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Abstract: In the context of energy transformation and power market system reform, it is crucial to
address the network risks associated with enhancing the integration of the “Energy–Information–
Market” paradigm. This necessitates research on multi-energy market trading modes and the
corresponding offensive and defensive technologies. This paper proposes a novel approach centered
around a node-local Energy Hub (EH) that represents large industrial users with diverse energy
demands. To facilitate multi-energy two-way trading, a price-oriented Transactive Energy (TE) market
clearing strategy is developed. Building upon this transaction network framework, a data-driven
attack strategy targeting the state estimator of the Transmission System Operator (TSO) is introduced
and implemented in two stages, encompassing real-time topology estimation and False Data Injection
attacks. By leveraging Matrix Transfer Entropy (MTE), the optimal attack target is identified to
disrupt the economic stability of the system and the profit of the attacker increases significantly. The
proposed attack strategy is validated through simulations conducted on a 30-node system, yielding
conclusive evidence of its effectiveness while offering vital insights for system defense.

Keywords: TE market; node local energy community; price signals; FDI attack; Matrix Transfer
Entropy

MSC: 93-10

1. Introduction

In various countries, the primary goal of power market development is to promote
the transformation from a traditional power market to a multi-energy market. This shift
is accompanied by the emergence of concepts such as the smart grid, distributed energy,
and the Energy Hub [1,2]. The participation of user-side resources, particularly large in-
dustrial users represented by EHs, in the power market is of great significance. Through
price signals, these resources can effectively utilize demand response capabilities, promote
coordination and optimization among various energy sources, and contribute to the estab-
lishment of a secure multi-energy system. However, the close interactions among energy,
information, and economy also introduces risks such as cyber attacks and information
failure [3,4], which can disrupt the balance of market operations. It is therefore necessary
to analyze and propose effective countermeasures to mitigate these risks. Doing so is
fundamental to ensure the safe and stable economic operation of the multi-energy market.

Collaborative scheduling and energy trading among Energy Hubs (EHs) in the multi-
energy market have gained increasing attention [5–7]. Three typical organization schemes
for EH are analyzed, namely individual, shared, and aggregate schemes, in [8]. Further-
more, minimizing operating costs [9,10] and maximizing the energy efficiency [11] are
common operational objectives for energy sharing among EHs. The interactions among
different vendors in the operation process can be modeled as a precise potential game,
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bargaining cooperative game, or non-cooperative game [12,13]. Moreover, research related
to energy sharing among productive consumers includes the P2P model and the leader–
follower model. In the P2P structure, various approaches, such as auction models [14],
pricing mechanisms [15], and multi-agent alliance frameworks [16], have been proposed
to organize energy sharing among producers. On the other hand, the leader–follower
structure often employs the Stackelberg game method to simulate the interaction between
the leader and the follower. However, previous studies have not placed sufficient emphasis
on the development of an effective autonomous pricing mechanism tailored to distributed
multi-energy complementary systems. Such a mechanism is essential for accurately captur-
ing the time-varying equilibrium conditions of Energy Hubs (EHs) and their individualized
trading strategies.

The trading decision reference generated by the price signal plays a crucial role in com-
mercial energy trading and requires special attention. As smart assets are typically located
at the edge of the power network [17], it is necessary to optimize the market’s architecture
to accommodate their specific characteristics and locations. In a study presented in [18], a
two-level mathematical programming approach with equilibrium constraints is proposed
to analyze the strategic behavior of profit-driven Energy Hubs (EHs) in the multi-energy
market. At the lower level, the electricity and heating markets are cleared through location
marginal prices, and contracts between energy centers and the two energy markets are
determined. Another study suggests that the optimal scheduling of energy centers should
consider electric, heat, and water requirements [19]. Simulation results demonstrate that
EHs have a significant impact on the locational marginal prices (LMP) of electric nodes,
indicating that the cost and benefits of EH devices are relatively similar.

From an economic perspective, the digitalization of the grid and the deregulation
of the electricity market have created opportunities for profit-seeking cyber attacks. The
accuracy of state estimation is crucial for real-time (RT) market auctions, but it is also
vulnerable to network attacks. One typical network attack targeting state estimation is the
False Data Injection (FDI) attack, which is characterized by its concealment, complexity, and
destructive nature. The comprehensive impact of FDI attacks on energy markets is analyzed
for the first time in [20]. An invisible FDI attack algorithm for state estimation is proposed,
which enables attackers to gain monetary profits through maximum blocking transactions.
Subsequently, a significant amount of research has been conducted on this topic [21–23].
The combination of false trading in the Day-Ahead (DA) markets with congestion model
modifications is discussed as a means to generate profits in [24]. L. Xie te al. [25] analyzed
the sensitivity of damaged sensors to Locational Marginal Prices (LMP) and identified
the most sensitive bus and sensor. The mathematical relationship between the congestion
cost and topology error is derived in [26], and the effect of topology error on LMP is
expressed through a formula. Additionally, Q. Zhang et al. [27] discussed the opportunity
for attackers to suppress the generation of distributed generators in order to obtain profits
and analyzed the sensitivity of cuts and profits.

There has been research focused on launching profitable attacks, even without com-
plete grid information [28,29]. To ensure profitability in the face of uncertain topological
information, Rahman M A et al. [30] proposed a robust False Data Injection (FDI) attack
that guarantees profits in the worst-case scenario. Additionally, R. Moslemi A M et al. [31]
analyzed the impact of limited attacks on the power market operation. However, there are
also studies that consider the completely unknown system structure. The attacker can infer
the system topology through an independent component analysis and principal component
analysis, as shown in [32]. The aforementioned research primarily analyzes the relationship
between state estimation and the attack vector, using mathematical methods to infer system
information or construct attack vectors. On a different note, Choi D-H et al. [33] introduced
a novel approach by leveraging the transparency of the electricity market, which could be a
promising choice.

The aforementioned attack research was conducted in the context of a single power
market, which is inadequate for addressing the complexities of today’s multi-energy cou-
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pled energy market. Furthermore, there is a noticeable research gap regarding TE markets
and their vulnerability to new attack strategies, particularly in the context of EH cluster-
oriented network attack scenarios. Thus, it is of great significance to explore emerging
attack strategies specifically tailored to the new TE market. The main contributions of this
paper are summarized as follows:

1. The research focuses on developing a robust EH mathematical model to support
energy management optimization and market transactions. Specifically, we propose a
price-oriented TE market clearing strategy, tailored to the EH model, which enables
multi-energy two-way trading between multiple EHs in a distributed, competitive
manner. To solve the complex optimization problem associated with this strategy, a
distributed algorithm based on the Nash equilibrium is employed.

