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Abstract: Ensemble-based systems are well known to have the capacity to outperform individual
approaches if the ensemble members are sufficiently accurate and diverse. This paper investigates
how an efficient ensemble of deep convolutional neural networks (CNNs) can be created by forcing
them to adjust their parameters during the training process to increase diversity in their decisions.
As a new theoretical approach to reach this aim, we join the member neural architectures via a
fully connected layer and insert a new correlation penalty term in the loss function to obstruct their
similar operation. With this complementary term, we implement the standard guideline of ensemble
creation to increase the members’ diversity for CNNs in a more detailed and flexible way than
similar existing techniques. As for applicability, we show that our approach can be efficiently used in
various classification tasks. More specifically, we demonstrate its performance in challenging medical
image analysis and natural image classification problems. Besides the theoretical considerations and
foundations, our experimental findings suggest that the proposed technique is competitive. Namely,
on the one hand, the classification rate of the ensemble trained in this way outperformed all the
individual accuracies of the state-of-the-art member CNNs according to the standard error functions
of these application domains. On the other hand, it is also validated that the ensemble members
get more diverse and their accuracies are raised by adding the penalization term. Moreover, we
performed a full comparative analysis, including other state-of-the-art ensemble-based approaches
recommended for the same classification tasks. This comparative study also confirmed the superiority
of our method, as it overcame the current solutions.

Keywords: ensemble-based network; penalization; loss function; image classification; diversity

MSC: 68T07

1. Introduction

Convolutional neural networks (CNNs) have become top-rated tools in recent years in
digital image processing for pattern recognition tasks like detection, localization, segmenta-
tion, and classification [1–11]. They have the capability to learn parameters of convolutional
filters to extract those significant, higher-order features, which can be used to distinguish
images belonging to different classes. The training phase requires thousands of manually
labeled images and large-scale computational capacity. The proposed CNNs are sufficiently
general to apply them to various classification problems with high accuracy. However,
if we intend to improve the classification performance, we may consider the composition
of an ensemble from these networks.

Several papers can be found in the literature that consider ensembles of deep learning-
based classifiers. Especially, ensemble-based techniques are rather popular to handle
regression [12,13], classification [14–16], segmentation [17] and metric learning [18] tasks.
A pioneer work is [19], where the authors showed that an ensemble of neural networks
could achieve higher accuracy than a single one. When we use an ensemble of CNNs or

Mathematics 2023, 11, 4730. https://doi.org/10.3390/math11234730 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234730
https://doi.org/10.3390/math11234730
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4405-2040
https://orcid.org/0009-0001-1203-6890
https://orcid.org/0000-0003-1718-9770
https://doi.org/10.3390/math11234730
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234730?type=check_update&version=1


Mathematics 2023, 11, 4730 2 of 19

other machine learning-based methods, we have to take into account the following two
critical issues: first, how to merge the outputs of the members, and second, how to achieve
their diverse behavior to raise accuracy.

There are several ways to aggregate the outputs of the ensemble members. We can
calculate, for example, their simple average, arithmetic mean [20] or weighted average.
In a weighted aggregation scheme, the weights are usually determined based on the
performances of the ensemble members [12,17,21] or by some learning algorithm [14].
We might as well apply voting, where the most common method is the majority-based
one [22–24]. Moreover, there exist methods which involve also the confidence of the
members [25] or assign weights to the voters [26]. In general, the weighting approaches
perform better than the unweighted ones because they have extra parameters, which
usually lead to a better fit.

Applying a machine learning method for merging the outputs is also quite com-
mon, including support vector machine [14], random forest [26], simulated annealing [27],
or multi-layer perceptron (MLP) [14]. The main benefit of these learning-based methods
is the capability to find the best combination of the members. The cited methods also
have a common property: they are used in an offline manner. That is, the members of the
ensemble learn their parameters separately before their aggregation. Training the members
separately is time consuming and also much harder to make them less correlated, which
helps to increase the diversity. On the other hand, we can incorporate the aggregation in
the neural architecture to set up an online ensemble with considering fusion layers and
concatenation to merge the member outputs. When we use such an ensemble, the members
simultaneously can learn their parameters [18,28–30], as well. This simultaneous learning
shortens the training time, which is a critical issue in deep learning.

Besides the aggregation scheme, another important question is how to achieve large
diversity among the members. A corresponding early work [31] recognized that without
diversity, the performance of the ensemble becomes limited. There are several methods
which could be applied to rise of the diversity of the members. Since offline ensembles are
more widespread currently, we start with them first. A possible way is to apply different
pre-processing methods [15,23] to make the input more diverse, thus the members also
learn different parameters to recognize the various patterns. Others proposed different
model architectures [20,25,26] or various kernel sizes and model depth [12]. With the same
model architecture but cyclic change of the learning rate, we can also obtain diverse models.
This approach is called SnapShot learning [32–34] and is able to find different local minima
of the loss function that makes the members more diverse. In [22], diversity is raised by
splitting an inner layer’s outputs to feed them into other networks. Another possibility
is to use custom class weights in the loss function during training [17,23]. With these
custom weights, the learning algorithm can be forced to focus on different classes in the
training data.

Some of the methods listed so far can be also used online, including, for example, using
different pre-processing techniques [29] or different model architectures [35]. However,
the simplest and most efficient way for online ensembles is to incorporate the diversity
constraints directly into the loss function. The first work that inserted a correlation penalty
term in the loss function to force the gradient descent algorithm to learn more diverse
ensembles was [13]. This so-called negative correlation learning (NCL) was successfully
applied to regression with MLP and used mean square error to calculate the loss. In [28],
the same NCL technique was considered for CNN in crowd counting, age estimation,
personality analysis and single-image super-resolution tasks. An inner layer of the CNN
was split, and the separated outputs were fed into three “sub-networks”. The NCL method
was combined with AdaBoost for MLPs in [36] to solve classification problems. In [18],
a custom loss function was presented to achieve a diverse and less correlated embedding
for image metric learning. The cosine similarity also can be used as a penalty term to raise
diversity [29]. The cooperative ensemble was also investigated here by KL-divergence
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and was combined with differently pre-processed images and network dropout to make it
more diverse.

