATCTGTGTGCACATGTGCACATGTGCA

GTCTGATCTGTGTGCACATGTGCACATGTGCA

AGCTGATCTGTGTGCACATGTGCACATGTGCA

TGCTGATCTGTGTGCACATGTGCACATGTGCA

5. Conclusions

This paper aimed to improve the lower bounds for DNA codes that satisfy significant
constraints, constructed from the cosets of linear codes over Z4. By adding the homopoly-
mers constraint, these vectors are more suitable for DNA synthesis applications since
they satisfy the homopolymers constraint; this kind of constraint is not well-known in the
literature. Therefore, our approach is a comprehensive approach. We obtained four better
lower bounds, and the approach is new.

Magma software V2.24-4 and Python programming were used for the implementation,
and we succeeded in building new Python programs that calculate bounds for n = 4, 8, 16,
and 32 with various values of d. The comprehensive approach presented here found four
better lower bounds. These lower bound improvements shown in Table 3 satisfy the HD
constraint, the GC-content constraint, and the homopolymers constraint and are excellent
results that demonstrate the effectiveness of our technique.

In this paper, we focused on n = 4, n = 8, n = 16, and n = 32 because of the types of
codes over Z4 that we considered in the union. For n = 4, indeed, there are only 4 cosets of
Kerdock code at length 4. For a future target, we can use a different combination of codes
at the union of the cosets; we may combine Simplex alpha code with Preparata code as
well as Kerdock code with Preparata code at length 16 to obtain new DNA codes. In this
paper, we are focusing on degree one for the homopolymers constraint. In the next paper,
we may construct a higher degree of conflict-free DNA codes. We hope our technique can
be further applied to other values of n and also to other codes over finite rings such as Zps .
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