2. In order to target the state estimators of TSOs, we propose a two-stage attack strategy
that is data-driven. In the first stage, a real-time topology estimation method is de-
signed, making use of market data to provide the necessary conditions for subsequent
successful False Data Injection (FDI) attacks. In the second stage, the attacker’s role is
determined based on the attack mode that is feasible within the TE market environ-
ment. From the perspective of maximizing profit, we propose an objective function to
guide the attacker’s actions.

3. In the attack strategy, we introduce an optimal method for identifying attack targets
based on MTE. This method leverages market data for causal inference, enabling us
to effectively identify potential targets for attack. By manipulating the TE market
price information, our aim is to achieve attack targets that are both cost-effective and
highly precise. This approach utilizes market data to its full potential and enhances
the accuracy and efficiency of target identification in the attack strategy.

2. Price Oriented TE Market Model
2.1. Structure of EH

The participation of user-side resources represented by Energy Hubs (EHs) in the
power market is of significant importance in terms of providing flexibility and value
and promoting the coordination and optimization of multi-energy sources. The node’s
local energy community structure, illustrated in Figure 1, demonstrates how an EH can
effectively coordinate and manage the generation, transmission, conversion, storage, and
consumption of different types of energy within a given region. This allows the EH to offer
users a range of energy products, such as electricity, gas, and heat. The EH can establish
direct connections with power supply companies and gas companies, housing various
types of renewable energy equipment, energy conversion devices, and energy storage
systems [34–36].

Figure 1. The node’s local energy community structure.
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2.2. TE Market Clearing Model Based on Price Guidance
2.2.1. TSO Market Trading Model

In this section, only the generation side quotations are considered. Therefore, a TSO
clearing model is established based on the DCOPF (Direct Current Optimal Power Flow)
model, which takes into account the losses. The goal of this model is to minimize the total
generation cost, as shown in (1).

min obj =
24
∑

t=1

 ∑
G∈ΦM

k

CG,kPG,k,t + ∑
G∈ΦM

k

(
Cup

G,k,t∆Pup
G,k,t + Cdown

G,k,t ∆Pdown
G,k,t

)
−

∑
p∈ΦN

k

πp,kPp,k,t + ∑
p∈ΦN

k

(
π

up
p,k∆Pup

p,k,t + πdown
p,k ∆Pdown

p,k,t

) , (1)

s.t. ∑
G∈ΦM

k

∆PG,k,t − ∑
el∈Φd

k

∆Pel,k,t + ∑
p∈ΦN

k

∆Pp,k,t = Ploss : (πk,t), (2)

∆PG,k,t = ∆Pup
G,k,t − ∆Pdown

G,k,t , (3)

∆Pp,k,t = ∆Pup
p,k,t − ∆Pdown

p,k,t , (4)

PG,k,min ≤ PG,k,t + ∆PG,k,t ≤ PG,k,max, (5)

0 ≤ ∆Pdown
G,k,t ≤ rmpdown

G,k ; 0 ≤ ∆Pup
G,k,t ≤ rmpup

G,i, (6)

0 ≤ ∆Pup
p,k,t; 0 ≤ ∆Pdown

p,k,t , (7)

−Pp,k,max ≤ Pp,k,t − ∆Pp,k,t ≤ Pp,k,max, (8)

−Pmin
l ≤ ∑

G∈ΦM
k

GSFl−k · (PG,k,t + ∆PG,k,t)

− ∑
p∈ΦN

k

GSFl−k ·
(

Pp,k,t + ∆Pp,k,t

)
− ∑

el∈Φd
k

GSFl−k · (Pel,k,t + ∆Pel,k,t)

− ∑
l∈ΦNL

k

GSFl−k · (DFk · Ploss) ≤ Pmax
l :

(
µmin

l,t , µmax
l,t

) . (9)

where, in (1), the first two terms represent the operational and flexibility costs of the
generator set. The third term represents the revenue earned by the Transmission Network
(TN) through selling electricity to downstream Energy Hubs (EHs) in the energy market.
The last term represents the cost incurred by the TN in procuring flexible resources from
EHs in the market; (2) represents the flexible capacity balance equation. Constraints
(3) and (4) describe the availability of flexible resources provided by the generator sets and
EHs, respectively. Constraint (5) ensures that the sum of the energy and flexible resources
provided by the generator does not exceed the maximum generation capacity. Constraint
(6) states that the flexibility provided by the generator set should meet the ramp and ramp
limit requirements. The flexibility limits provided by EHs to the TSO are described in
constraints (7) and (8). Line power flow constraints are described in constraint (9).
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In the above model, the LMP can be calculated using the Lagrangian function based on
the dual variables of the equality constraints (2)–(4) and the inequality constraints (5)–(9),
as shown in (10):

πLMP,k,t = πk,t − πk,tLFk +
M

∑
k=1

GSFl−k(1− DFk)(µ
min
l,t − µmax

l,t ), (10)

where LFk is the network loss factor vector of the node, and LFk = 1− DFk. As can be seen
from (10), the LMP can be divided into three parts: the marginal energy price, marginal
network loss price, and marginal congestion price:

π
energy
k = πk,t

πloss
k = −πk,t · LFk

π
cong
k =

M
∑

k=1
GSFl−k(1− DFk)(µ

min
l,t − µmax

l,t )
. (11)

2.2.2. EH Transaction Model

In this section, it is assumed that there are N EH participants in the TE market for a
potential game. Then, the set of participants is denoted as N = {1, 2, .., N}, the strategy
of participants is denoted as τi ∈ Γi, and the benefit function is denoted as ψi. The order
represents a set of policy combinations for all participants. Then, a potential game can be
defined as G =

〈
N, {Γi}i∈N , {ψi}i∈N

〉
, if and only if the game has a potential function that

satisfies the following: for ∀i ∈ N, ∀τ−i ∈ Γ−i, ∀x, z ∈ Γi.

ψi(τ−i, x)− ψi(τ−i, z) > 0 I f and only i f P(τ−i, x)− P(τ−i, z) > 0, (12)

where τ−i represents the policy combination set of other actors i except the actor i. Assuming
that the vector ω = {ωi}i∈N is a positive real weighted vector, then for potential games, if
there is a potential function that satisfies

ψi(τ−i, x)− ψi(τ−i, z) = wi(P(τ−i, x)− P(τ−i, z)), (13)

the game is called the plus power game. If ∀i ∈ N, ωi = 1, then the game is a full potential
game.