In the current work, we propose an online ensemble technique for image classification.
As our main contribution, we introduce a new, more refined penalty term than NCL for a
loss function dedicated to classification purposes. Namely, we use the Pearson-correlation
penalty term instead of the simple one of NCL, which is able to simultaneously support the
correlation for correct decisions, while supporting uncorrelated behaviors of the members
for false decisions. On the other hand, instead of using MSE like in the former works
related to NCL, we use categorical cross entropy, which is currently a better accepted
loss function for classification scenarios. Nevertheless, notice that though we use our
penalty term with a cross-entropy loss, it can be applied to any other one in the same way.
Finally, as a supplementary step, we also adopt the strategy to include different types of
member architectures.

In our former work [35], we combined different individual CNN architectures that
have already proven their efficiencies in pattern recognition scenarios. We elaborated on an
ensemble-based framework, which can be successfully applied to improve the accuracy
of individual CNNs if the expansion of the training image set is not possible. We trained
the four CNN architectures GoogLeNet [37], AlexNet [38], ResNet [39] and VGGNet [40]
and aggregated their outputs. We showed how to train different CNNs in parallel and
fuse their outputs based on specific mathematical and statistical models to improve the
final classification accuracy. This solution can be considered a rather loosely connected
ensemble-based system since the members are trained completely independently from
each other.

As an improvement, we proposed the fusion of the CNNs at the architecture level
in a later work. Thus, we composed a much more complex, combined super-network
and trained the involved members as a whole [41]. More specifically, we interconnected
the members with inserting a joint fully connected layer followed by the classic soft-
max/classification ones for the final prediction. In this way, we created a single network
architecture from the member CNNs, which can be trained by backpropagation in a stan-
dard way.

In this work, we improve the final classification accuracy of the composed ensemble
further by forcing the members to adjust their parameters during backpropagation to
increase the diversity in their decisions. More specifically, we join the member CNNs
via a fully connected layer and introduce a new term in the loss function as a correlation
penalty, which rises when the individual neural networks misclassify at the same time.
With this approach, we implement the traditional common guideline to increase the diverse
behaviors of the members also for ensembles of CNNs. As an additional theoretical
contribution, we properly determine the derivative of the introduced loss function to be
able to implement the backpropagation procedure efficiently. The benefits of our general
method is demonstrated on four classification problems related to natural images and
medical ones. Besides the theoretical considerations and foundations, our experimental
results suggest that the proposed approach is a highly competitive one.

The rest of the paper is organized as follows. In Section 2, we introduce our method-
ology for creating an ensemble of CNNs. We also present how a term penalizing the
correlation of the member CNNs on the false decisions is added to the loss function. To
highlight our main contribution, we also give a formal derivation to prove the positive ef-
fects of our penalty term for the ensemble diversity. We also provide the partial derivatives
of the penalty term in a closed form to be able to integrate it seamlessly to the backpropaga-
tion process to adjust the corresponding weights in the joint network. Section 3 is dedicated
to our experimental results in classification tasks related to the automatic recognition of
skin cancer and the severity of diabetic retinopathy (DR) from several aspects and evalu-
ating our method on well-known natural image data sets, as well. We also compare our
method with some state-of-the-art ensemble-based techniques suggested for the same type
of classification tasks. Finally, some conclusions are drawn in Section 4.
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2. Learning Methodology

Recently, in the field of natural image classification, several CNN architectures have
been released, like GoogLeNet [37], AlexNet [38], ResNet [39], VGGNet [40], DensNet [42],
and MobileNet [43], besides others. Some of these architectures are available as pre-trained
models initially trained on approximately 1.28 million natural images from the data set
ImageNet [44]. Thus, as a transfer learning approach [45], we can use the weights and
biases from these pre-trained models. That is, if we fine-tune all the layers of these models
by going on with the backpropagation using our data, they can be applied to our specific
classification task, as well. On the other hand, if we have sufficiently many annotated
images to train from scratch, we can initialize the parameters of the CNNs randomly.

This study considers both randomly initialized and pre-trained networks also designed
for deep learning purposes. We fuse these networks during the creation of the ensemble
and produce a directed acyclic graph, where layers can have inputs from multiple ones.
In practice, we combine the outputs of the members using a concatenation layer, which
is a dense one. The general aim of an ensemble system is to benefit from the members’
strengths while overcoming their weaknesses. Unfortunately, some critical problems may
arise during the combination of members’ outputs. The worst situation is when more
than one member predicts the same wrong class label for the same input because member
classifiers are trained on the same data set to minimize the same loss function. To improve
the final accuracy in image classification, we elaborated a method that ensures that the
outputs of the members will be combined efficiently, and their diversity (regarding the
wrongly classified cases) is also aimed to be increased.

As a realization of this idea, we create an ensemble of some well-known CNNs to
increase classification accuracy via a new network architecture. The interconnection of the
member CNNs is solved with an additional fully connected (FC) layer inserted after the last
FC layers of the original CNNs. We initialize/load the weights of this layer and extend the
categorical/binary cross-entropy loss function with an extra term, which can be considered
a correlation penalty to enforce more diverse behavior of the participating CNNs. In this
study, cross entropy is considered, as it has been widely used as a single loss function
and also to construct a hybrid loss function particularly for object classification [46–49].
However, our approach also supports any other loss functions. As the main contribution of
this work, we implement the common guideline with adding a new term to diversify the
members for the ensemble of CNNs. In this way, the constructed ensemble architecture can
train the weights of the combination of two or more networks according to their diversity.