The energy transaction volume between the EH and the energy suppliers in the time
period t is denoted as Prd

i,γ,t =
{

Prd
i,e,t, Prd

i,g,t|γ ∈ {e, g}
}

, and Prd
i,γ,t ≥ 0, indicating that the EH

can only purchase energy in one direction from the energy suppliers. The transaction price is
recorded as ρrd

i,γ,t =
{

πLMP,i,e,t, ρrd
i,g,t|γ ∈ {e, g}

}
. Similarly, the energy transaction volume

between EHs is denoted as Pik
i,γ,t =

{
Pik

i,e,t, Pik
i,g,t, Pik

i,h,t|γ ∈ {e, g, h}
}

, and its transaction price

is denoted as ρik,γ,t =
{

πLMP,i,e,t, ρik,g,t, ρik,h,t|γ ∈ {e, g, h}
}

, ∀i 6= k. The benefit function
of the EH in a period t consists of four parts: the energy use benefit, the income from
supplying flexible resources to the TN, the equipment operation and maintenance costs,
and the energy transaction cost. Then, the EH’s operation benefit function in a period is
shown in (14):

ψi∈N,t = ∑
γ=e,g,h

24
∑

t=1
fi,γ,u +

24
∑

t=1

(
π

up
LMP,p,i∆Pup∗

p,i,t + πdown
LMP,p,i∆Pdown∗

p,i,t

)
− ∑

m∈W

24
∑

t=1

(
fi,m,t

)
−

24
∑

t=1

(
Prd

i,e,tπLMP,i,e,t + Prd
i,g,tρ

rd
i,g,t

)
− ∑

γ=e,g,h

24
∑

t=1

(
N
∑

i=1
aik,γ

((
Pik

i,γ,tρik,γ,t − Pki
k,γ,tρki,γ,t

)
− ρik,γ,tδik,γPik

i,γ,t∆t
)) , (14)

where ∑ fs,γ,u is the energy efficiency; fi,m,t is the operating cost of type m equipment in
the first EH at time t; πLMP,i,e,t is the electricity price of t period provided by the TSO
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for the ith EH; ρrd
i,g,t is the gas price for time t provided by the GMO for the ith EH; and

At =
{

ai,k,t
}

N×N is the adjacency matrix of the Transmission Network between EHs.
ai,k,γ = 1 indicates that there is a transmission line of energy γ between the ith EH and the
kth EH; if ai,k,γ = 0, there is no transmission line. δi,k,γ is the energy loss coefficient of the
transmitted energy γ between the ith EH and the kth EH; Pik

i,γ,t represents the power of the
energy γ sent by the ith EH to the kth EH in time period t.

In addition, there is still a need to consider the constraints of the EHs and the energy
supplier transactions, as well as the constraints of the transactions between the EHs.

0 ≤ Prd
i,e,t ≤ Prd,max

i,e,t , 0 ≤ Prd
i,g,t ≤ Prd,max

i,g,t , (15)

where (15) represents constraints on an EH’s purchase of electricity and natural gas from
the energy suppliers. Prd,max

i,e,t and Prd,max
i,g,t represent the maximum amounts of electricity

and natural gas purchased by the EH, respectively.

ζs,γ,+Pik,min
i,γ,t ≤ Pik

i,γ,t ≤ ζs,γ,+Pik,max
i,γ,t , (16)

ζs,γ,−Pki,min
i,γ,t ≤ Pki

i,γ,t ≤ ζs,γ,−Pki,max
i,γ,t , (17)

ζs,γ,− + ζs,γ,+ ≤ 1, (18)

where Pik,max
i,γ,t and Pik,min

i,γ,t represent the upper and lower limits, respectively, of the energy l
in the time period t between the ith EH and kth EH. And, they are both 0–1 binary variables.
(16)–(18) ensure that at least one of the purchase and sale amounts of energy γ is zero, and
they ensure that the purchase and sale of the same energy γ in a certain period of time
between EHs will not occur at the same time.

In addition to meeting the physical and load constraints of the energy equipment
model, an EH should also meet the energy supply and demand balance constraints:

Prd
i,e,t + Pki

i,e,t − Pik
i,e,t +

(
Pwt

i,t + Ppv
i,t + Pout,e

i,chp,t + Pout
i,es,t − Pin

i,eb,t − Pin
i,p2g,t − Pin

i,es,t

)
∆t = Li,e,t∆t, (19)

Prd
i,g,t + Pki

i,g,t + Pki
i,g,t − Pik

i,g,t +
(

Pout
i,p2g,t − Pin

i,chp,t − Pin
i,gb,t

)
∆t = Li,g,t∆t, (20)

Pki
i,h,t − Pik

i,h,t + (Pout,h
i,chp,t + Pout

i,eb,t + Pout
i,gb,t)∆t = Li,h,t∆t, (21)

Equations (19)–(21) are respectively the power balance constraints of electricity/gas/heat
in an EH. In order to facilitate the calculation, the unified gas power unit is kW, and the gas
flow rate is converted into a power unit:

Prd
i,g,t =

Qgas

3.6× 106 gt, (22)

where Qgas is the heat value per cubic meter of gas, and gt is the gas flow supplied by the
gas supplier during the period t.

Combined with the above definition of the potential game, the potential function P(τ)
of the potential game composed of multi-energy transactions among N EHs is established as

P(τ) =
N

∑
i=1

ψi,t(τi), (23)

For the non-cooperative game between EHs, ∑ Pik
i,γ,t = 0 is satisfied when the energy

transaction between EHs is reached. If the strategies of other players are unchanged, the Pik
i,γ,t



Mathematics 2023, 11, 4728 7 of 22

in strategies x and z of participant i are unchanged, and for ∀i ∈ N, ∀τ−i ∈ Γ−i, ∀x, z ∈ Γi,
there are

∑
k 6=i,k∈N

uk(τ−i, x)− ∑
k 6=i,k∈N

uk(τ−i, z) = 0. (24)

For the established potential function P(τ), there is

P(τ−i, x)− P(τ−i, z) = ψi(τ−i, x) + ∑
k 6=i,k∈N

ψk(τ−i, x)−
(

ψi(τ−i, z) + ∑
k 6=i,k∈N

ψk(τ−i, z)

)

= (ψi(τ−i, x)− ψi(τ−i, z)) +

(
∑

k 6=i,k∈N
ψk(τ−i, x)− ∑

k 6=i,k∈N
ψk(τ−i, z)

)
= ψi(τ−i, x)− ψi(τ−i, z)

. (25)

Therefore, the multi-energy trading model between EHs conforms to the definition of
the full potential game; that is, the game model is a full potential game.

The above models fully reflect the TSO–EH–GMO and EH–EH interactions. The TSO
is considered to be responsible for centrally clearing the LMPs at each node of the power
system, while the EHs trade electricity with the TSO at the price of the node where they are
located and provide flexibility to the upstream grid by participating in the market.

2.3. Nash Equilibrium Distributed Solution

In order to solve the Nash equilibrium, the ADMM is used in this section to convert the
benefit maximization problem into a cost minimization problem; that is, the cost function is
the opposite of the benefit function ψi, as shown in (26):

Ci,t = −ψi,t, (26)

When the potential function P reaches its maximum value, the game can achieve the
Nash equilibrium. That is, to obtain the minimum value of the inverse Cp of the potential
function, the optimization problem required to solve the function can be converted to
Equation (27):

Min Cp = −P(τ) =
N
∑

i=1
Ci,t(ψi)

St. τi ∈ Γi

Pik
i,γ,t ∈ τi,

N
∑

i=1
Pik

i,γ,t = 0, γ ∈ {e, g, h}

, (27)

where, the EH’s strategy τi can be divided into three parts: the first part is the transaction
variable xi =

{
Pik

i,e,t, Pik
i,g,t, Pik

i,h,t

}
among EHs, the second part is the transaction volume

yi =
{

Prd
i,e,t, Prd

i,g,t, ∆Pup
p,k,t, ∆Pdown

p,k,t

}
with energy suppliers, and the third part is the internal

equipment output zi =
{

Pwt
i,t , Ppv

i,t , Pout,e
i,chp,t, Pout,h

i,chp,t, Pout
i,eb,t, Pout

i,gb,t, Pout
i,p2g,t, Pi,es,t

}
of the EH.

Based on the potential game model established in this paper, the sub-objective function
is the comprehensive cost function of each EH participant, and the overall objective function
Cp is the inverse of the potential function P, so there is no need for further splitting. The
ADMM algorithm is rewritten into a form that is suitable for solving the Nash equilibrium
in potential games, as shown in (28):

(
xν+1

i , yv+1
i , zv+1

i

)
= arg min

(xi ,yi ,zi)

{
Ci,t(xi, yi, zi) + (ρ/2)

∥∥xi − xv
i + x̄v + ξv

∥∥2
2

}
x̄v+1 = 1

N

N
∑

i=1
xv+1

i

ξv+1 = ξv + x̄v+1

(28)
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where xν+1
i represents the (v + 1)th decision variables of the ith EH, and ξv+1 is the dual

variable. Each time the TSO clears πLMP,i,e,t and the EH, there is a unique Nash equilibrium
after the potential game. The proposed Nash equilibrium solution process based on the
ADMM algorithm is shown as follows (Algorithm 1).

Algorithm 1 Solving the potential game based on the ADMM.

Input: N, M, k, v = 0, equipment parameter, load information, external conditions,{
xv

i , yv
i , zi

v}, πv
LMP,i,e, ρ,

Output:
{

x∗i , y∗i , zi
∗}, C∗p

1: Repeat
2: TSO and GMO;
3: Receive transactions from EHs: yv

i =
{

Prd,v
i,e,t , Prd,v

i,g,t , ∆Pup,v
p,k,t , ∆Pdown,v

p,k,t

}
;

4: Update the power output Pv+1
G,k,t of the generator set on the TN and the power con-

sumption yv+1
i of the EH connected to the TN and natural gas network;

5: The node electricity price for the LMPs is calculated by (10): πv
LMP,i,e;

6: Send yv+1
i , πv+1

LMP,i,e and ρrd
i,g,t to EHs through the energy trading platform;

7: EHs(i ∈ N);
8: Receive yv+1

i , πv+1
LMP,i,e, ρrd

i,g,t from TSO and GMO;
9: Update the EHs’ loading information and external conditions;

10: The comprehensive cost Cv
p of the EHs is calculated by (27);

11: The policy sets
{

xv+1
i , yv+1

i , zi
v+1
}

, and x̄v+1, ξv+1 are updated by (28);
12: When we reach the Nash equilibrium, v = v + 1;
13: End

Multi-energy bidirectional transactions are carried out among multiple EHs in a
distributed and competitive way, and the distributed algorithm is used to solve the Nash
equilibrium. The following example analysis verifies the superiority of the above model in
dealing with multi-energy two-way transactions.

3. A Data-Driven Attack Strategy against TSO State Estimators
3.1. A Data-Driven Topology Estimation Method

Transparency in market data plays a crucial role in fostering a competitive and efficient
energy environment. However, it is important to balance transparency with the need to
protect critical physical system information. In many markets, the publicly available
information is primarily focused on Locational Marginal Prices (LMP), while information
about the physical infrastructure is often delayed or incomplete. In this context, estimating
the network topology from published LMP data becomes a suitable option.

In order to facilitate subsequent calculations, πcong in (11) is expressed as a vector,
as follows:

πcong =
(

GSF− GSF · DF · eT
)T

u, (29)

The relationship between πcong and GSF is clearly shown in (29), and the more explicit
relationship between the price information and topology is as follows:

πcong =
(
GSF− GSF · DF · eT)T · u

= (GSFT − e · DFT · GSFT) · u
= (DAL−1)T · u− e · DFT · (DAL−1)T · u
= L−1 AT D · u− e · DFT · L−1 AT D · u

, (30)

From (30), we know that πcong is related to the topologically dependent matrix
(L, D, A), while the Jacobian matrix H consists of L and (D, A). Therefore, in this section,
πcong is divided into two parts according to L and (D, A). Then, an intermediate variable
κ = AT D · u = H2

T · u is introduced, and the historical data πcong and κ are expressed as
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Π = {π1, .., πt} and K = {κ1, .., κt}, respectively, according to the time series. In addition,
in order to meet the recovery conditions, they are converted to solve the SDP problem, and
the updated (30) is as follows:

H1 ·Π = K− H1 · e · DFT · H1
−1 ·K, (31)

In addition, under reasonable market conditions, the line is not congested at all times,
that is, u is sparse, and (D, A) is a sparse matrix, so K = {κ1, .., κt} is sparse, and H1 ·Π is
also sparse.