2.1. The Fusion of the Member Networks

This section presents how we produce a single neural network architecture as an
ensemble of N member CNNs. For this aim, we remove their softmax output layers.
To prepare the member CNNs for the current classification task, we replace their last FC
layers with other ones, whose output sizes are set to the required number of classes. We
connect the CNNs via these FC layers with a concatenation one and combine them with
an additional fully connected layer FC. The input of FC is a concatenated vector built
from the outputs of the member CNNs, and the FC layer creates its output as a weighted
combination of these values, as it can be seen in Figure 1.

To give the proper formal description of our approach, let us denote the training set by

{x(n), n = 1, . . . , M},

where the given true labels are

{d(n), n = 1, . . . , M}.

Here, M denotes the number of samples in the training set, while L is the number of
classes (typically L� M) and the labels d(n) are L-dimensional one-hot vectors. For the n-th
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training sample, let F(n)
i be the output of the softmax layer of the i-th CNN (i = 1, . . . , N),

which is a probability distribution vector of dimension L, where the i-th coordinate gives
the probability that the given training sample corresponds to the i-th class. As an ensemble
of the member networks, the FC layer computes the linear combination

F̃(n)
ens =

N

∑
i=1

AiF
(n)
i ,

where the coefficients Ai are initialized as L× L matrices close to a diagonal one with equal
weights in their diagonals and small (ε ≈ 0) values outside the diagonal:

Ai =


1/N ε · · · ε

ε 1/N · · · ε
...
ε ε · · · 1/N

. (1)

Practically, that means that we take approximately the arithmetical mean of the outputs
of the members initially. However, the weights of these vectors are trainable parameters of
the network, so these parameters are also changed during the backpropagation steps of
the training phase. To follow the common principles, at the end of this ensemble, we also
insert a softmax layer to convert the vector F̃(n)

ens to a probability distribution F(n)
ens .

Figure 1. Architecture of the proposed ensemble of CNNs.

2.2. The Loss Function

To increase the diversity of the member networks and avoid the jointly misclassified
items, we introduce a new loss function to achieve higher final classification accuracy. We
supply the cross-entropy loss function with our proposed penalty term, penalizing when the
member networks work similarly wrong and simultaneously supporting correct decisions.

For this aim, we define the penalty function E with the help of the Pearson correlation
coefficient. If X = (X1, . . . , XK) and Y = (Y1, . . . , YK) are K-dimensional vectors, then their
Pearson correlation coefficient can be calculated as

$(X, Y) =
1

K− 1

K

∑
i=1

(
Xi − X

σX

)(
Yi −Y

σY

)

=

K
∑

i=1
(Xi − X)(Yi −Y)√

K
∑

i=1
(Xi − X)2

K
∑

i=1
(Yi −Y)2

,
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where X and Y are the means of X and Y, while σX and σY denote the corresponding
standard deviations, respectively.

Using the notation introduced in Section 2.1, let C(n) be the correlation matrix of the
vectors F(n)

1 , F(n)
2 , . . . , F(n)

N and −d(n):

C(n)=



$(F(n)
1 , F(n)

1 ) · · · $(F(n)
1 , F(n)

N ) −$(F(n)
1 , d(n))

$(F(n)
2 , F(n)

1 ) · · · $(F(n)
2 , F(n)

N ) −$(F(n)
2 , d(n))

...
$(F(n)

N , F(n)
1 ) · · · $(F(n)

N , F(n)
N ) −$(F(n)

N , d(n))
−$(d(n), F(n)

1 ) · · · −$(d(n), F(n)
N ) $(d(n), d(n))


,

which is a symmetric one of dimension (N + 1)× (N + 1).
Then, the penalty term E is defined as

E =
1
M

M

∑
n=1

[
N

∑
i=1

N

∑
j=i

C(n)
ij + N

N+1

∑
i=1

C(n)
i,N+1

]
. (2)

That is, we consider the N × N upper-left part of the matrix C(n), take the sum of the
entries in the upper triangular part of this latter matrix, and add the sum of elements in
the last column of C(n) with weight N. Finally, we calculate the mean of the C(n) values
for n = 1, . . . , M. Note that the values standing in the main diagonal of C(n) are equal to 1,
which means a constant term in the penalty function.

As a next step, we give a formal proof that the penalty term E introduced in (2) owns
the properties to improve the ensemble performance.

Proposition 1. Including the penalty term (2) provides a loss function, having increasing values
according to the order of the following cases:

• All the experts (member networks) classify the n-th training sample correctly;
• Some of the experts do not assign the n-th training sample to the true class, but their outputs

are different classes;
• Some of the experts classify the n-th training sample in the same false class;
• All experts assign the n-th training sample to false classes, but these classes differ;
• All experts assign the n-th training sample to the same false class.

Proof. See Appendix A.

We use the penalty term E with a λ ≥ 0 weight in the final loss function:

L f = L+ λE, (3)

where L is the original cross-entropy loss function. The role of λ is to control the effect of
the penalty term: increasing its value means that we try to increase the diversity of the
member networks. Naturally, a too-high λ value has a negative effect, because in this case,
the diversity operates against the accuracy.

Finally, to help the implementation of the backpropagation process, we describe the
partial derivative of the penalty term with respect to the coordinates of F(n)

k for k = 1, . . . , N.

Denoting by F(n)
k,m the m-th coordinate of F(n)

k , we obtain that

∂E

∂F(n)
k,m

=
1
M

M

∑
n=1

 N

∑
j=1
j 6=k

∂C(n)
kj

∂F(n)
k,m

+ N
∂C(n)

k,N+1

∂F(n)
k,m

,

where the partial derivatives of the correlation coefficients can be calculated as
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∂$(X, Y)
∂Xm

=

(Ym −Y)−

K
∑

i=1
(Xi−X)(Yi−Y)

K
∑

i=1
(Xi−X)2

(Xm − X)

√
K
∑

i=1
(Xi − X)2

K
∑

i=1
(Yi −Y)2

.

3. Application to Image Classification Problems

For the experimental evaluation of our approach, we used some different well-known
CNNs and composed their ensembles to show the usability of our proposed solution. We
also demonstrate the positive effects of our penalization term on the classification accuracy
by reducing the correlation of the members’ outputs. We involved four different image sets
(see Figure 2) for the comprehensive evaluation and used them to train the models and
evaluate their performances.

Figure 2. Sample images from the (a) ISINI, (b) CIFAR-10, (c) DR images and (d) ISIC image sets.

3.1. Data Sets and Preparations

To show the improvement obtained by using the proposed penalty term, we evaluated
our approach on the natural image sets ISINI [50], and CIFAR-10 [51], which are the com-
monly used ones in the related literature. Moreover, as a special field currently investigated
by us, we also involved the skin lesion data set [52] and the DR ones [53–55] to see the
possible classification accuracy gain provided by greater diversity.

3.1.1. ISINI Image Set

The ISINI data set is published by Prasun et al. in [50], and it contains 6899 images
classified into eight classes: airplane, car, cat, dog, flower, fruit, motorbike, and person
(see sample images in Figure 2a). All the classes contain almost the same number of items
(727, 968, 885, 702, 843, 1000, 788, and 986 samples from the eight classes, respectively),
which supports the efficient training of the CNNs for each class. The images have different
resolutions varying from 43× 114 to 2737× 2229 pixels, hence we resized them to the same
size of 227× 227 pixels to overcome these differences. To train the neural networks, we
split the set into training (5519) and test (1380) parts with keeping up the original ratio
among the classes.
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3.1.2. CIFAR-10 Image Set

The CIFAR-10 natural image set is published in [51] by Krizhevsky et al. in 2009,
and it is one of the most commonly used data sets for the evaluation of different CNNs.
The CIFAR-10 data set consists of 60,000 32× 32 color images in 10 classes, with 6000 images
per class. The low resolution of these images can also be observed in Figure 2b. In
total, 50,000 training and 10,000 test images are provided, and we also used this original
partitioning. The class labels are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. As for this data set, the original image resolution was kept and instead of resizing
the images, we replaced the input layers of the architecture with the appropriate ones.

3.1.3. DR Image Set

To prove the usability of the proposed ensemble model and the penalty term, we
considered a DR image classification task to check whether the performance can be in-
creased in this application as well. We merged the data sets Kaggle DR [54], Messidor [55],
and the Indian Diabetic Retinopathy Image Dataset (IDRiD) [53] into a single one and split
it into a training and test part. Each of the three data sets contains digital retinal images
of different resolutions (400 × 315, 1440 × 960, 2240 × 1488, 2304 × 1536, 4288 × 2848,
and 5184 × 3456 pixels) and different fields of view. Each image is categorized according to
the severity of DR (5 classes), which means the images are labeled as no (DR0), mild (DR1),
moderate (DR2), severe (DR3), and proliferative DR (DR4). Some sample images from
these classes can be seen in Figure 2c. The DR grading score is provided for 18,127/4529
training/test images, among which 9975/2493 are categorized as DR0, 2085/520 as DR1,
4537/1134 as DR2, 757/189 as DR3, and 773/193 as DR4.

3.1.4. ISIC Image Set

To have an even more reliable evaluation for the clinical domain as our primary
target, we considered a skin lesion image set as well. The ISIC image set was published
by Codella et al. in [52], which has a training part containing 2000 images (samples can
be seen in Figure 2d) with manual annotations regarding three different classes in the
following compounds: 1372 images with nevus, 254 with seborrheic keratosis, and 374 ones
with malignant skin tumors. The images from this training set were used to fine tune the
constructed ensemble network, and the evaluation was performed on the test set. The test
set consists of 393 nevus, 90 melanoma, and 117 seborrheic keratosis images, respectively.

3.1.5. Image Augmentation

Regarding the ISINI, ISIC, and DR data sets, the volumes of images in certain classes
are not sufficiently large to train CNNs and their ensembles [44] without overfitting. To over-
come this issue, we followed the common recommendation regarding the augmentation of
the training data set. There are several possibilities for data augmentation, like image shear-
ing with randomly selected angle (max: 20◦) in the counter-clockwise direction, random
zooming from range [0.8–1.2], flipping horizontally, and rotating with different random
angles. Using such transformations, we made some minor modifications to the training
images, which helps to avoid the overfitting of the models.

3.2. Convolution Neural Networks and their Ensemble

As for the design of the ensemble network architecture, our main motivation was to
use reliable classifiers as backbone architectures and compare the aggregated results to
their original individual accuracies. In the field of natural image classification, several
CNN architectures have been released, like AlexNet, VGG16, GoogLeNet Inception-v3,
MobileNetV2 and ResNet50, which were reported to show solid performances.