Based on the sparsity of H1, H1 ·Π and H1 · e, we use compressed sensing to express
the recovery model as an optimization problem. Mathematically, the goal of compressed
sensing is sparse reconstruction, i.e., solving the following sparse minimization problem:

min
s
‖s‖0s.t. y = ΦΨs. (32)

Equation (32) is an NP-hard underdetermined problem. We apply the l1-norm to the
sparse vector H1 · e and the l2,1-mixed norm to the sparse matrices K and H1. The objective
function is as follows:

min
H1
‖K‖`2,1

+ κ1‖H1‖`2,1
+ κ2‖H1e‖`1

− κ3 log‖H1‖, (33)

Equation (33) is composed of H1, K and H1 · e, where K and H1 · e are always sparse,
regardless of the size of the system. The topological estimate H is updated each time the
price vector is published. For big data processing, the ADMM solution is given as follows:

minx∈X ,z∈Z
T
∑

t=1
( ft(x) + g(z))

s.t. Ax + Bz = c
, (34)

The original iteration process of ADMM is as follows:

xt+1 = arg min
x∈X

{
ft(x) + y>t (Ax + Bzt − c) + ρ

2‖Ax + Bzt − c‖2 + η
2 ‖x− xt‖2

}
zt+1 = arg min

z∈Z

{
g(z) + y>t (Axt+1 + Bz− c) + ρ

2‖Axt+1 + Bz− c‖2
}

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c)

, (35)

By substituting the inner product of y and Ax + Bz = c into the quadratic term,
we obtain

xt+1 = arg min
x∈X

{
ft(x) + ρ

2

∥∥Ax + Bzt − c + yT
t /ρ

∥∥2
+ η

2 ‖x− xt‖2
}

zt+1 = arg min
z∈Z

{
g(z) + ρ

2

∥∥Axt+1 + Bz− c + yT
t /ρ

∥∥2
}

yt+1 = yt + ρ(Axt+1 + Bzt+1 − c)

, (36)

By replacing y>t /ρ with ŷt, we obtain

xt+1 = arg min
x∈X

{
ft(x) + ρ

2‖Ax + Bzt − c + ŷt‖2 + η
2 ‖x− xt‖2

}
zt+1 = arg min

z∈Z

{
g(z) + ρ

2‖Axt+1 + Bz− c + ŷt‖2
}

ŷt = ŷt + Axt+1 + Bzt+1 − c

, (37)

To apply the ADMM, for each term and each constraint in the objective function, we
introduce H1,1 = H1,2 = H1,3 = H1,4 = H1,5 and H1,1e = b as new optimization variables
and write the problem as
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min
H1,3∈B3,H1,4∈B4,H1,5∈B5,b∈S

T
∑

t=1
( ft(H1,1) + g1(H1,2) + g2(H1,3) + g3(H1,4) + g4(H1,5) + g5(b))

st.H1,1 − H1,2 = 0; H1,1 − H1,3 = 0; H1,1 − H1,4 = 0;
H1,5 − H1,1 = 0; H1,1e− b = 0; H1,1Π = K

, (38)

where, ft(H1,1) = ‖K‖l2,1
, g1(H1,2) = κ1

T ‖H1,2‖l2,1
, g2(H1,3) = κ3

T log|H1,3|, g3(H1,4) = 0,
g4(H1,5) = 0, g5(b) = κ2

T ‖b‖l1 , B3 = {H10},B4 = {H1 ≤ I}, B5 = {H1(i, j) = v, {i, j, v}
∈ Dt}, S = {b0}.

Let the Lagrange multiplier of (38) be represented by λ12λ13λ14λ15λ16 and λ10. Then,
the recursive iteration process is described as follows:

Ht+1
1,1 = arg min

H1,1

‖K‖1 +
ρ
2

∥∥∥H1,1 − Ht
1,2 + λt

12

∥∥∥2

F
+ ρ

2

∥∥∥H1,1 − Ht
1,3 + λt

13

∥∥∥2

F

+ ρ
2

∥∥∥H1,1 − Ht
1,4 + λt

14

∥∥∥2

F
+ ρ

2

∥∥∥H1,1 − Ht
1,5 + λt

15

∥∥∥2

F

+ ρ
2

∥∥H1,1e− bt + λt
10

∥∥2
2 +

η
2

∥∥∥H1,1 − Ht
1,1

∥∥∥2

F

, (39)

Ht+1
1,2 = arg min

H1,2

κ1

T
‖H1,2‖l2,1

+
ρ

2

∥∥∥Ht+1
1,1 − H1,2 + λt

12

∥∥∥2

F
, (40)

Ht+1
1,3 = arg min

H1,3∈B3

−κ3

T
log|H1,3|+

ρ

2

∥∥∥Ht+1
1,1 − H1,3 + λt

13

∥∥∥2

F
, (41)

Ht+1
1,4 = arg min

H1,4∈B4

ρ

2

∥∥∥Ht+1
1,1 − H1,4 + λt

14

∥∥∥2

F
, (42)

Ht+1
1,5 = arg min

H1,5∈B5

ρ

2

∥∥∥Ht+1
1,1 − H1,5 + λt

15

∥∥∥2

F
, (43)

bt+1 = arg min
b∈S

κ2

T
‖b‖l1 +

ρ

2

∥∥∥Ht+1
1,1 e− b + λt

10

∥∥∥2

2
, (44)

Kt+1 = Sρ−1

(
HT+1

1,1 Π + λt
16

)
,Sβ(x) :=

{
x− βsign(x), |x| > β

0, |x| ≤ β
, (45)


λt+1

12 = λt
12 + Ht+1

1,1 − Ht+1
1,2 ; λt+1

13 = λt
13 + Ht+1

1,1 − Ht+1
1,3

λt+1
14 = λt

14 + Ht+1
1,1 − Ht+1

1,4 ; λt+1
15 = λt

15 + Ht+1
1,1 − Ht+1

1,5

λt+1
16 = λt

16 + Ht+1
1,1 Π− Kt+1; λt+1

10 = λt
10 + Ht+1

1,1 e− bt+1

, (46)

In short, the attacker can implement the iterative process of (39)–(46) through the
ADMM algorithm to realize the grid topology restoration of the node admittance matrix.
Then, the approximate real grid admittance matrix model L̃act is shown in (47).

H̃act
1 = L̃act =

∣∣∣∣ L11 . . . L1n
Ln1 . . . Lnn

∣∣∣∣+ ∣∣∣∣ ∆L11 . . . ∆L1n
∆Ln1 . . . ∆Lnn

∣∣∣∣, (47)
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The first term is the real admittance matrix. The second term ∆y is the error between
the actual model and the model estimated by the attacker. The elements corresponding to
the real power injection are shown in (48).