AlexNet consists of five convolutional layers some of which are followed by max-
pooling layers and three FC layers with a final softmax one. The FC layer before the last one
has 4096 neurons, which means that it extracts the same number of features from each input
image and uses them to predict the class label at the last FC layer. VGGNet has a depth
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between 16 and 19 layers and consists of small-sized convolutional filters. In VGG16, we
used the configuration consisting of 13 convolutional layers with filters of size 3× 3 pixels.
A stack of convolutional layers is followed by three FC layers, where the last one has the
same number of neurons as the class labels required. For the medical image classification
tasks, some deeper and newer architectures are also involved in our ensembles, such
as MobileNetV2, ResNet50, and GoogLeNet Inception-v3. The MobileNetV2 is based
on an inverted residual structure, and its intermediate expansion layer uses lightweight
convolutions to extract important features of the image. This CNN contains initial fully
convolution layer with 32 filters, followed by 19 residual bottleneck layers. ResNet50 has
48 convolution layers along with 1 max-pool layer and 1 average-pool layer. This network
architecture can handle the problem of vanishing/exploding gradients with the benefit of
shortcut identity mapping, which is known as the deep residual learning technique. Finally,
we considered GoogLeNet Inception-v3 for our ensemble regarding the dermatology image
classification task, as GoogLeNet is reported to show a solid performance in skin lesion
classification [56], as well.

To create an ensemble architecture from these CNNs, we prepared the members for
the given image classification task. Thus, we replaced their last FC layers with other ones
having the length of the number of classes, and connected these FC layers with an additional
fully connected layer FC as described in Section 2.1. Altogether, we composed four
different ensemble networks to make an exhaustive evaluation and show that the proposed
methodology for connecting CNNs and training them simultaneously by using the λE
penalty term has a capability to improve the accuracy with increasing the diversity between
the members. There are two types of ensembles. The first one contains the same architecture
multiple times to demonstrate how the penalty term makes the similar architectures more
diverse (see Figure 3a,b). In the second one, we combine some different CNN models to make
an initially diverse ensemble architecture (see Figure 3c,d) and to train them simultaneously.
Our aim was to show that if we considered the state-of-the-art models and fused them, we
can outperform their individual accuracies. The ensemble network is optimized on different
data sets with applying the penalized loss function with different λ values.

Figure 3. Ensemble networks composed by connecting different member architectures.
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3.3. Experimental Results

We used the four data sets introduced in Sections 3.1.1–3.1.4 and four different setups of
the ensembles of the CNNs to validate the benefit of the proposed penalty term regarding
the final accuracy. Moreover, to exclude any random noise and confirm the achieved
results, we repeated each experiment five times and calculated the mean accuracies and
standard deviations.

In the first scenario, to measure the effects of the penalization term on the ensemble
architecture during the training stage, we considered the simplest ensemble to avoid any
unexpected effects derived from the complexity of the member CNNs. Accordingly, we
included only the AlexNet network three times to compose the ensemble, as it can be seen in
Figure 3a. To ensure a reliable comparison, we evaluated the classification performance of a
single AlexNet and its ensemble with and without (λ = 0) using the proposed penalization
term. Moreover, we applied different λ values in (3) to show how the members become
more diverse as λ increases.

To have also a comparison with other approaches, we considered some frequently
applied state-of-the-art ensemble methods to show the superiority of the proposed combi-
nation framework, where the members can be trained simultaneously. As we described in
the introduction, there are some well-known aggregation methods, which can be applied
successfully to increase the global accuracy. One of them is simple majority voting (SMV)
when we check the outputs of the members and select the label supported by the largest
number of votes as in [22,23]. SMV could provide false labels when none of the members
finds the correct class or when more members predict the same wrong class than the correct
one. If we have some information about the reliability or the individual accuracies of the
members, we can exploit this knowledge for weighting the votes accordingly to realize
weighted majority voting (WMV) as in [26]. As a last method for comparison, we include
the simple averaging (AVE) when the member outputs are merged by calculating the
arithmetic mean of their softmax outputs as it is proposed in [20].

The details of these evaluations can be seen in Table 1, where AlexNet multi stands for
the ensemble architecture trained by different strength penalization λ terms.

Table 1. Classification accuracy of different setups of AlexNet on the ISINI set.

CNN
Architecture

Value of
λ

Accuracy Total # of
Missed Images

Double
Missed Triple Missed

single AlexNet - 0.9328 ± 0.0029 92.6 ± 4.04 - -

SMV - 0.9465 ± 0.0047 74 ± 6.53 51.0 ± 4.12 27.8 ± 3.50

WMV - 0.9462 ± 0.0041 74 ± 5.67 51.0 ± 4.12 27.8 ± 3.50

AVE - 0.9504 ± 0.0021 68 ± 2.96 51.0 ± 4.12 27.8 ± 3.50

AlexNet multi 0 0.9543 ± 0.0013 63 ± 1.73 50.4 ± 3.42 27.6 ± 3.51

AlexNet multi 0.5 0.9636 ± 0.0021 50 ± 2.94 36.2 ± 3.99 24.0 ± 3.67

AlexNet multi 1 0.9650 ± 0.0018 48 ± 2.49 32.0 ± 4.99 25.0 ± 4.30

AlexNet multi 5 0.9617 ± 0.0013 52 ± 1.78 31.4 ± 2.82 24.4 ± 2.96

Table 1 shows the accuracies and the number of misclassified images regarding the
single AlexNet and its different ensembles with and without (λ = 0) applying the penaliza-
tion term. If we check the accuracy values, a 3% improvement can be observed over all the
investigated state-of-the-art combination methods and the individual member accuracies.
Our aim was to improve the classification accuracy and make the members more diverse
to reduce the chance of simultaneous mistakes. To show how the proposed penalization
term reduced the number of simultaneously misclassified items, we considered the outputs
of the members and evaluated their individual accuracies with increasing the value of λ,
as well. Moreover, we checked how many images are classified wrongly by at least two
members. Accordingly, the last two columns of Table 1 show the average number of images
which were classified wrongly by two members (double missed) and three members (triple
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missed). We can see that the number of jointly missed images decreases when λ increases,
and in this way, the proposed penalty term E is applied during training. So it can be used
efficiently to reduce the incidence of joint mistakes of the members. Notice that if we set
λ to a higher value, the penalty term becomes stronger, resulting in lower classification
accuracy, as the optimization process focuses better on the more diverse members.

To further check the usability and efficiency of the proposed penalty term, we trained
and evaluated AlexNet and its ensemble on the CIFAR-10 image set (see Table 2 for the
results). In this scenario, we can observe a slight improvement considering the accuracy
(2.5%), which means that more 253 images were classified correctly. Even more importantly,
the double/triple misses dropped remarkably, showing that higher diversity is reached.
Raising λ above a given point could have harmful effect on the global classification accuracy
just in our previous setup and all the further experiments.

For the sake of completeness, VGG16 is also involved in the same type of evaluation
using the CIFAR-10 data set. So, we trained the single VGG16, composed its ensemble
in the same way as AlexNet and measured the classification accuracies with and without
applying the proposed penalization term. The results enclosed in Table 3 show a 7% rise
in classification accuracy when we compose an ensemble using more VGG16 networks
by only concatenating and training them together instead of combining their outputs
after a separate training. The performance is increased with an additional 2% when the
proposed penalization term is applied. Moreover, the number of jointly missed images is
reduced dramatically.

Table 2. Classification accuracy of different setups of AlexNet on the CIFAR-10 set.

CNN
Architecture

Value of
λ

Accuracy Total # of
Missed Images

Double
Missed Triple Missed

single AlexNet - 0.6431 ± 0.0056 3569 ± 56 - -

SMV - 0.6308 ± 0.0024 3692 ± 25 3797 ± 362 2692 ± 130

WMV - 0.6258 ± 0.0044 3741 ± 44 3797 ± 362 2692 ± 130

AVE - 0.6554 ± 0.0079 3446 ± 79 3797 ± 362 2692 ± 130

AlexNet multi 0 0.6471 ± 0.0031 3529 ± 31 3093 ± 248 2741 ± 79

AlexNet multi 0.5 0.6656 ± 0.0059 3343 ± 59 2124 ± 165 2290 ± 48

AlexNet multi 1 0.6683 ± 0.0035 3316 ± 35 2077 ± 254 2294 ± 45

AlexNet multi 5 0.6646 ± 0.0042 3354 ± 42 2130 ± 261 2295 ± 119

Table 3. Classification accuracy of different setups of VGG16 on the CIFAR-10 set.

CNN
Architecture

Value of
λ

Accuracy Total # of
Missed Images

Double
Missed

Triple
Missed

single VGG16 - 0.8051 ± 0.0016 1949 ± 16 - -

SMV - 0.7800 ± 0.0243 2199 ± 243 2036 ± 274 660 ± 48

WMV - 0.8197 ± 0.0111 1802 ± 111 2 036 ± 274 660 ± 48

AVE - 0.8331 ± 0.0060 1668 ± 60 2036 ± 274 660 ± 48

VGG16 multi 0 0.8743 ± 0.0013 1256 ± 13 1537 ± 318 661 ± 49

VGG16 multi 0.5 0.8923 ± 0.0024 1077 ± 25 812 ± 31 540 ± 13

VGG16 multi 1 0.8931 ± 0.0018 1068 ± 18 818 ± 30 526 ± 30

VGG16 multi 5 0.8892 ± 0.0027 1108 ± 27 908 ± 44 545 ± 29

To demonstrate the efficiency of the proposed combination and the penalty term also
for medical image classification tasks, we considered an ensemble network composed from
AlexNet, MobileNetV2, and ResNet50 as it can be seen in Figure 3c. As a first step, we
trained the members separately as individual architectures and calculated their accuracies.
Then, we took their outputs and combined them using SMV, WMV, and AVE, respectively.
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Finally, we connected these member CNNs to form a single architecture and trained them
simultaneously using the proposed concatenation layer and the penalty term with different
λ values. As we can see in Table 4, the model composed by the proposed combination
framework after training with the penalty term E reached 2–5% higher accuracy than
SMV/WMV/AVE, and the number of the simultaneously misclassified fundus images
decreased as well.

As our final use case, we checked the usability and effectiveness of our proposed
combination technique in skin lesion classification. We have already made substantial
efforts in this field to improve classification accuracy, e.g., in an ensemble-based manner.
In [35], we considered four different CNN architectures, and after training them in parallel,
we fused their outputs using statistical models. In [41], we interconnected the CNNs by
inserting a joint fully connected layer and composed a super-network in which all the
members are trained together. Now, we use the same CNNs and data set [52] and show
how the proposed penalization term can help the members to become more diverse to
make the ensemble-based system reach higher classification accuracy.

At this point, we have composed an ensemble-based system (see Figure 3d) from
AlexNet, VGG16 and GoogLeNet Inception-v3 as we described in Sections 2.1 and 3.2.
The classification performances of the individual models and their ensembles using differ-
ent λ values can be seen in Table 5, where λ = 0 can be considered the result of a previous
approach published in [41].

Table 4. Classification accuracy of the ensemble of CNNs on the DR data set.

CNN
Architecture

Value of
λ

Accuracy Total # of
Missed Images

Double
Missed

Triple
Missed

AlexNet - 0.5760 ± 0.0035 1920 ± 16 - -

MobileNetV2 - 0.6114 ± 0.0101 1760 ± 46 - -

ResNet50 - 0.6515 ± 0.0193 1578 ± 87 - -

SMV - 0.6250 ± 0.0163 1698 ± 73 600 ± 50 1110 ± 111

WMV - 0.6384 ± 0.0182 1637 ± 82 600 ± 50 1110 ± 111

AVE - 0.6462 ± 0.0182 1602 ± 82 600 ± 50 1110 ± 111

CNN ensemble 0 0.6584 ± 0.0170 1547 ± 77 580 ± 152 1136 ± 86

CNN ensemble 0.5 0.6707 ± 0.0081 1491 ± 36 460 ± 140 883 ± 21

CNN ensemble 1 0.6662 ± 0.0034 1511 ± 15 651 ± 128 866 ± 27

CNN ensemble 5 0.6599 ± 0.0099 1540 ± 45 742 ± 224 913 ± 122

Table 5. Classification accuracy of the ensemble of CNNs on the ISIC data set.