∂Pinj
∂θi

=
M
∑

j=1,j 6=i
ViVj

((
Gact

ij cos θij − Bact
ij sin θij

)
∂Pinj
∂θj

= ViVj

((
Gact

ij sin θij − Bact
ij cos θij

)
∂Pinj
∂Vi

=
M
∑

j=1,j 6=i
Vj

(
Gact

ij sin θij + Bnact
ij cos θij

)
∂Pinj
∂Vj

= Vi

(
Gact

ij sin θij + Bact
ij cos θij

)
, (48)

These elements form the attacker’s Jacobian matrix H̃act, as shown in (49).

H̃act =

∣∣∣∣∣
∂Pinj

∂θ

∂Pinj
∂V

∂Pl−l
∂θ

∂Pl−l
∂V

∣∣∣∣∣. (49)

where the estimated matrix H̃act exhibits a sparse structure that closely resembles the real
matrix H. The locations of non-zero elements in the matrix correspond to the existence of
transmission lines. Consequently, the evaluation process can be divided into two steps.
Firstly, the elements of the estimated matrix H̃act are categorized into zero and non-zero
classes. Secondly, the positions of non-zero elements in the real matrix H are compared
with those in the estimated matrix H̃act to assess the difference.

3.2. The Attacker Model in the TE Market Environment

In this section, the primary focus lies in identifying the attacker and the target of
the attack in the context of energy trading within the TE market. Given the extensive
information exchange among numerous market participants, including IoT-integrated EHs,
diverse forecasters, market operators, producers, and consumers, it becomes crucial to
consider the potential presence of adversaries and malicious users who may assume the
role of attackers during the energy trading process and the provision of flexibility.

3.2.1. Role Analysis of the Market Attacker

Figure 2 depicts the role that an attacker can play in the TE market, and Figure 2a
depicts the communication channels of an FDI attack by manipulating the price signals ex-
changed between producers, consumers, and market operators in order to cause economic
damage to all market participants or disrupt normal market operations. Figure 2b depicts
the malicious user role, where malicious consumers act as attackers and provide false data
to TE market operators or peers in order to increase their own financial gain.

(a) (b)

Figure 2. The attacker’s role in the TE market. (a) The communication channel of the FDI attack.
(b) Malicious users of FDI attacks.
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As mentioned above, in all market components, communication channels, smart
devices, and bad users can act as the main vectors for executing different cyber attacks due
to weak security mechanisms and direct access to the system. Therefore, in this section, we
divide attacks into three categories based on the vulnerable market components of the TE
market: (1) attacks through communication channels; (2) attacks through equipment; and
(3) attacks by malicious users.

3.2.2. Attack Model of the Virtual Bidder

In the RT market, based on state estimates at the end of each interval, the TSO estimates
the power generation of bus j and the Pg

j and Pd
j of the load. The power flow estimated by

the TSO through each transmission line l is shown in (50):

P̂l =
M

∑
j=1

GSFl j

(
P̂g

j − P̂d
j

)
, (50)

When the estimated flow exceeds the limit, we consider the branch to be congested.
When the line currents belong to different congestion sets, the congestion price part is
expressed as shown in (51).

(µmin
l,t − µmax

l,t ) < 0, l ∈ Ĉ+ ∆
=
{

l ∈ {1, . . . , L} | P̂l ≥ Pmax
l

}
(µmin

l,t − µmax
l,t ) > 0, l ∈ Ĉ− ∆

=
{

l ∈ {1, . . . , L} | P̂l ≤ Pmin
l
}

(µmin
l,t − µmax

l,t ) = 0, l ∈ Ĉ0 ∆
=
{

l ∈ {1, . . . , L} | Pmin
l ≤ P̂l ≤ Pmax

l
} , (51)

In the RT market, FDI attacks can inject false data in bidding, line rating, the demand
response, and other aspects, which affects the congestion price πcong of the RT market
operation. Virtual bid transactions are summarized in Table 1.

Table 1. Virtual bid trading scheme.

Virtual Bid Node Node i(DA) Node j(DA) Node i(RT) Node j(RT)

Electricity Sold
(

Pd, MW
)

- πDA
j,LMP πRT

i,LMP -

Electricity Purchase
(

Pd, MW
)

πDA
i,LMP - - πRT

j,LMP

The VB revenue objective function can be constructed as a function of πDA
LMP and πRT

LMP,
as (52):

U
(
πDA

LMP, πRT
LMP, a

)
=
(

πRT
i,LMP − πRT

j,LMP + πDA
j,LMP−DA

i,LMP

)
· Pd

=


∑

l∈L+

(
GSFl,i(1− DFi)− GSFl,j(1− DFj)

)
· (µmin

l,t − µmax
l,t )

+ ∑
l∈L−

(
GSFl,j(1− DFj)− GSFl,i(1− DFi)

)
· (µmin

l,t − µmax
l,t )

+
(

πDA
j,LMP − πDA

i,LMP

)
 · P

d
, (52)

If the three conditions of (53) are met, the payoff is always positive.
(1) πDA

j,LMP − πDA
i,LMP ≥ 0

(2) ∀l ∈ L+
∆
=
{

l ∈ {1, . . . , L} : GSFl,i(1− DFi) > GSFl,j(1− DFj)
}

, P̂act
l ≥ Pmin

l

(3) ∀l ∈ L−
∆
=
{

l ∈ {1, . . . , L} : GSFl,i(1− DFi) < GSFl,j(1− DFj)
}

, P̂act
l ≤ Pmax

l

, (53)

Since P̂act
l follows a Gaussian random distribution, full satisfaction of the second and

third conditions of (53) cannot be guaranteed. However, the attack vector a can be designed
to maximize the probability of satisfying both conditions. This paper introduces δ as the
profit confidence, and in order to create (or eliminate) congestion on line l, the attackers
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design their attacks such that
[
P̂act

l
]
≥ Pmax

l + δ(
[
P̂act

l
]
≤ Pmax

l − δ). In addition, the chance
constraint η ∈ (0, 1) with an allowable confidence interval is added to provide the optimal
injection vector under uncertain conditions, as shown in (54).{ ([

P̂act
l
]
≥ Pmin

l + δ
)
≥ η, ∀l ∈ L+([

P̂act
l
]
≤ Pmax

l − δ
)
≥ η, ∀l ∈ L−

, (54)

At the same time, δ needs to be maximized to increase its chances of achieving the con-
gestion it seeks. Market attacks can therefore be seen as solving the following opportunity
constraint problem:

max δ([
P̂act

l
]
≥ Pmin

l + δ
)
≥ η, ∀l ∈ L+([

P̂act
l
]
≤ Pmax

l − δ
)
≥ η, ∀l ∈ L−

δ > 0, 0 < η < 1

. (55)

The performance of FDI attacks requires the attacker to modify the sensor measure-
ments and write access, thus providing the instructions shown in Figure 3. A resource-
constrained VBS may want to minimize the number of sensors it has to compromise to
perform an FDI attack, or equivalently, maximize the sparsity of the attack.

Figure 3. The learning and execution phase of a data-driven FDI attack.

Although the above method can find the attack vector a, the sparsity and effectiveness
of the attack vector cannot be satisfied at the same time. This paper not only considers the
energy limit of the enemy but also considers the optimal selection of the attack target. The
importance of the attack target is higher than the attack type, and an important trade-off
between the sparsity and effectiveness of the attack vector a has been achieved.

3.3. Optimal Attack Target Identification Method Based on MTE

Due to the high computational complexity of transfer entropy (TE), the calculation of
a large amount of historical measurement data will increase the storage and computation
burden [37]. To solve the above problems, we employ causal inference based on the Matrix
Transfer Entropy (MTE) method, which can be used for two variables with linear or non-
linear causal relationships. Compared with the traditional TE method, this method is more
robust. The computational complexity of the MTE method is not high because it ignores the
estimation of the probability density function of the variable. The calculation of the MTE
primarily relies on the matrix entropy, edge entropy, and conditional entropy. The matrix
entropy is obtained by taking the logarithm of the trace of the Gram matrix. Likewise, the
edge entropy is obtained by taking the logarithm of the trace of the Hadamard product of
two Gram matrices. Conditional entropy, on the other hand, is determined as the difference
between the first two measures mentioned above. Similarly, we can define the MTE from X
to Y:

MTEX→Y = S2
(
yi|y

(k)
i
)
− S2

(
yi|y

(k)
i , x(k)i

)
, (56)

where S2
(
yi|y

(k)
i
)

represents the second-order matrix entropy of the variable y; S2
(
yi|y

(k)
i , x(k)i

)
represents the edge ME between variable y and variable x; k is the implant dimension.

In the same way as determining the direction of the transfer entropy causality, the
direction of causality between X and Y can also be well judged by the difference between
the two TEs:

mteY→X = MTEX→Y −MTEY→X , (57)
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In order to better infer the relationship between the injection of the attack vector a and
the revenue U of the VB, according to (50)–(52), for all buses πLMP and measurement data
z, the revenue U can be expressed in the compound function form of (58) :

U = h(πLMP(zm(a))), (58)

πLMP,N = fN (z1, z2, .., zm), (59)

zM̃ = gM̃(a1, a2, .., am), (60)

where U represents th eVB revenue; πLMP = [πLMP,1, πLMP,2, .., πLMP,Y]
T indicates the

LMP on the bus. zM̃ and aM̃ are the measurements of the sensor and their corresponding
attack vectors respectively. h(·), U. fN (·) and gM̃(·) are vector functions.

The main objective of this paper is to reflect the degree of change in the attacker’s
benefit when any sensor measurement value in the entire Transmission Network is changed
by the injected attack vector:

Λl(i, j) =
∂U
∂a

, (61)

where Λl(i, j) represents the degree of profitability to quantify the amount of increase/decrease
in the profit and by manipulating the appropriate virtual bid nodes or lines in the TE market.
According to the chain rule, (61) can be written as

Λl(i, j) =
∂U
∂a

=
∂U
∂π
· ∂π

∂z
· ∂z

∂a
, (62)

In the RT power market, the DC state estimator is used. Then the measurement data z
only include the active power Pi injected by the node and the active power Pij of the line,

that is, z =
[
Pi, Pij

]T . While Pi and Pij can be expressed by the power transfer factor matrix
GSF, in this case, it can be expressed by using the power of m group nodes and the branch
power flow in the time period tm:

Pt1
12 Pt2

12 · · · Pt3
12

Pt1
13 Pt2

13 · · · Ptm
13

...
...

...

Pt1
ij Pt2

ij · · · P
tij
ij


L×tm

= GSFL×Y ·


Pt1

1 Pt2
1 · · · Pt3

1
Pt1

2 Pt2
2 · · · Ptm

2
...

...
...

Pt1
Y Pt2

Y · · · P
tij
Y


Y×tm

, (63)

According to the relationship analysis among the variables of the measurement data
in (63), if the causal relationship between the injected power of nodes is inferred through
the TME, the information entropy between nodes can be obtained, and then the causal
relationship with the line power can be obtained.

Suppose that the attacker injects the attack vector a into the injected power Pi(Pj) of
node i(j), then the change in Pi(Pj) of node i(j) before and after the attack is ∆Pact

i (∆Pact
j ),

the change in Pij before and after the attack is ∆Pact
ij , the change in πi(πj) before and after

the attack is ∆πact
i (∆πact

j ), and the change in the corresponding revenue function U is ∆U.
At this time, the expression relationships among the four are as follows:

∆Pact
i = (Pi + ai)− Pi

∆Pact
j =

(
Pj + aj

)
− Pj

∆Pact
ij = GSFij−i∆Pact

i + GSFij−j∆Pact
j

∆πact
LMP,i = GSFij−i · ∆µi

∆U = ∆ξ · Pd

(64)

It can be seen that the change in data corresponding to nodes can better reflect the
causal relationships among nodes. The specific flow of the optimal attack target identifi-
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cation method based on the MTE is shown in Figure 4. First of all, a time series matrix is
constructed for the obtained market data, and then the causal relationships among variables
are inferred based on the MTE model, and the causal relationship table is constructed as a
reference premise. Then, the causal evaluation index is constructed to select the optimal
attack target.

Figure 4. The node’s local energy community structure.

4. Simulation Results
4.1. Performance Analysis of the System’s Topology Estimation

Firstly, we estimate the degree of damage done to the market test H̃act
1 (L̃act) in the

IEEE 30-node system: in the case of D = ∅, the estimated H̃act
1 and H̃act are compared with

the corresponding real matrix, as shown in Figures 5 and 6, respectively. As can be seen
from the figure, although the estimated Jacobian matrix H̃act and the real matrix H have
some similarities and differences in some values, the overall estimated effect is very good.
The results show that FDI attacks only depend on the topology of the network, not on the
concrete value of the matrix.

(a) (b)

Figure 5. The node’s admittance matrix estimation: (a) real H1; (b) estimated H̃act
1 .

In order to analyze the accuracy of the estimated matrix more objectively, we analyze
the estimated matrix according to the proposed performance index. Firstly, the AUC-ROC
curve for the case of D = ∅ was calculated. It can be seen from Figure 7 that the AUC-ROC
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value is stable at about 0.86, which indicates that the estimation effect is good. However, to
make the results more definitive, we plot the trend of accuracy in the loss market as the
VB owns line information, as shown in Figure 8. With the increase in the known circuit
information, the OC-ROC value gradually increases. At the highest value, it can reach
about 0.94, while the F value gradually decreases. The lowest value it can reach is about
0.27. This shows that the estimation performance of H̃act improves with the increase in line
information obtained by the VB.