CNN
Architecture

Value of
λ

Accuracy Total # of
Missed Images

Double
Missed

Triple
Missed

AlexNet - 0.6858 ± 0.0011 188 ± 1 - -

VGG16 - 0.7033 ± 0.0014 178 ± 1 - -

Inception-v3 - 0.7099 ± 0.0016 174 ± 1 - -

CNN ensemble 0 0.7011 ± 0.0239 179 ± 14 99 ± 30 106 ± 7

CNN ensemble 0.5 0.7294 ± 0.0178 162 ± 11 102 ± 29 94 ± 13

CNN ensemble 1 0.7355 ± 0.0111 158 ± 6 150 ± 31 57 ± 37

CNN ensemble 5 0.7011 ± 0.0267 179 ± 16 177 ± 25 39 ± 8

We can see a more than 3% improvement in classification regarding our previous
ensemble-based method and a remarkable growth in diversity based on the drops of
the double/triple misses at λ = 1. In one of the five runs with λ = 1, the ensemble
network reached its best performance when it missed only 151 images, so its accuracy
was 74.8%. For a better interpretation, we also give a visual representation on how the
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ratios of the single, double, and triple misses change for λ = 0, λ = 0.5, λ = 1, and λ = 5
(see Figure 4a,b,c,d, respectively). In these charts, each disc contains the average number
of the missed images by the given member. The intersecting parts contain the average
numbers of the double and triple missed images.

To make our comparative study more comprehensive, we also applied the evaluation
protocol of the ISBI 2017 challenge [52]. Namely, we converted the originally three-classes
task to three binary classification problems using the one-vs-all approach. Then, the perfor-
mance was evaluated as the average of the three binary classification accuracies. In this
test, the best current model reached AVG_ACC = 0.8675, while our previous approach
with λ = 0 only reached 0.8380 as it was originally published in [41].

Figure 4. Ratios (average numbers) of the single, double and triple missed images for (a) λ = 0,
(b) λ = 0.5, (c) λ = 1, and (d) λ = 5.

3.4. Discussion

As we saw in Section 3.3, the proposed penalization term makes the outputs of the
members more diverse, which improves the final classification accuracy. Higher diversity
is reflected in the number of jointly missed images. That is, double/triple misses reduce
when the value of λ increases. However, when the value of λ goes over an optimal level,
the overall accuracy of the ensemble starts to drop. The reason is that the approach focuses
more on making the members more diverse than on the overall classification performance
as we can see it, for example, in Figure 5. So we can consider λ as a hyperparameter which
should also be optimized similarly, for example, to the learning rate; thus, it should be
carefully adjusted.

Regarding the details of implementation, several open-source libraries are available
for machine learning and deep learning purposes, such as CNTK, Caffe2, PyTorch, Ten-
sorFlow, and Keras, which can be considered an API for the previously mentioned back-
end libraries. Our implementation was developed using TensorFlow (ver = 2.2.0) and
TensorFlow-GPU (ver = 2.3.1) as backend for Keras. The CNNs VGG16, ResNet50, Mo-
bileNetV2 and GoogLeNet Inception-v3 were available as pre-trained models in Keras to
build up our ensembles. The required AlexNet was not available in the core Keras library,
so we composed this architecture from the necessary layers as published and trained it
from scratch.

A general bottleneck of ensemble-based methods, especially in the case of CNN
members, is that the number of model parameters increases to a large extent that requires
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the expansion of the training data set to avoid overfitting. Though we have not directly
encountered this problem, a remedy can be to not fully pre-train the members, a solution
which should leave some space for them to become diverse during their simultaneous
training.Another common limitation of complex ensemble-based systems is that the training
and optimization require high computational capacity. To mitigate this issue, we considered
CUDA-based implementations running on GPU cards.

The fine-tuning and training steps were performed on a computer equipped with
an NVIDIA TITAN RTX, and a GeFroce RTX 2080 Ti GPU card with 24 GB and 11 GB
memories, respectively. The TITAN RTX (RTX 2080 Ti) has 16.31 (13.45) TFLOPs compu-
tational performance at single precision, 672.0 (616.0) GB/s of memory bandwidth, and
4608 (4352) CUDA cores. This 35 GB available memory was necessary when the ensemble
networks were trained, and the total number of trainable and non-trainable parameters was
526,439,818. We used the mirrored strategies of TensorFlow for the complete ensemble net-
work, which is typically used for training on one machine with multiple GPUs. The member
CNNs were placed into the different GPU memories, so we shared the available memory
among the network branches. The training time highly depends on the complexity of the
model. For the individual networks, it is varied between 2 and 5 h, while the complex
ensemble-based networks are trained for more than 16 h.

For a reliable evaluation, we fixed the same hyperparameter settings during the
training stage of each setup. Namely, for optimizing the parameters of the individual CNNs
and their ensembles, we trained the models over 100 epochs using the Adam optimizer
with a learning rate of 1× 10−5. To avoid overfitting, we used 20% of each training set as a
cross-validation set. For each model, we preserved the parameters, reaching the highest
accuracy on the validation set during the 100 epochs.

Figure 5. Comparative results for different values of λ.
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4. Conclusions

In this work, we introduced a new correlation penalty term to increase the diversity
of individual CNN members to build up efficient ensembles from them. During training,
the new term penalizes the cases when the members make wrong decisions simultaneously.
In this way, our approach is technically similar to regularization, offering a trade-off
between accuracy and diversity in the cost function. Accordingly, a parameter λ is also
introduced for weighing the correlation penalty consideration; the setting λ = 0 completely
switches it off. We gave a proper theoretical derivation of the new term and its derivative
to support the efficient integration in the backpropagation process.