(a) (b)

Figure 6. Jacobian matrix estimation: (a) real H; (b) estimated H̃act.

Figure 7. AUC-ROC without line information.

Secondly, we propose an algorithm for restoring the topology online; that is, the current
H̃act estimate can be updated immediately whenever the latest LMP is published. To prove
that the proposed model can estimate the current topology, we conduct an additional case
study to simulate the tracking of topological changes. As shown in Figure 9, Figure 9a is
the K̃act estimated iteratively before the system’s topology changes, and Figure 9b is the
K̃act estimated by the last iteration after the system’s topology changes. By comparing
Figure 9a,b, it can be seen that, at line 30, the connecting nodes 15 and 23 are cut off, and
the estimation model has a high level of accuracy for the change, which indicates that the
topology can be estimated online in real time.
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Figure 8. AUC-ROC with line information.

In addition, because the VB can obtain the market price data, the congestion in a certain
segment of the market can be obtained by processing the congestion price. As shown in
Figure 10, taking the market data from one week as an example, it can be known from
the proposed strategy that congestion often occurs on lines 30 and 35 in many periods, and
congestion occurs on line 10 in some periods, which provides great help for subsequent attacks.

(a) (b)
Figure 9. Before and after the topology change: (a) before the topology change; (b) after the topol-
ogy change.

4.2. Economic Analysis under False Data Injection Attacks

Firstly, the transfer entropy between the LMP and VB objective function U is calculated
based on the causality inference of the MTE. Then, on this basis, the contribution values of
the LMPs of different nodes to the profit function are calculated, and the node variables
that contribute more to the profit function at this moment are screened out according to
the calculated screening standard value, and then the recognition result graph between
variables based on the contribution rate of transfer entropy is obtained.

Figure 11 shows the contribution of each variable in a certain period and the contribu-
tion of the LMP of each node to the objective function U can be clearly seen. It is obvious
that variables 8, 15, and 24 contribute more at this time and have high levels of impact on



Mathematics 2023, 11, 4728 18 of 22

the generation of VB profits. At this point, the attacker gains the most, and the adverse
impact on the energy market is greater.

Figure 10. Line congestion within a week.

Figure 11. The contribution of each node.

In order to more clearly see the impact of the attacked section on other nodes, con-
nected lines, and the attacker’s objective function, a heat map of the impact of the attacker
on the price in the IEEE 30 bus network is drawn, as shown in Figure 12. It can be seen
from Figure 12b that when an attack is launched on eight nodes (EH3), nodes 6 and 8 are
the most affected. Figure 12c shows that the attack on 15 nodes has the greatest impact on
nodes 14 (EH4), 12 (EH1), 18, and 23. Figure 12d shows that when an attack is launched
against 24 nodes, nodes 22, 23, and 25 have the greatest impacts. After a comparison, the
attacker in Figure 12b has the highest profit, followed by the result shown in Figure 12c, so
the attacker can preferentially choose the attack mode, as shown in Figure 12b. According
to the estimation method presented in Section 3.3, the congestion lines occur at lines 10,
30, and 35, among which line 30 is just connected to nodes 15 and 23, indicating that the
two-stage attack can achieve a good target selection and attack effect.

The attacker first selects nodes 15 and 23 and line 30 as the attack set; second, it selects
nodes 25 and 27 and line 35 as the attack set; and third, it selects nodes 8 (EH3) and 6 and
line 10 as the attack set. The DA and RT virtual bidding (VB) information according to the
four attack schemes is shown in Table 2.

Firstly, we combine the line congestion analyzed in Section 4.1 and select the 257th
clearing price in Figure 13 for the attack. Then, according to the attack set obtained by the
proposed method, the fourth one is selected as the attack set combination according to
Table 2. The LMP before and after the attack of each node in Figure 14 can be obtained,
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and the profit of the VB can be calculated. Through the VB profit comparison under each
scheme, it can be seen that the fourth attack set has the best effect and the biggest profit.

(a) (b)

(c) (d)

Figure 12. Causal graph between the variables before and after the attack. (a) Causal graph between
the variables before the attack. (b) Causal graph between the variables after attacking eight nodes.
(c) Causal graph between the variables after attacking 15 nodes. (d) Causal graph between the
variables after attacking 24 nodes.

Table 2. Information for the attack schemes.

Attack Selection VB1 VB2 Target Line Attacker Profit

Attack set 1 15 23 30 1003.67
Attack set 2 25 27 35 966.084
Attack set 3 8 (EB3) 6 10 1544.17
Attack set 4 8 (EB3) 23 10/30/35 2111.31

Figure 13. Line congestion for the 257th time.
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(a) (b)

(c) (d)
Figure 14. LMP changes in the nodes before and after the attacks. (a) The LMP of nodes 15–23 before
and after the attack. (b) The LMP of nodes 25–27 before and after the attack. (c) The LMP of nodes
6–8 before and after the attack. (d) The LMP of nodes before and after the attack.

Finally, the effect of the above attack scheme on the income of TE market players is
analyzed. Figure 15 compares the impacts of different attack schemes on the TSO cost and
EH cost under different attack degrees. A higher attack degree means that the executed
attack has a higher penetration level for congestion elimination. With the increase in
the attack level under different attack schemes, the change in the TSO cost is constantly
increasing. Option 4 is more cost-effective than other options. This is because scenario 4
causes the LMP of multiple nodes, resulting in reduced revenue from sales and increased
flexibility costs.

Figure 15. Analysis of the effects of different attack schemes.

5. Conclusions

The research focuses on developing a price-oriented TE market clearing model that
emphasizes market security. The model takes into account coordinated transactions among
the TSO, GMO, and EHs. To overcome the limitations of existing attacks, a two-stage attack
strategy was proposed. In the first stage, a real-time topology estimation method driven
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by market data is devised to lay the groundwork for subsequent successful FDI attacks.
In the second stage, the attacker’s role is determined based on the feasible attack modes
within the TE market environment. Furthermore, an objective function for the attacker
from a profit perspective was proposed. In addition, the authors introduced an optimal
attack target identification method based on the MET to maximize the attacker’s profit
while minimizing the risk. Lastly, an extensive simulation analysis was used to validate the
effectiveness of the proposed attack strategy, which is essential for ensuring the security,
stability, and effectiveness of the TE market.
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