With this completion, we were able to remarkably improve the performance of previ-
ously proposed ensemble-based methods by generalizing them with the possible consid-
eration of the new penalty term. Namely, our approach was evaluated on natural image
classification problems with a specific interest on the clinical domain, including derma-
tology and retinal images as well. Accordingly, we fused popular CNN architectures by
incorporating them into a super-network and adding the penalty term to the classification
cost function. The ensembles trained using the new penalty term remarkably outperformed
all the individual member CNNs and also the ensembles ignoring it. Moreover, a compar-
ison with other state-of-the-art ensemble-based methods for the same classification task
confirmed the efficiency of our approach.

Though our method was introduced for CNNs with corresponding image process-
ing problems, the framework is sufficiently general for its possible applicability in other
domains, too.
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Appendix A. Proof of Proposition 1

Proof. Considering only one input data item, let us investigate the value of the correspond-
ing part of the penalty term (i.e., only one term of the outer sum in (2), so here we omit
the upper index n). Denote by E0 the value in the perfect classification case with Fi = d
for all i = 1, . . . , N, i.e., when all experts assign the correct class to the given sample with
probability 1. Then, all the correlation coefficients are equal to 1, and

E0 =
N(N + 1)

2
− N2 + N = −N

2
(N − 3).

Now, perturbing one of the Fi vectors (e.g., F1), we have µ1 := $(F1, d) < 1 and

$(F1, Fj) = µ1 < 1, j = 2, . . . , N.
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Denoting by E1 the current penalty term, we obtain that

E1 = $(F1, F1) +
N

∑
i=2

$(F1, Fi)− N$(F1, d)

+
N

∑
i=2

N

∑
j=i

$(Fi, Fj)−
N

∑
i=2

$(Fi, d) + N$(d, d)

= 1 + (N − 1)µ1 − Nµ1 +
(N − 1)N

2
− N(N − 1) + N

= −N
2
(N − 3) + 1− µ1 = E0 + 1− µ1 > E0,

which shows that the farther F1 is from the perfect case, the larger the penalty.
If we perturb the next vector (F2), too, then µ2 := $(F2, d) < 1 and

$(F2, Fj) = µ2 < 1, j = 3, . . . , N.

The values $(F1, Fj) remain unchanged for j = 3, . . . , N, and introducing the variable
µ12 := $(F1, F2), the penalty term E2 can be written as

E2 = $(F1, F1) +
N

∑
i=3

$(F1, Fi)− N$(F1, d) + $(F2, F2) +
N

∑
i=3

$(F2, Fi)− N$(F2, d)

+ $(F1, F2) +
N

∑
i=3

N

∑
j=i

$(Fi, Fj)−
N

∑
i=3

$(Fi, d) + N$(d, d)

= 1 + (N − 2)µ1 − Nµ1 + 1 + (N − 2)µ2 − Nµ2

+ µ12 +
(N − 2)(N − 1)

2
− (N − 2)N + N

= E1 + (1− µ2) + (1 + µ12 − µ1 − µ2).

If µ12 = 1, which means F1 = F2, then E2 > E1. When µ12 = 1, or µ12 ≈ 1, i.e., the
F1, F2 vectors are highly correlated, then the penalty depends on the fact whether these
vectors are close to d or not. In the first case (when they are not the perfect one-hot vector
but close to it), µ1 ≈ 1 and µ2 ≈ 1, so E2 ≈ E1. If F1 and F2 are farther from d (eventually
they miss the correct class), then µ1 << 1 and µ2 << 1, and the penalty is larger.

In general, let us denote by Ek the value of the penalty term when the first k vectors
are not perfect one-hot ones. Then, for every i ∈ {1, . . . , k},

µi := $(Fi, d) = $(Fi, Fj) < 1, j = i + 1, . . . , N.

If we perturb the next vector (Fk+1) too, then only the terms

N

∑
i=1

$(Fk+1, Fi)− N$(Fk+1, d) =
k

∑
i=1

$(Fk+1, Fi) + $(Fk+1, Fk+1)

+
N

∑
i=k+2

$(Fk+1, Fi)− N$(Fk+1, d)

change in Ek. The value of
k
∑

i=1
$(Fk+1, Fi) is

k
∑

i=1
µi and

k
∑

i=1
µi,k+1 in Ek and in Ek+1, respec-

tively, where µi,k+1 := $(Fi, Fk+1) < 1 for i = 1, . . . , k. $(Fk+1, Fk+1) = 1 in both cases, while
for i = k + 2, . . . , N, the correlation $(Fk+1, Fi) is 1 in Ek and µk+1 := $(Fk+1, d) in Ek+1.
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Hence, we obtain that

Ek+1 = Ek +
k

∑
i=1

µi,k+1 −
k

∑
i=1

µi

+ (N − (k + 1))µk+1 − (N − (k + 1))− Nµk+1 + N

= Ek + (k + 1) +
k

∑
i=1

µi,k+1 −
k

∑
i=1

µi − (k + 1)µk+1

= Ek + (1− µk+1) +
k

∑
i=1

[1 + µi,k+1 − µi − µk+1].

Similarly as before, if µi,k+1 ≈ 1, for some i, i.e., Fk+1 is close to Fi, and they are close
to d as well, then 1 + µi,k+1 − µi − µk+1 ≈ 0, so it does not change the penalty significantly.
If the vectors Fi and Fk+1 are close to each other but farther from d, then µi << 1 and
µk+1 << 1; hence, 1 + µi,k+1 − µi − µk+1 > 0, and the penalty is larger.
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